1
|
Itamochi M, Yazawa S, Saga Y, Shimada T, Tamura K, Maenishi E, Isobe J, Sasajima H, Kawashiri C, Tani H, Oishi K. COVID-19 mRNA booster vaccination induces robust antibody responses but few adverse events among SARS-CoV-2 naïve nursing home residents. Sci Rep 2024; 14:23295. [PMID: 39375365 PMCID: PMC11458568 DOI: 10.1038/s41598-024-73004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
Residents in nursing homes face heightened COVID-19 risks. We aimed to assess the adverse events (AEs) rates and antibody responses after the first to the fifth dose of COVID-19 mRNA vaccination in a nursing home cohort. Ninety-five SARS-CoV-2 naïve participants consisted of 26 staff (median age, 51 years) and 69 residents (median age, 88 years). Life-threatening AEs were reported in neither residents nor staff. The severity of non-life-threatening AEs was graded, and severe AEs were reported only in staff. The AEs rates were considerably lower in residents, compared to those in staff. Anti-RBD IgG and the neutralizing titers (NTs) against Wuhan and Omicron BA.4/BA.5 did not differ significantly between those with 'any AE' and 'no AE' among both staff and residents two months after the second, third and fifth doses, while the anti-RBD IgG significantly differed between two groups after third dose in residents. These findings suggest that the anti-RBD IgG and the NTs increase regardless of the occurrence of AEs. Our study underscores a robust antibody response in both in staff and residents, and fewer AEs following COVID-19 vaccination in SARS-CoV-2 naïve residents than staff, supporting the recommendation for mRNA booster doses in older adults at high-risk care facilities.
Collapse
Affiliation(s)
- Masae Itamochi
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Shunsuke Yazawa
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Yumiko Saga
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Takahisa Shimada
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Kosuke Tamura
- Department of Research Planning, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Emi Maenishi
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Hitoshi Sasajima
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Chikako Kawashiri
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan
| | - Kazunori Oishi
- Toyama Institute of Health, 17-1 Nakataikoyama, Imizu, Toyama, 939-0363, Japan.
| |
Collapse
|
2
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
3
|
Gutierrez-Chavez C, Aperrigue-Lira S, Ortiz-Saavedra B, Paz I. Chemokine receptors in COVID-19 infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:53-94. [PMID: 39260938 DOI: 10.1016/bs.ircmb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors play diverse roles in the immune response against pathogens by recruiting innate and adaptive immune cells to sites of infection. However, their involvement could also be detrimental, causing tissue damage and exacerbating respiratory diseases by triggering histological alterations such as fibrosis and remodeling. This chapter reviews the role of chemokine receptors in the immune defense against SARS-CoV-2 infection. In COVID-19, CXCR3 is expressed mainly in T cells, and its upregulation is related to an increase in SARS-CoV-2-specific antibodies but also to COVID-19 severity. CCR5 is a key player in T-cell recruitment, and its suppression leads to reduced inflammation and viremia levels. Conversely, CXCR6 is implicated in the aberrant migration of memory T cells within airways. On the other hand, increased CCR4+ cells in the blood and decreased CCR4+ cells in lung cells are associated with severe COVID-19. Additionally, CCR2 is associated with an increase in macrophage recruitment to lung tissues. Elevated levels of CXCR1 and CXCR2, which are predominantly expressed in neutrophils, are associated with the severity of the disease, and finally, the expression of CX3CR1 in cytotoxic T lymphocytes affects the retention of these cells in lung tissues, thereby impacting the severity of COVID-19. Despite the efforts of many clinical trials to find effective therapies for COVID-19 using chemokine receptor inhibitors, no conclusive results have been found due to the small number of patients, redundancy, and co-expression of chemokine receptors by immune cells, which explains the difficulty in finding a single therapeutic target or effective treatment.
Collapse
Affiliation(s)
| | - Shalom Aperrigue-Lira
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Brando Ortiz-Saavedra
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología-GII, UNSA, Arequipa, Peru
| | - Irmia Paz
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| |
Collapse
|
4
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
5
|
Wolz OO, Vahrenhorst D, Quintini G, Lemberg C, Koch SD, Kays SK, Walz L, Kulkarni N, Fehlings M, Wengenmayer P, Heß J, Oostvogels L, Lazzaro S, von Eisenhart-Rothe P, Mann P. Innate Responses to the Former COVID-19 Vaccine Candidate CVnCoV and Their Relation to Reactogenicity and Adaptive Immunogenicity. Vaccines (Basel) 2024; 12:388. [PMID: 38675770 PMCID: PMC11053638 DOI: 10.3390/vaccines12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.
