1
|
Kim HM, Bruno TC. An Introduction to Tertiary Lymphoid Structures in Cancer. Methods Mol Biol 2025; 2864:1-19. [PMID: 39527214 DOI: 10.1007/978-1-0716-4184-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immunotherapy has revolutionized therapeutics for cancer patients, which signifies the importance of effective antitumor immunity in combatting cancer. However, the benefit of immunotherapies is limited to specific patient populations and tumor types, suggesting the overt need for new immunotherapeutic targets. Tertiary lymphoid structures (TLS) are ectopic lymph node-like structures that develop at the sites of chronic inflammation such as cancer. TLS are correlated with favorable clinical outcomes across multiple solid tumors and are associated with increased tumor-infiltrating lymphocytes (TILs), particularly effector memory CD8+ T cells. Despite strong clinical data in humans, there are still major knowledge gaps on the function of TLS in cancer. Herein, we highlight the known biology and clinical impact of TLS, which offer further evidence to harness TLS for improved immunotherapeutics.
Collapse
Affiliation(s)
- Hye Mi Kim
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Tumor Microenvironment Center (TMC), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program (CIIP), UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Long S, Li M, Chen J, Zhong L, Abudulimu A, Zhou L, Liu W, Pan D, Dai G, Fu K, Chen X, Pei Y, Li W. Spatial patterns and MRI-based radiomic prediction of high peritumoral tertiary lymphoid structure density in hepatocellular carcinoma: a multicenter study. J Immunother Cancer 2024; 12:e009879. [PMID: 39675785 DOI: 10.1136/jitc-2024-009879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) within the tumor microenvironment have been associated with cancer prognosis and therapeutic response. However, the immunological pattern of a high peritumoral TLS (pTLS) density and its clinical potential in hepatocellular carcinoma (HCC) remain poor. This study aimed to elucidate biological differences related to pTLS density and develop a radiomic classifier for predicting pTLS density in HCC, offering new insights for clinical diagnosis and treatment. METHODS Spatial transcriptomics (n=4) and RNA sequencing data (n=952) were used to identify critical regulators of pTLS density and evaluate their prognostic significance in HCC. Baseline MRI images from 660 patients with HCC who had undergone surgery treatment between October 2015 and January 2023 were retrospectively recruited for model development and validation. This included training (n=307) and temporal validation (n=76) cohorts from Xiangya Hospital, and external validation cohorts from three independent hospitals (n=277). Radiomic features were extracted from intratumoral and peritumoral regions of interest and analyzed using machine learning algorithms to develop a predictive classifier. The classifier's performance was evaluated using the area under the curve (AUC), with prognostic and predictive value assessed across four independent cohorts and in a dual-center outcome cohort of 41 patients who received immunotherapy. RESULTS Patients with HCC and a high pTLS density experienced prolonged median overall survival (p<0.05) and favorable immunotherapy response (p=0.03). Moreover, immune infiltration by mature B cells was observed in the high pTLS density region. Spatial pseudotime analysis and immunohistochemistry staining revealed that expansion of pTLS in HCC was associated with elevated CXCL9 and CXCL10 co-expression. We developed an optimal radiomic-based classifier with excellent discrimination for predicting pTLS density, achieving an AUC of 0.91 (95% CI 0.87, 0.94) in the external validation cohort. This classifier also exhibited promising stratification ability in terms of overall survival (p<0.01), relapse-free survival (p<0.05), and immunotherapy response (p<0.05). CONCLUSION We identified key regulators of pTLS density in patients with HCC and proposed a non-invasive radiomic classifier capable of assisting in stratification for prognosis and treatment.
