1
|
Seow J, Jefferson GCE, Keegan MD, Yau Y, Snell LB, Doores KJ. Profiling serum immunodominance following SARS-CoV-2 primary and breakthrough infection reveals distinct variant-specific epitope usage and immune imprinting. PLoS Pathog 2024; 20:e1012724. [PMID: 39556615 DOI: 10.1371/journal.ppat.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
Over the course of the COVID-19 pandemic, variants have emerged with increased mutations and immune evasive capabilities. This has led to breakthrough infections (BTI) in vaccinated individuals, with a large proportion of the neutralizing antibody response targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike glycoprotein. Immune imprinting, where prior exposure of the immune system to an antigen can influence the response to subsequent exposures, and its role in a population with heterogenous exposure histories has important implications in future vaccine design. Here, we develop an accessible approach to map epitope immunodominance of the neutralizing antibody response in sera. By using a panel of mutant Spike proteins in a pseudotyped virus neutralization assay, we observed distinct epitope usage in convalescent donors infected during wave 1, or infected with the Delta, or BA.1 variants, highlighting the antigenic diversity of the variant Spikes. Analysis of longitudinal serum samples taken spanning 3 doses of COVID-19 vaccine and subsequent breakthrough infection, showed the influence of immune imprinting from the ancestral-based vaccine, where reactivation of existing B cells elicited by the vaccine resulted in the enrichment of the pre-existing epitope immunodominance. However, subtle shifts in epitope usage in sera were observed following BTI by Omicron sub-lineage variants. Antigenic distance of Spike, time after last exposure, and number of vaccine boosters may play a role in the persistence of imprinting from the vaccine. This study provides insight into RBD neutralizing epitope usage in individuals with varying exposure histories and has implications for design of future SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - George C E Jefferson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Michael D Keegan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Yeuk Yau
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Abul Y, Nugent C, Vishnepolskiy I, Wallace T, Dickerson E, Holland L, Esparza I, Winkis M, Wali KT, Chan PA, Baier RR, Recker A, Kaczynski M, Kamojjala S, Pralea A, Rice H, Osias O, Oyebanji OA, Olagunju O, Cao Y, Li CJ, Roederer A, Pfeifer WM, Bosch J, King CL, Nanda A, McNicoll L, Mujahid N, Raza S, Tyagi R, Wilson BM, White EM, Canaday DH, Gravenstein S, Balazs AB. Broad immunogenicity to prior SARS-CoV-2 strains and JN.1 variant elicited by XBB.1.5 vaccination in nursing home residents. GeroScience 2024:10.1007/s11357-024-01346-2. [PMID: 39395130 DOI: 10.1007/s11357-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024] Open
Abstract
SARS-CoV-2 vaccination has reduced hospitalization and mortality for nursing home residents (NHRs) but emerging variants and waning immunity challenge vaccine effectiveness. This study assesses the immunogenicity of the most recent XBB.1.5 monovalent vaccine to variant strains among NHRs. Participants were subset of a longitudinal study of consented NHRs and Healthcare workers (HCWs) who have received serial blood draws to assess immunogenicity with each SARS-CoV-2 mRNA vaccine dose. We report data on participants who received the XBB.1.5 monovalent vaccine post-FDA approval in Fall 2023. NHRs were categorized by whether they had an interval SARS-CoV-2 infection between their first bivalent vaccine dose and their XBB.1.5 monovalent vaccination. The sample included 61 NHRs [median age 76 (IQR 68-86), 51% female] and 28 HCWs [median age 45 (IQR 31-58), 46% female). After XBB.1.5 vaccination, a robust geometric mean fold rise (GMFR) in XBB.1.5-specific neutralizing antibody titers was observed:17.3 (95% confidence interval [CI] 9.3, 32.4) and NHRs with interval infection and 11.3 (95% CI 5, 25.4) in those without and 13.6 (95% CI 8.4,22) in HCWs. For JN.1-specific titers, GMFRs were 14.9 (95% CI 7.9, 28) and 6.5 (95% CI 3.3, 13.1) in NHRs with and without interval infection, and 11.4 (95% CI 6.2, 20.9) in HCWs. NHRs with interval SARS-CoV-2 infection had higher titers across all analyzed strains analyzed. The XBB.1.5 vaccine significantly elevates Omicron-specific neutralizing antibody titers to XBB.1.5 and JN.1 strains in both NHRs and HCWs with more pronounced in those previously infected with SARS-CoV-2 since bivalent vaccination.
Collapse
Affiliation(s)
- Yasin Abul
- Center On Innovation in Long-Term Services & Supports, Providence Veterans Administration Medical Center, Providence, RI, USA.