Collapse
Affiliation(s)
- Olaf-Oliver Wolz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Dominik Vahrenhorst
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Gianluca Quintini
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Christina Lemberg
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sven D. Koch
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sarah-Katharina Kays
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lisa Walz
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Neeraja Kulkarni
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Michael Fehlings
- ImmunoScape Pte Ltd., Singapore 139954, Singapore; (N.K.); (M.F.)
| | - Peter Wengenmayer
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Jana Heß
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Lidia Oostvogels
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | - Sandra Lazzaro
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| | | | - Philipp Mann
- CureVac SE, 72076 Tübingen, Germany; (D.V.); (G.Q.); (C.L.); (S.D.K.); (P.W.); (L.O.); (S.L.); (P.M.)
| |
Collapse
|
6
|
Jones CH, Androsavich JR, So N, Jenkins MP, MacCormack D, Prigodich A, Welch V, True JM, Dolsten M. Breaking the mold with RNA-a "RNAissance" of life science. NPJ Genom Med 2024; 9:2. [PMID: 38195675 PMCID: PMC10776758 DOI: 10.1038/s41525-023-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
In the past decade, RNA therapeutics have gone from being a promising concept to one of the most exciting frontiers in healthcare and pharmaceuticals. The field is now entering what many call a renaissance or "RNAissance" which is being fueled by advances in genetic engineering and delivery systems to take on more ambitious development efforts. However, this renaissance is occurring at an unprecedented pace, which will require a different way of thinking if the field is to live up to its full potential. Recognizing this need, this article will provide a forward-looking perspective on the field of RNA medical products and the potential long-term innovations and policy shifts enabled by this revolutionary and game-changing technological platform.
Collapse
Affiliation(s)
| | | | - Nina So
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA
| | | | | | | | - Verna Welch
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA
| | - Jane M True
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA.
| | | |
Collapse
|
7
|
Schramm CA, Moon D, Peyton L, Lima NS, Wake C, Boswell KL, Henry AR, Laboune F, Ambrozak D, Darko SW, Teng IT, Foulds KE, Carfi A, Edwards DK, Kwong PD, Koup RA, Seder RA, Douek DC. Interaction dynamics between innate and adaptive immune cells responding to SARS-CoV-2 vaccination in non-human primates. Nat Commun 2023; 14:7961. [PMID: 38042809 PMCID: PMC10693617 DOI: 10.1038/s41467-023-43420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023] Open
Abstract
As SARS-CoV-2 variants continue evolving, testing updated vaccines in non-human primates remains important for guiding human clinical practice. To date, such studies have focused on antibody titers and antigen-specific B and T cell frequencies. Here, we extend our understanding by integrating innate and adaptive immune responses to mRNA-1273 vaccination in rhesus macaques. We sorted innate immune cells from a pre-vaccine time point, as well as innate immune cells and antigen-specific peripheral B and T cells two weeks after each of two vaccine doses and used single-cell sequencing to assess the transcriptomes and adaptive immune receptors of each cell. We show that a subset of S-specific T cells expresses cytokines critical for activating innate responses, with a concomitant increase in CCR5-expressing intermediate monocytes and a shift of natural killer cells to a more cytotoxic phenotype. The second vaccine dose, administered 4 weeks after the first, elicits an increase in circulating germinal center-like B cells 2 weeks later, which are more clonally expanded and enriched for epitopes in the receptor binding domain. Both doses stimulate inflammatory response genes associated with elevated antibody production. Overall, we provide a comprehensive picture of bidirectional signaling between innate and adaptive components of the immune system and suggest potential mechanisms for the enhanced response to secondary exposure.