Collapse
Affiliation(s)
- Shichao Long
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Mengsi Li
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Linhui Zhong
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Aerzuguli Abudulimu
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lan Zhou
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenguang Liu
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Deng Pan
- Department of Nuclear Medicine, Hainan Cancer Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ganmian Dai
- Department of Radiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kai Fu
- Institute of Molecular Precision Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiong Chen
- Department of Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yigang Pei
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenzheng Li
- Department of Radiology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang Q, Yu Y, Wang C, Jiang Z, Li J, Li X, Huang X, Song Y, Li Z, Tang S, Song C. Heterogeneity of tertiary lymphoid structures predicts the response to neoadjuvant therapy and immune microenvironment characteristics in triple-negative breast cancer. Br J Cancer 2024:10.1038/s41416-024-02917-y. [PMID: 39658606 DOI: 10.1038/s41416-024-02917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) impact cancer outcomes, including in triple-negative breast cancer (TNBC), where their role in immune modulation during neoadjuvant therapy (NAT) is underexplored. METHODS This study employed single-cell RNA sequencing (scRNA-seq), multiplex immunofluorescence (mIF) staining, and radiomic techniques to evaluate TLSs and the tumour microenvironment (TME) in TNBC patient samples before and after NAT. RESULTS The presence of TLSs in TNBC was associated with B-cell maturation and T-cell activation. Compared with TLS-low TNBC, TLS-high TNBC showed significantly greater expression of immunoglobulin family genes (IGHM and IGHG1) in B cells and greater cytotoxicity of neoantigen-specific CD8 + T cells (neoTCR8). Additionally, mIF revealed notable differences between TLSs and the TME in TNBC. Although CD8 + T-cell levels do not predict the NAT response effectively, TLS maturity strongly correlated with better NAT outcomes and prognosis (P < 0.05). An imaging biomarker scoring system was also developed to predict TLS status and NAT efficacy. CONCLUSION Our results demonstrated changes in TLSs and the TME in TNBC patients post-NAT. These findings confirm the predictive value of mature TLSs (mTLSs) and support the use of personalised immunotherapy based on post-NAT immune characteristics, thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Qing Wang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Yushuai Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Chenxi Wang
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Zirong Jiang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Jialu Li
- Rehabilitation College, Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Xiaofen Li
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Xiewei Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Ying Song
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Zhenhui Li
- Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Shicong Tang
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China.
| |
Collapse
|
4
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
6
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Xie M, Lin X, Bao X, Liang Y, Deng H, Song J, Ma X, Zhang X, Yao J, Pan L, Xue X. Tertiary Lymphoid Structure in Tumor Microenvironment and Immunotherapy of Lung Cancer. Arch Bronconeumol 2024; 60 Suppl 2:S77-S85. [PMID: 39174437 DOI: 10.1016/j.arbres.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024]
Abstract
Immune checkpoint inhibitors have opened an era of lung cancer therapy. However, a notable disparity exists in the efficacy of immunotherapy among individual patients. The tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregation that appears under pathological conditions and is the primary site of action for anti-tumor immunity. It is commonly reported that the presence of TLS within the tumor microenvironment (TME) relates to a favorable clinical prognosis and an excellent response to immunotherapy in lung cancer patients. A thorough understanding of TLS and its dynamic changes in TME has become an attractive focus for optimizing immunotherapy strategies for lung cancer. In this review, we comprehensively generalize the composition, formation, mechanism, detection methods of TLS, and summarize the role of TLS in lung cancer immunotherapy. Finally, induction of TLS is also discussed, which may provide more effective therapeutic strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Hui Deng
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| |
Collapse
|
8
|
Ma Y, Li X, Zhang J, Zhao X, Lu Y, Shen G, Wang G, Liu H, Hao J. Integrating tertiary lymphoid structure-associated genes into computational models to evaluate prognostication and immune infiltration in pancreatic cancer. J Leukoc Biol 2024; 116:589-600. [PMID: 38484172 DOI: 10.1093/jleuko/qiae067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 02/27/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor response to all therapeutic modalities and dismal prognosis. The presence of tertiary lymphoid structures (TLSs) in various solid cancers is of crucial prognostic significance, highlighting the intricate interplay between the tumor microenvironment and immune cells aggregation. However, the extent to which TLSs and immune status affect PDAC prognosis remains incompletely understood. Here, we sought to unveil the unique properties of TLSs in PDAC by leveraging both single-cell and bulk transcriptomics, culminating in a risk model that predicts clinical outcomes. We used TLS scores based on a 12-gene (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and CXCL13) and 