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Brown University School of Public Health, Providence, RI, USA.
| | - Clare Nugent
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Igor Vishnepolskiy
- Center On Innovation in Long-Term Services & Supports, Providence Veterans Administration Medical Center, Providence, RI, USA
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tiffany Wallace
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Evan Dickerson
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Laurel Holland
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Iva Esparza
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Mandi Winkis
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Kazi Tanvee Wali
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Philip A Chan
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown University School of Public Health, Providence, RI, USA
| | - Rosa R Baier
- Brown University School of Public Health, Providence, RI, USA
| | - Amy Recker
- Brown University School of Public Health, Providence, RI, USA
| | - Matthew Kaczynski
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shreya Kamojjala
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alexander Pralea
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hailee Rice
- Division of Geriatrics and Palliative Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Olubunmi Osias
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Olajide Olagunju
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alex Roederer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Jürgen Bosch
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Aman Nanda
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lynn McNicoll
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Nadia Mujahid
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sakeena Raza
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rohit Tyagi
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brigid M Wilson
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center, VA Northeast Ohio Healthcare System, Cleveland, VA, USA
| | | | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Geriatric Research, Education and Clinical Center, VA Northeast Ohio Healthcare System, Cleveland, VA, USA.
| | - Stefan Gravenstein
- Center On Innovation in Long-Term Services & Supports, Providence Veterans Administration Medical Center, Providence, RI, USA
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Brown University School of Public Health, Providence, RI, USA
| | | |
Collapse
|
3
|
Jung W, Abdelnour A, Kaplonek P, Herrero R, Shih-Lu Lee J, Barbati DR, Chicz TM, Levine KS, Fantin RC, Loria V, Porras C, Lauffenburger DA, Gail MH, Aparicio A, Hildesheim A, Alter G, McNamara RP. SARS-CoV-2 infection prior to vaccination amplifies Fc-mediated humoral profiles in an age-dependent manner. Cell Rep 2024; 43:114684. [PMID: 39213155 DOI: 10.1016/j.celrep.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Immunity acquired by vaccination following infection, termed hybrid immunity, has been shown to confer enhanced protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by enhancing the breadth and potency of immune responses. Here, we assess Fc-mediated humoral profiles in hybrid immunity and their association with age and vaccine type. Participants are divided into three groups: infection only, vaccination only, and vaccination following infection (i.e., hybrid immunity). Using systems serology, we profile humoral immune responses against spikes and subdomains of SARS-CoV-2 variants. We find that hybrid immunity is characterized by superior Fc receptor binding and natural killer (NK) cell-, neutrophil-, and complement-activating antibodies, which is higher than what can be expected from the sum of the vaccination and infection. These differences between hybrid immunity and vaccine-induced immunity are more pronounced in aged adults, especially for immunoglobulin (Ig)G1, IgG2, and Fcγ receptor-binding antibodies. Our findings suggest that vaccination strategies that aim to mimic hybrid immunity should consider age as an important modifier.
Collapse
Affiliation(s)
- Wonyeong Jung
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Paulina Kaplonek
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | | | - Domenic R Barbati
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Kate S Levine
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Romain Clement Fantin
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Viviana Loria
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Amada Aparicio
- Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, San José, Costa Rica
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
O’Donnell KL, Henderson CW, Anhalt H, Fusco J, Erasmus JH, Lambe T, Marzi A. Vaccine Platform Comparison: Protective Efficacy against Lethal Marburg Virus Challenge in the Hamster Model. Int J Mol Sci 2024; 25:8516. [PMID: 39126087 PMCID: PMC11313278 DOI: 10.3390/ijms25158516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.
Collapse
Affiliation(s)
- Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Corey W. Henderson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Hanna Anhalt
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Joan Fusco
- Public Health Vaccines Inc., Cambridge, MA 02412, USA
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
6
|
Dalapati T, Williams CA, Giorgi EE, Hurst JH, Herbek S, Chen JL, Kosman C, Rotta AT, Turner NA, Pulido N, Aquino JN, Pfeiffer TS, Rodriguez J, Fouda GG, Permar SR, Kelly MS. Immunogenicity of Monovalent mRNA-1273 and BNT162b2 Vaccines in Children <5 Years of Age. Pediatrics 2024; 153:e2024066190. [PMID: 38548700 PMCID: PMC11153324 DOI: 10.1542/peds.2024-066190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The messenger RNA (mRNA)-based coronavirus disease 2019 vaccines approved for use in children <5 years of age have different antigen doses and administration schedules that could affect vaccine immunogenicity and effectiveness. We sought to compare the strength and breadth of serum binding and neutralizing antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by monovalent mRNA-based coronavirus disease 2019 vaccines in young children. METHODS We conducted a prospective cohort study of children 6 months to 4 years of age who completed primary series vaccination with monovalent mRNA-1273 or BNT162b2 vaccines. Serum was collected 1 month after primary vaccine series completion for the measurement of SARS-CoV-2-specific humoral immune responses, including antibody binding responses to Spike proteins from an ancestral strain (D614G) and major variants of SARS-CoV-2 and antibody neutralizing activity against D614G and Omicron subvariants (BA.1, BA.4/5). RESULTS Of 75 participants, 40 (53%) received mRNA-1273 and 35 (47%) received BNT162b2. Children receiving either primary vaccine series developed robust and broad SARS-CoV-2-specific binding and neutralizing antibodies, including to Omicron subvariants. Children with a previous history of SARS-CoV-2 infection developed significantly higher antibody binding responses and neutralization titers to Omicron subvariants, which is consistent with the occurrence of identified infections during the circulation of Omicron subvariants in the region. CONCLUSIONS Monovalent mRNA-1273 and BNT162b2 elicited similar antibody responses 1 month after vaccination in young children. In addition, previous infection significantly enhanced the strength of antibody responses to Omicron subvariants. The authors of future studies should evaluate incorporation of these vaccines into the standard childhood immunization schedule.