Collapse
Affiliation(s)
- Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Noemia S Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christian Wake
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin L Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel W Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Rosati M, Terpos E, Homan P, Bergamaschi C, Karaliota S, Ntanasis-Stathopoulos I, Devasundaram S, Bear J, Burns R, Bagratuni T, Trougakos IP, Dimopoulos MA, Pavlakis GN, Felber BK. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front Immunol 2023; 14:1292568. [PMID: 38090597 PMCID: PMC10711274 DOI: 10.3389/fimmu.2023.1292568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration Clinicaltrials.gov, identifier NCT04743388.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
9
|
Capuano C, De Federicis D, Ciuti D, Turriziani O, Angeloni A, Anastasi E, Giannini G, Belardinilli F, Molfetta R, Alvaro D, Palmieri G, Galandrini R. Impact of SARS-CoV-2 vaccination on FcγRIIIA/CD16 dynamics in Natural Killer cells: relevance for antibody-dependent functions. Front Immunol 2023; 14:1285203. [PMID: 38045702 PMCID: PMC10693335 DOI: 10.3389/fimmu.2023.1285203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Natural Killer (NK) cells contribute to the protective effects of vaccine-induced antibodies thanks to the low affinity receptor for IgG, FcγRIIIA/CD16, whose aggregation leads to the killing of infected cells and IFNγ release, through which they potentiate adaptive immune responses. Methods Forty-seven healthy young individuals undergoing either homologous (ChAdOx1-S/ChAdOx1-S) or heterologous (ChAdOx1-S/BNT162B2) SARS-CoV-2 vaccination settings were recruited. Peripheral blood samples were collected immediately prior to vaccination and 8 weeks after the booster dose. The phenotypic and functional profile of NK cells was evaluated by flow cytometry at both time points. Serum samples were tested to evaluate circulating anti-Spike IgG levels and cytomegalovirus serostatus. CD16 F158V polymorphism was assessed by sequencing analysis. Results The downregulation of CD16 and the selective impairment of antibody-dependent cytotoxicity and IFNγ production in CD56dim NK population, persisting 8 weeks after boosting, were observed in heterologous, but not in homologous SARS-CoV-2 vaccination scheme. While the magnitude of CD16-dependent functions of the global CD56dim pool correlated with receptor levels before and after vaccination, the responsivity of NKG2C+ subset, that displays amplified size and functionality in HCMV+ individuals, resulted intrinsically insensitive to CD16 levels. Individual CD16 responsiveness was also affected by CD16F158V polymorphism; F/F low affinity individuals, characterized by reduced CD16 levels and functions independently of vaccination, did not show post-vaccinal functional impairment with respect to intermediate and high affinity ones, despite a comparable CD16 downregulation. Further, CD16 high affinity ligation conditions by means of afucosylated mAb overcame vaccine-induced and genotype-dependent functional defects. Finally, the preservation of CD16 expression directly correlated with anti-Spike IgG titer, hinting that the individual magnitude of receptor-dependent functions may contribute to the amplification of the vaccinal response. Conclusion This study demonstrates a durable downmodulation of CD16 levels and Ab-dependent NK functions after SARS-CoV-2 heterologous vaccination, and highlights the impact of genetic and environmental host-related factors in modulating NK cell susceptibility to post-vaccinal Fc-dependent functional impairment.