9-gene (PTGDS, RBP5, EIF1AY, CETP, SKAP1, LAT, CCR6, CD1D, and CD79B) signature, respectively, and examined their distribution in cell clusters of single-cell data from PDAC samples. The markers involved in these clusters were selected to develop a prognostic model using The Cancer Genome Atlas Program database as the training cohort and Gene Expression Omnibus database as the validation cohort. Further, we compared the immune infiltration, drug sensitivity, and enriched and differentially expressed genes between the high- and low-risk groups in our model. Therefore, we established a risk model that has significant implications for the prognostic assessment of PADC patients with remarkable differences in immune infiltration and chemosensitivity between the low- and high-risk groups. This paradigm established by TLS-related cell marker genes provides a prognostic prediction and a panel of novel therapeutic targets for exploring potential immunotherapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Xuesong Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Xiangqin Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Yi Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Guangcong Shen
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Hong Liu
- Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, West Huanhu Road, Hexi District, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, West Huanhu Road, Hexi District, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, West Huanhu Road, Hexi District, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China
| |
Collapse
|
9
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Petroni G, Pillozzi S, Antonuzzo L. Exploiting Tertiary Lymphoid Structures to Stimulate Antitumor Immunity and Improve Immunotherapy Efficacy. Cancer Res 2024; 84:1199-1209. [PMID: 38381540 PMCID: PMC11016894 DOI: 10.1158/0008-5472.can-23-3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
Tumor-associated tertiary lymphoid structures (TLS) have been associated with favorable clinical outcomes and response to immune checkpoint inhibitors in many cancer types, including non-small cell lung cancer. Although the detailed cellular and molecular mechanisms underlying these clinical associations have not been fully elucidated, growing preclinical and clinical studies are helping to elucidate the mechanisms at the basis of TLS formation, composition, and regulation of immune responses. However, a major challenge remains how to exploit TLS to enhance naïve and treatment-mediated antitumor immune responses. Here, we discuss the current understanding of tumor-associated TLS, preclinical models that can be used to study them, and potential therapeutic interventions to boost TLS formation, with a particular focus on lung cancer research.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Firenze, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
- Clinical Oncology Unit, Careggi University Hospital, Firenze, Italy
| |
Collapse
|
12
|
Badillo O, Helfridsson L, Niemi J, Hellström M. Exploring dendritic cell subtypes in cancer immunotherapy: unraveling the role of mature regulatory dendritic cells. Ups J Med Sci 2024; 129:10627. [PMID: 38716077 PMCID: PMC11075441 DOI: 10.48101/ujms.v129.10627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Dendritic cells (DCs) possess a specialized function in presenting antigens and play pivotal roles in both innate and adaptive immune responses. Their ability to cross-present antigens from tumor cells to naïve T cells is instrumental in generating specific T-cell-mediated antitumor responses, crucial for controlling tumor growth and preventing tumor cell dissemination. However, within a tumor immune microenvironment (TIME), the functions of DCs can be significantly compromised. This review focuses on the profile, function, and activation of DCs, leveraging recent studies that reveal insights into their phenotype acquisition, transcriptional state, and functional programs through single-cell RNA sequence (scRNA-seq) analysis. Additionally, the therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is discussed.
Collapse
Affiliation(s)
- Oscar Badillo
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Liam Helfridsson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jenni Niemi
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
You X, Koop K, Weigert A. Heterogeneity of tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1286850. [PMID: 38111571 PMCID: PMC10725932 DOI: 10.3389/fimmu.2023.1286850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.
Collapse
Affiliation(s)
- Xin You
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
| | - Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
14
|
McCaw TR, Lofftus SY, Crompton JG. Clonal redemption of B cells in cancer. Front Immunol 2023; 14:1277597. [PMID: 37965337 PMCID: PMC10640973 DOI: 10.3389/fimmu.2023.1277597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Potentially self-reactive B cells constitute a large portion of the peripheral B cell repertoire in both mice and humans. Maintenance of autoreactive B cell populations could conceivably be detrimental to the host but their conservation throughout evolution suggests performance of a critical and beneficial immune function. We discuss herein how the process of clonal redemption may provide insight to preservation of an autoreactive B cell pool in the context of infection and autoimmunity. Clonal redemption refers to additional recombination or hypermutation events decreasing affinity for self-antigen, while increasing affinity for foreign antigens. We then review findings in murine models and human patients to consider whether clonal redemption may be able to provide tumor antigen-specific B cells and how this may or may not predispose patients to autoimmunity.
Collapse
Affiliation(s)
| | | | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA, United States
| |
Collapse
|