Collapse
Affiliation(s)
- Trisha Dalapati
- Medical Scientist Training Program
- Department of Molecular Genetics and Microbiology
| | - Caitlin A. Williams
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Elena E. Giorgi
- Department of Pediatrics, Division of Pediatric Critical Care Medicine
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, Washington
| | - Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases
- Department of Pediatrics, Children’s Health & Discovery Institute
| | - Savannah Herbek
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Jui-Lin Chen
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Christina Kosman
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | | | | | - Natalie Pulido
- Department of Pediatrics, Division of Infectious Diseases
| | | | | | - Javier Rodriguez
- Department of Pediatrics, Children’s Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina
| | - Genevieve G. Fouda
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Sallie R. Permar
- Weill Cornell Medicine, Department of Pediatrics, Division of Infectious Diseases, New York, New York
| | - Matthew S. Kelly
- Department of Molecular Genetics and Microbiology
- Department of Pediatrics, Division of Infectious Diseases
| |
Collapse
|
7
|
Klingler J, Kowdle S, Bandres JC, Emami-Gorizi R, Alvarez RA, Rao PG, Amanat F, Gleason C, Kleiner G, Simon V, Edelstein A, Perandones C, Upadhyay C, Lee B, Hioe CE. Heterologous Ad26/Ad5 adenovirus-vectored vaccines elicited SARS-CoV-2-specific antibody responses with potent Fc activities. Front Immunol 2024; 15:1382619. [PMID: 38779671 PMCID: PMC11109367 DOI: 10.3389/fimmu.2024.1382619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.
Collapse
Affiliation(s)
- Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Bronx, NY, United States
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | - Raymond A. Alvarez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka G. Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Viviana Simon
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alexis Edelstein
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Claudia Perandones
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
8
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|
9
|
Schoefbaenker M, Neddermeyer R, Guenther T, Mueller MM, Romberg ML, Classen N, Hennies MT, Hrincius ER, Ludwig S, Kuehn JE, Lorentzen EU. Surrogate Virus Neutralisation Test Based on Nanoluciferase-Tagged Antigens to Quantify Inhibitory Antibodies against SARS-CoV-2 and Characterise Omicron-Specific Reactivity in a Vaccination Cohort. Vaccines (Basel) 2023; 11:1832. [PMID: 38140236 PMCID: PMC10748151 DOI: 10.3390/vaccines11121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Virus-specific antibodies are crucial for protective immunity against SARS-CoV-2. Assessing functional antibodies through conventional or pseudotyped virus neutralisation tests (pVNT) requires high biosafety levels. Alternatively, the virus-free surrogate virus neutralisation test (sVNT) quantifies antibodies interfering with spike binding to angiotensin-converting enzyme 2. We evaluated secreted nanoluciferase-tagged spike protein fragments as diagnostic antigens in the sVNT in a vaccination cohort. Initially, spike fragments were tested in a capture enzyme immunoassay (EIA), identifying the receptor binding domain (RBD) as the optimal diagnostic antigen. The sensitivity of the in-house sVNT applying the nanoluciferase-labelled RBD equalled or surpassed that of a commercial sVNT (cPass, GenScript Diagnostics) and an in-house pVNT four weeks after the first vaccination (98% vs. 94% and 72%, respectively), reaching 100% in all assays four weeks after the second and third vaccinations. When testing serum reactivity with Omicron BA.1 spike, the sVNT and pVNT displayed superior discrimination between wild-type- and variant-specific serum reactivity compared to a capture EIA. This was most pronounced after the first and second vaccinations, with the third vaccination resulting in robust, cross-reactive BA.1 construct detection. In conclusion, utilising nanoluciferase-labelled antigens permits the quantification of SARS-CoV-2-specific inhibitory antibodies. Designed as flexible modular systems, the assays can be readily adjusted for monitoring vaccine efficacy.