Collapse
Affiliation(s)
- Cristina Capuano
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniel Ciuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Cao C, Jiang J, Liu M, Dai Y, Chang T, Ji T, Gong F. Longitudinal evaluation of innate immune responses to three doses of CoronaVac vaccine. Front Immunol 2023; 14:1277831. [PMID: 37849746 PMCID: PMC10577214 DOI: 10.3389/fimmu.2023.1277831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
The adaptive immune responses induced by inactivated COVID-19 vaccine has been extensively studied. However, few studies have analyzed the impact of COVID-19 vaccination on innate immune cells. Here in this study, we recruited 62 healthcare workers who received three doses of CoronaVac vaccine and longitudinally profiled the alterations of peripheral monocytes and NK cells during vaccination. The results showed that both the monocyte and NK cell subsets distribution were altered, although the frequencies of the total monocyte and NK cells remained stable during the vaccination. Additionally, we found that both the 2nd and 3rd dose of CoronaVac vaccination elicited robust IFN-γ-producing NK cell response. Our data provided necessary insights on innate immune responses in the context of three homologous CoronaVac dose vaccination, and supplied immunological basis for the future design of inactivated vaccines against SARS-CoV-2 or other viruses.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Tianzhi Chang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Tuo Ji
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Fang Gong
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Graydon EK, Conner TL, Dunham K, Olsen C, Goguet E, Coggins SA, Rekedal M, Samuels E, Jackson-Thompson B, Moser M, Lindrose A, Hollis-Perry M, Wang G, Maiolatesi S, Alcorta Y, Reyes A, Wong M, Ramsey K, Davies J, Parmelee E, Ortega O, Sanchez M, Moller S, Inglefield J, Tribble D, Burgess T, O’Connell R, Malloy AMW, Pollett S, Broder CC, Laing ED, Anderson SK, Mitre E. Natural killer cells and BNT162b2 mRNA vaccine reactogenicity and durability. Front Immunol 2023; 14:1225025. [PMID: 37711632 PMCID: PMC10497936 DOI: 10.3389/fimmu.2023.1225025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Natural killer (NK) cells can both amplify and regulate immune responses to vaccination. Studies in humans and animals have observed NK cell activation within days after mRNA vaccination. In this study, we sought to determine if baseline NK cell frequencies, phenotype, or function correlate with antibody responses or inflammatory side effects induced by the Pfizer-BioNTech COVID-19 vaccine (BNT162b2). Methods We analyzed serum and peripheral blood mononuclear cells (PBMCs) from 188 participants in the Prospective Assessment of SARS-CoV-2 Seroconversion study, an observational study evaluating immune responses in healthcare workers. Baseline serum samples and PBMCs were collected from all participants prior to any SARS-CoV-2 infection or vaccination. Spike-specific IgG antibodies were quantified at one and six months post-vaccination by microsphere-based multiplex immunoassay. NK cell frequencies and phenotypes were assessed on pre-vaccination PBMCs from all participants by multi-color flow cytometry, and on a subset of participants at time points after the 1st and 2nd doses of BNT162b2. Inflammatory side effects were assessed by structured symptom questionnaires, and baseline NK cell functionality was quantified by an in vitro killing assay on participants that reported high or low post-vaccination symptom scores. Results Key observations include: 1) circulating NK cells exhibit evidence of activation in the week following vaccination, 2) individuals with high symptom scores after 1st vaccination had higher pre-vaccination NK cytotoxicity indices, 3) high pre-vaccination NK cell numbers were associated with lower spike-specific IgG levels six months after two BNT162b2 doses, and 4) expression of the inhibitory marker NKG2A on immature NK cells was associated with higher antibody responses 1 and 6 months post-vaccination. Discussion These results suggest that NK cell activation by BNT162b2 vaccination may contribute to vaccine-induced inflammatory symptoms and reduce durability of vaccine-induced antibody responses.
Collapse
Affiliation(s)
- Elizabeth K. Graydon
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Tonia L. Conner
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Kim Dunham
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cara Olsen
- Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Si’Ana A. Coggins
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Marana Rekedal
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Emily Samuels
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Matthew Moser
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Alyssa Lindrose
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Monique Hollis-Perry
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Gregory Wang
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Santina Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Yolanda Alcorta
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Anatalio Reyes
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Mimi Wong
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Kathy Ramsey
- Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- General Dynamics Information Technology, Silver Spring, MD, United States
| | - Julian Davies
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Edward Parmelee
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Orlando Ortega
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Mimi Sanchez
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Sydney Moller
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jon Inglefield
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Timothy Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Robert O’Connell
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University, Bethesda, MD, United States
| | - Simon Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Infectious Disease Clinical Research Program, Department of Preventive Medicine & Biostatistics, Uniformed Services University, Bethesda, MD, United States
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| | - Stephen K. Anderson
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
12
|
Nelli F, Signorelli C, Fabbri A, Giannarelli D, Virtuoso A, Giron Berrios JR, Marrucci E, Fiore C, Schirripa M, Chilelli MG, Primi F, Panichi V, Topini G, Silvestri MA, Ruggeri EM. Changes in Peripheral Immune Cells after the Third Dose of SARS-CoV-2 mRNA-BNT162b2 Vaccine and Disease Outcomes in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Prospective Analysis of the Vax-on-Third-Profile Study. Cancers (Basel) 2023; 15:3625. [PMID: 37509286 PMCID: PMC10377319 DOI: 10.3390/cancers15143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Anti-SARS-CoV-2 mRNA vaccines can deeply affect cell-mediated immune responses in immunocompromised recipients, including cancer patients receiving active treatments. The clinical implications of changes in peripheral blood lymphocyte subsets following the third dose of mRNA-BNT162b2 vaccination (tozinameran) in patients on immune checkpoint blockade are not fully understood. We conducted a prospective analysis of the Vax-On-Third-Profile study to evaluate the impact of circulating lymphocyte dynamics on disease outcomes in this subgroup of patients. METHODS Recipients of booster dosing who had received before vaccination at least one course of an anti-PD-1/PD-L1 treatment for an advanced solid tumor were eligible. Immunophenotyping of peripheral blood was performed before the third dose of tozinameran (timepoint-1) and four weeks later (timepoint-2) to quantify the absolute counts of lymphocyte subpopulations, including CD3+CD4+ T cells, CD3+CD8+ T cells, B cells, and NK cells. Logistic regression was used to analyze the relationship between lymphocyte subsets and durable clinical benefit (DCB). The log-rank test and Cox regression model were applied to evaluate the relationship between lymphocyte subpopulations and both vaccine-related time-to-treatment failure (V-TTF) and overall survival (OS). RESULTS We included a total of 56 patients with metastatic disease who were given a third dose of tozinameran between 23 September and 7 October 2021 (median age: 66 years; male: 71%). Most recipients had a diagnosis of lung cancer and were being treated with pembrolizumab or nivolumab. Compared to baseline, the third immunization resulted in an incremental change in the median counts of all lymphocyte subpopulations, which was statistically significant only for NK cells (p < 0.001). A significant correlation was found between NK cell counts and DCB at timepoint-2 (p < 0.001). Multivariate logistic regression analysis of DCB confirmed the predictive significance of high-level NK cell counts (p = 0.020). In multivariate Cox regression analysis, high-level NK cell counts independently predicted longer V-TTF [HR 0.34 (95% CI 0.14-0.80), p = 0.014] and OS [HR 0.36 (95% CI 0.15-0.89), p = 0.027]. CONCLUSIONS Our data suggest expansion of NK cell counts as the most noteworthy change in circulating lymphocytes after the third dose of tozinameran in cancer patients receiving PD-1/PD-L1-targeted agents. This change correlated with enhanced therapeutic efficacy, improving the rate of disease control, and prolonging survival outcomes. Similar findings have not been previously reported, implying that they have proof-of-concept value and warrant further confirmation.
Collapse
Affiliation(s)
- Fabrizio Nelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Carlo Signorelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Agnese Fabbri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonella Virtuoso
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
- Thoracic Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Julio Rodrigo Giron Berrios
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Eleonora Marrucci
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Cristina Fiore
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Mario Giovanni Chilelli
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Francesca Primi
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Valentina Panichi
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Giuseppe Topini
- Cytofluorimetry Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Maria Assunta Silvestri
- Microbiology and Virology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| | - Enzo Maria Ruggeri
- Medical Oncology Unit, Department of Oncology and Hematology, Central Hospital of Belcolle, 01100 Viterbo, Italy
| |
Collapse
|
13
|
Kazmin D, Clutterbuck EA, Napolitani G, Wilkins AL, Tarlton A, Thompson AJ, Montomoli E, Lapini G, Bihari S, White R, Jones C, Snape MD, Galal U, Yu LM, Rappuoli R, Del Giudice G, Pollard AJ, Pulendran B. Memory-like innate response to booster vaccination with MF-59 adjuvanted influenza vaccine in children. NPJ Vaccines 2023; 8:100. [PMID: 37443176 DOI: 10.1038/s41541-023-00702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The pediatric population receives the majority of vaccines globally, yet there is a paucity of studies on the transcriptional response induced by immunization in this special population. In this study, we performed a systems-level analysis of immune responses to the trivalent inactivated influenza vaccine adjuvanted with MF-59 in children (15-24 months old) and in young, healthy adults. We analyzed transcriptional responses elicited by vaccination in peripheral blood, as well as cellular and antibody responses following primary and booster vaccinations. Our analysis revealed that primary vaccination induced a persistent transcriptional signature of innate immunity; booster vaccination induced a transcriptional signature of an enhanced memory-like innate response, which was consistent with enhanced activation of myeloid cells assessed by flow cytometry. Furthermore, we identified a transcriptional signature of type 1 interferon response post-booster vaccination and at baseline that was correlated with the local reactogenicity to vaccination and defined an early signature that correlated with the hemagglutinin antibody titers. These results highlight an adaptive behavior of the innate immune system in evoking a memory-like response to secondary vaccination and define molecular correlates of reactogenicity and immunogenicity in infants.