Collapse
Affiliation(s)
- Michael Schoefbaenker
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Rieke Neddermeyer
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Theresa Guenther
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Marlin M. Mueller
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Marie-Luise Romberg
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Nica Classen
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Corrensstr. 48, D-48149 Muenster, Germany
| | - Marc T. Hennies
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Eike R. Hrincius
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Joachim E. Kuehn
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Eva U. Lorentzen
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| |
Collapse
|
10
|
Tylicki L. Immunity after Vaccination against COVID-19. Vaccines (Basel) 2023; 11:1723. [PMID: 38006055 PMCID: PMC10674786 DOI: 10.3390/vaccines11111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The outbreak of the COVID-19 pandemic at the turn of 2019 and 2020 posed a substantial challenge for the world [...].
Collapse
Affiliation(s)
- Leszek Tylicki
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
11
|
Kopel H, Nguyen VH, Boileau C, Bogdanov A, Winer I, Ducruet T, Zeng N, Bonafede M, Esposito DB, Martin D, Rosen A, Van de Velde N, Vermund SH, Gravenstein S, Mansi JA. Comparative Effectiveness of Bivalent (Original/Omicron BA.4/BA.5) COVID-19 Vaccines in Adults. Vaccines (Basel) 2023; 11:1711. [PMID: 38006043 PMCID: PMC10675676 DOI: 10.3390/vaccines11111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of Omicron variants coincided with declining vaccine-induced protection against SARS-CoV-2. Two bivalent mRNA vaccines, mRNA-1273.222 (Moderna) and BNT162b2 Bivalent (Pfizer-BioNTech), were developed to provide greater protection against the predominate circulating variants by including mRNA that encodes both the ancestral (original) strain and BA.4/BA.5. We estimated their relative vaccine effectiveness (rVE) in preventing COVID-19-related outcomes in the US using a nationwide dataset linking primary care electronic health records and pharmacy/medical claims data. The study population (aged ≥18 years) received either vaccine between 31 August 2022 and 28 February 2023. We used propensity score weighting to adjust for baseline differences between groups. We estimated the rVE against COVID-19-related hospitalizations (primary outcome) and outpatient visits (secondary) for 1,034,538 mRNA-1273.222 and 1,670,666 BNT162b2 Bivalent vaccine recipients, with an adjusted rVE of 9.8% (95% confidence interval: 2.6-16.4%) and 5.1% (95% CI: 3.2-6.9%), respectively, for mRNA-1273.222 versus BNT162b2 Bivalent. The incremental relative effectiveness was greater among adults ≥ 65; the rVE against COVID-19-related hospitalizations and outpatient visits in these patients was 13.5% (95% CI: 5.5-20.8%) and 10.7% (8.2-13.1%), respectively. Overall, we found greater effectiveness of mRNA-1273.222 compared with the BNT162b2 Bivalent vaccine in preventing COVID-19-related hospitalizations and outpatient visits, with increased benefits in older adults.
Collapse
Affiliation(s)
- Hagit Kopel
- Moderna, Inc., Cambridge, MA 02139, USA (D.B.E.); (A.R.)
| | | | | | | | | | | | - Ni Zeng
- Veradigm, Chicago, IL 60654, USA
| | | | | | - David Martin
- Moderna, Inc., Cambridge, MA 02139, USA (D.B.E.); (A.R.)
| | - Andrew Rosen
- Moderna, Inc., Cambridge, MA 02139, USA (D.B.E.); (A.R.)
| | | | - Sten H. Vermund
- Yale School of Public Health, Yale University, New Haven, CT 06510, USA;
| | - Stefan Gravenstein
- Alpert Medical School and School of Public Health, Brown University, Providence, RI 02903, USA
| | - James A. Mansi
- Moderna, Inc., Cambridge, MA 02139, USA (D.B.E.); (A.R.)
| |
Collapse
|
12
|
Lasrado N, Barouch DH. SARS-CoV-2 Hybrid Immunity: The Best of Both Worlds. J Infect Dis 2023; 228:1311-1313. [PMID: 37592872 DOI: 10.1093/infdis/jiad353] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
Three and a half years into the coronavirus disease 2019 (COVID-19) pandemic, the nature and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still remains unclear. Current COVID-19 mRNA vaccines have been shown to provide minimal protection against infection with XBB variants but substantial protection against severe disease. However, such protection appears to wane quickly. In contrast, protection from the combination of both vaccination and infection, termed "hybrid immunity", has been shown to be greater in magnitude and durability than that provided by either vaccine immunity or natural immunity alone.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|