Collapse
Affiliation(s)
- Dmitri Kazmin
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, USA.
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Giorgio Napolitani
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, UK
| | - Amanda L Wilkins
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
- The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| | - Andrea Tarlton
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, UK
| | - Amber J Thompson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Emmanuele Montomoli
- VisMederi Srl, Via Fiorentina, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Smiti Bihari
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Rachel White
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Ly-Mee Yu
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Rino Rappuoli
- GlaxoSmithKline, Siena, Italy
- Fondazione Biotecnopolo, Siena, Italy
| | | | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Bali Pulendran
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, USA.
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Pathology, and Microbiology & Immunology, Stanford University, Stanford, CA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Lee J, Woodruff MC, Kim EH, Nam JH. Knife's edge: Balancing immunogenicity and reactogenicity in mRNA vaccines. Exp Mol Med 2023; 55:1305-1313. [PMID: 37430088 PMCID: PMC10394010 DOI: 10.1038/s12276-023-00999-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/27/2023] [Indexed: 07/12/2023] Open
Abstract
Since the discovery of messenger RNA (mRNA), there have been tremendous efforts to wield them in the development of therapeutics and vaccines. During the COVID-19 pandemic, two mRNA vaccines were developed and approved in record-breaking time, revolutionizing the vaccine development landscape. Although first-generation COVID-19 mRNA vaccines have demonstrated over 90% efficacy, alongside strong immunogenicity in humoral and cell-mediated immune responses, their durability has lagged compared to long-lived vaccines, such as the yellow fever vaccine. Although worldwide vaccination campaigns have saved lives estimated in the tens of millions, side effects, ranging from mild reactogenicity to rare severe diseases, have been reported. This review provides an overview and mechanistic insights into immune responses and adverse effects documented primarily for COVID-19 mRNA vaccines. Furthermore, we discuss the perspectives of this promising vaccine platform and the challenges in balancing immunogenicity and adverse effects.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
- Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, 13488, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
- BK Plus Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
15
|
Boyko AA, Ustiuzhanina MO, Vavilova JD, Streltsova MA, Kust SA, Siniavin AE, Astrakhantseva IV, Drutskaya MS, Kovalenko EI. Phenotypic Changes in T and NK Cells Induced by Sputnik V Vaccination. Vaccines (Basel) 2023; 11:1047. [PMID: 37376436 DOI: 10.3390/vaccines11061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A highly effective humoral immune response induced by the Sputnik V vaccine was demonstrated in independent studies, as well as in large-scale post-vaccination follow-up studies. However, the shifts in the cell-mediated immunity induced by Sputnik V vaccination are still under investigation. This study was aimed at estimating the impact of Sputnik V on activating and inhibitory receptors, activation and proliferative senescence markers in NK and T lymphocytes. The effects of Sputnik V were evaluated by the comparison of PBMC samples prior to vaccination, and then three days and three weeks following the second (boost) dose. The prime-boost format of Sputnik V vaccination induced a contraction in the T cell fraction of senescent CD57+ cells and a decrease in HLA-DR-expressing T cells. The proportion of NKG2A+ T cells was down-regulated after vaccination, whereas the PD-1 level was not affected significantly. A temporal increase in activation levels of NK cells and NKT-like cells was recorded, dependent on whether the individuals had COVID-19 prior to vaccination. A short-term elevation of the activating NKG2D and CD16 was observed in NK cells. Overall, the findings of the study are in favor of the Sputnik V vaccine not provoking a dramatic phenotypic rearrangement in T and NK cells, although it induces their slight temporal non-specific activation.
Collapse
Affiliation(s)
- Anna A Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria O Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Julia D Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sofya A Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Irina V Astrakhantseva
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena I Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
16
|
Brisotto G, Montico M, Turetta M, Zanussi S, Cozzi MR, Vettori R, Boschian Boschin R, Vinante L, Matrone F, Revelant A, Palazzari E, Innocente R, Fanetti G, Gerratana L, Garutti M, Lisanti C, Bolzonello S, Nicoloso MS, Steffan A, Muraro E. Integration of Cellular and Humoral Immune Responses as an Immunomonitoring Tool for SARS-CoV-2 Vaccination in Healthy and Fragile Subjects. Viruses 2023; 15:1276. [PMID: 37376576 DOI: 10.3390/v15061276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular and humoral immunity are both required for SARS-CoV-2 infection recovery and vaccine efficacy. The factors affecting mRNA vaccination-induced immune responses, in healthy and fragile subjects, are still under investigation. Thus, we monitored the vaccine-induced cellular and humoral immunity in healthy subjects and cancer patients after vaccination to define whether a different antibody titer reflected similar rates of cellular immune responses and if cancer has an impact on vaccination efficacy. We found that higher titers of antibodies were associated with a higher probability of positive cellular immunity and that this greater immune response was correlated with an increased number of vaccination side effects. Moreover, active T-cell immunity after vaccination was associated with reduced antibody decay. The vaccine-induced cellular immunity appeared more likely in healthy subjects rather than in cancer patients. Lastly, after boosting, we observed a cellular immune conversion in 20% of subjects, and a strong correlation between pre- and post-boosting IFN-γ levels, while antibody levels did not display a similar association. Finally, our data suggested that integrating humoral and cellular immune responses could allow the identification of SARS-CoV-2 vaccine responders and that T-cell responses seem more stable over time compared to antibodies, especially in cancer patients.
Collapse
Affiliation(s)
- Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Maria Rita Cozzi
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Romina Boschian Boschin
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Vinante
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alberto Revelant
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elisa Palazzari
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Roberto Innocente
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Giuseppe Fanetti
- Division of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Mattia Garutti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Camilla Lisanti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Silvia Bolzonello
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Milena Sabrina Nicoloso
- Molecular Oncology Unit, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Cancer Research and Advanced Diagnostics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
17
|
Ryan FJ, Norton TS, McCafferty C, Blake SJ, Stevens NE, James J, Eden GL, Tee YC, Benson SC, Masavuli MG, Yeow AEL, Abayasingam A, Agapiou D, Stevens H, Zecha J, Messina NL, Curtis N, Ignjatovic V, Monagle P, Tran H, McFadyen JD, Bull RA, Grubor-Bauk B, Lynn MA, Botten R, Barry SE, Lynn DJ. A systems immunology study comparing innate and adaptive immune responses in adults to COVID-19 mRNA and adenovirus vectored vaccines. Cell Rep Med 2023; 4:100971. [PMID: 36871558 PMCID: PMC9935276 DOI: 10.1016/j.xcrm.2023.100971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Todd S Norton
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Conor McCafferty
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen J Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Georgina L Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Yee C Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arthur E L Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | | | - Hannah Stevens
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - Jana Zecha
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicole L Messina
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Nigel Curtis
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huyen Tran
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - James D McFadyen
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Rochelle Botten
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Simone E Barry
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
18
|
Takano T, Sato T, Kotaki R, Moriyama S, Fukushi S, Shinoda M, Kabasawa K, Shimada N, Kousaka M, Adachi Y, Onodera T, Terahara K, Isogawa M, Matsumura T, Shinkai M, Takahashi Y. Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain. Nat Commun 2023; 14:1451. [PMID: 36922492 PMCID: PMC10016167 DOI: 10.1038/s41467-023-37128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.
Collapse
Affiliation(s)
- Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takashi Sato
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | | | | | - Mio Kousaka
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
19
|
Suzuki T, Kusumoto S, Kamezaki Y, Hashimoto H, Nishitarumizu N, Nakanishi Y, Kato Y, Kawai A, Matsunaga N, Ebina T, Nakamura T, Marumo Y, Oiwa K, Kinoshita S, Narita T, Ito A, Inagaki A, Ri M, Komatsu H, Aritsu T, Iida S. A comprehensive evaluation of humoral immune response to second and third SARS-CoV-2 mRNA vaccination in patients with malignant lymphoma. Int J Hematol 2023; 117:900-909. [PMID: 36790667 PMCID: PMC9930006 DOI: 10.1007/s12185-023-03550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/16/2023]
Abstract
More information is needed regarding the efficacy of SARS-CoV-2 mRNA vaccines in immunocompromised populations, including patients with malignant lymphoma. This study aimed to evaluate humoral responses to the second and third mRNA vaccine doses in 165 lymphoma patients by retrospective analysis of serum SARS-CoV-2 spike protein antibody (S-IgG) titers. Patients with S-IgG titers ≥ 300, 10-300, and ≤ 10 binding antibody units (BAU)/mL were defined as adequate responders, low responders, and non-responders, respectively. S-IgG titers > 10 BAU/mL were considered to indicate seroconversion. After the second dose, 56%, 16%, and 28% of patients were adequate responders, low responders and non-responders, respectively. Multivariate analysis revealed that being an adequate responder after the second dose was associated with receiving the vaccine > 12 months after last chemotherapy, total peripheral lymphocyte count of ≥ 1000/µL, estimated glomerular filtration rate of ≥ 50 mL/min/1.73 m2, and vaccine type (mRNA-1273). After the third dose, patients had significantly higher S-IgG titers and a greater proportion achieved seroconversion. With this third dose, 26% of second-dose non-responders achieved seroconversion and 68% of second-dose low responders became adequate responders. Subsequent SARS-CoV-2 mRNA vaccinations may elicit an immune response in immunocompromised patients who do not initially respond to vaccination.
Collapse
Affiliation(s)
- Tomotaka Suzuki
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi, Japan.
| | - Yoshiko Kamezaki
- grid.419812.70000 0004 1777 4627Scientific Information, Scientific Affairs, Sysmex Corporation, Kobe, Hyogo Japan
| | - Hiroya Hashimoto
- grid.411885.10000 0004 0469 6607Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Nozomi Nishitarumizu
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Yoko Nakanishi
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Yukiyasu Kato
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Akimi Kawai
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Naohiro Matsunaga
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Toru Ebina
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Tomoyuki Nakamura
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Yoshiaki Marumo
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Kana Oiwa
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Shiori Kinoshita
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Tomoko Narita
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Asahi Ito
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Atsushi Inagaki
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Masaki Ri
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Hirokazu Komatsu
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| | - Takashi Aritsu
- grid.419812.70000 0004 1777 4627Scientific Information, Scientific Affairs, Sysmex Corporation, Kobe, Hyogo Japan
| | - Shinsuke Iida
- grid.260433.00000 0001 0728 1069Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, Aichi Japan
| |
Collapse
|
20
|
Longitudinal Analyses after COVID-19 Recovery or Prolonged Infection Reveal Unique Immunological Signatures after Repeated Vaccinations. Vaccines (Basel) 2022; 10:vaccines10111815. [DOI: 10.3390/vaccines10111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
To develop preventive and therapeutic measures against coronavirus disease 2019, the complete characterization of immune response and sustained immune activation following viral infection and vaccination are critical. However, the mechanisms controlling intrapersonal variation in antibody titers against SARS-CoV-2 antigens remain unclear. To gain further insights, we performed a robust molecular and cellular investigation of immune responses in infected, recovered, and vaccinated individuals. We evaluated the serum levels of 29 cytokines and their correlation with neutralizing antibody titer. We investigated memory B-cell response in patients infected with the original SARS-CoV-2 strain or other variants, and in vaccinated individuals. Longitudinal correlation analyses revealed that post-vaccination neutralizing potential was more strongly associated with various serum cytokine levels in recovered patients than in naïve individuals. We found that IL-10, CCL2, CXCL10, and IL-12p40 are candidate biomarkers of serum-neutralizing antibody titer after the vaccination of recovered individuals. We found a similar distribution of virus-specific antibody gene families in triple-vaccinated individuals and a patient with COVID-19 pneumonia for 1 year. Thus, distinct immune responses occur depending on the viral strain and clinical history, suggesting that therapeutic options should be selected on a case-by-case basis. Candidate biomarkers that correlate with repeated vaccination may support the efficacy and safety evaluation systems of mRNA vaccines and lead to the development of novel vaccine strategies.
Collapse
|