1
|
Liu Y, Liu XX, Wang SY, Pan XY, Wang ZH, Wei YX, Zhou ZM, Nan K, Wang JJ. In Situ Gelling Eye Drops of Tacrolimus with Improved Ocular Delivery and Therapeutic Efficacy. Biomacromolecules 2024; 25:7518-7528. [PMID: 39484724 DOI: 10.1021/acs.biomac.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In situ gelling eye drops of tacrolimus (FK506 Gel) were developed to address the formulation challenge of tacrolimus for anterior ocular inflammatory diseases. Both in silico and in vitro investigations were conducted to screen a suitable cyclodextrin species to increase the drug solubility. Guanosine was employed as the gelator and combined with inclusion complexes of tacrolimus in the presence of borate anions to obtain FK506 Gel, which gelated when came into contact with cations in tear fluid and led to the formation of a nanofibrous hydrogel. The versatility of our design to improve the solubility and ocular retention of the hydrophobic drug was demonstrated in vivo with coumarin 6 as a model drug. A mouse dry eye model was used to evaluate the therapeutic effects of FK506 Gel, which, in combination with the biocompatibility study, suggested that FK506 Gel served as a superior treatment for anterior ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Xin Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Si-Yu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xin-Yang Pan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zi-Han Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu-Xin Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Min Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing-Jie Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
2
|
Moseson DE, Li N, Rantanen J, Ueda K, Zhang GGZ. Professor Lynne S. Taylor: Scientist, educator, and adventurer. J Pharm Sci 2024:S0022-3549(24)00454-4. [PMID: 39426563 DOI: 10.1016/j.xphs.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
This special edition of the Journal of Pharmaceutical Sciences is dedicated to Professor Lynne S. Taylor (Retter Distinguished Professor of Pharmacy, Department of Industrial and Molecular Pharmaceutics, Purdue University), to honor her distinguished career as a pharmaceutical scientist and educator. The goal of this commentary is to provide an overview of Professor Taylor's career path, summarize her key research contributions, and provide some insight into her personal and professional contributions as an educator, mentor, wife, mother, friend, and adventurer.
Collapse
Affiliation(s)
- Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States.
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Geoff G Z Zhang
- ProPhysPharm LLC, Lincolnshire, Illinois 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Taylor LS, Trasi NS, Purohit HS, Sun D, Kinjo M, Ni Z, Mahjabeen S, Feng KK, Sun WJ, Matta MK, Decker B, Galinsky RE. Changes in drug crystallinity in a commercial tacrolimus amorphous formulation result in variable pharmacokinetics. J Pharm Sci 2024:S0022-3549(24)00433-7. [PMID: 39414078 DOI: 10.1016/j.xphs.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Tacrolimus capsules contain the drug as the amorphous form. It is well known that drug crystallinity is a risk factor for the performance of amorphous formulations. This study investigated the impact of varying levels of crystalline drug on the pharmacokinetics of tacrolimus following oral dosing of a 5 mg capsule under fasting conditions. Two treatments with percent crystallinity of 20% and 50% were achieved by exposing a marketed generic tacrolimus product to open dish storage conditions of 35 °C and 75% relative humidity (RH) for up to 20 days. Crystallinity was monitored with X-ray powder diffraction. Prograf®, the reference listed drug (RLD), an amorphous generic drug product, and generic drug products containing 20% and 50% crystalline tacrolimus were evaluated. All four treatments were administered to healthy participants in a randomized, single-dose, four-treatment, four-period, four-way crossover study. Blood sampling occurred over 24 h. The amorphous generic tacrolimus product was determined not to be bioequivalent to the RLD. The capsules containing both 20% and 50% crystalline tacrolimus also failed the bioequivalence recommendations when compared to the amorphous generic or to the RLD. Both levels of crystalline tacrolimus resulted in BE failure for both Cmax and AUC parameters. The impact of tacrolimus crystallization was greater for maximum blood concentration (Cmax) values relative to the area-under-the-curve (AUC) values. This study demonstrates that crystalline tacrolimus formed in a marketed generic product and these changes resulted in variable pharmacokinetics which could be of significant clinical concern.
Collapse
Affiliation(s)
- Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| | - Niraj S Trasi
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Hitesh S Purohit
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Small molecule CMC development, R&D, AbbVie Inc, North Chicago, IL 60064, United States
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Minori Kinjo
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Zhanglin Ni
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Sanjida Mahjabeen
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Kairui Kevin Feng
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Wei-Jhe Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Murali K Matta
- Office of Clinical Pharmacology, Office of Translational Sciences, CDER, FDA, Silver Spring, MD 20993, United States
| | - Brian Decker
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Raymond E Galinsky
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Ueda K, Moseson DE, Taylor LS. Amorphous Solubility Advantage: Theoretical Considerations, Experimental Methods, and Contemporary Relevance. J Pharm Sci 2024:S0022-3549(24)00399-X. [PMID: 39222748 DOI: 10.1016/j.xphs.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
5
|
Dhumal G, Treffer D, Polli JE. Concordance of vacuum compression molding with spray drying in screening of amorphous solid dispersions of itraconazole. Int J Pharm 2024; 654:123952. [PMID: 38417729 DOI: 10.1016/j.ijpharm.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Spray drying is a well-established method for screening spray dried dispersions (SDDs) but is material consuming, and the amorphous solid dispersions (ASDs) formed have low bulk density. Vacuum Compression Molding (VCM) is a potential method to avoid these limitations. This study focuses on VCM to screen ASDs containing itraconazole and L, M, or H polymer grades of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and compares their morphology, amorphous stability, and dissolution performance with spray drying. Results indicate that VCM ASDs were comparable to SDDs. Both VCM ASDs and spray drying SDDs with HPMCAS-L and HPMCAS-M had improved dissolution profiles, while HPMCAS-H did not. Dynamic light scattering findings agreed with dissolution profiles, indicating that L and M grades produced monodisperse, smaller colloids, whereas H grade formed larger, polydisperse colloids. Capsules containing ASDs from VCM disintegrated and dissolved in the media; however, SDD capsules formed agglomerates and failed to disintegrate completely. Findings indicate that the VCM ASDs are comparable to SDDs in terms of dissolution performance and amorphous stability. VCM may be utilized in early ASD formulation development to select drug-polymer pairs for subsequent development.
Collapse
Affiliation(s)
- Gaurav Dhumal
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Daniel Treffer
- MeltPrep, Setauket - East Setauket, New York, United States
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
6
|
Awad HA, Fetouh MI, Sultan AA, El Maghraby GM. Combined eutexia and amorphization for simultaneous enhancement of dissolution rate of triamterene and hydrochlorothiazide: preparation of orodispersible tablets. Drug Dev Ind Pharm 2024; 50:306-319. [PMID: 38400841 DOI: 10.1080/03639045.2024.2323996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Triamterene is an oral antihypertensive drug with dissolution-limited poor bioavailability. It can be used as monotherapy or in fixed dose combination with hydrochlorothiazide which also suffers from poor dissolution. Moreover, co-processing of drugs in fixed dose combination can alter their properties. Accordingly, pre-formulation studies should investigate the effect of co-processing and optimize the dissolution of drugs before and after fixed dose combination. This is expected to avoid deleterious interaction (if any) and to hasten the biopharmaceutical properties. OBJECTIVE Accordingly, the aim of this work was to optimize the dissolution rate of triamterene alone and after fixed dose combination with hydrochlorothiazide. METHODOLOGY Triamterene was subjected to dry co-grinding with xylitol, HPMC-E5 or their combination. The effect of co-grinding with hydrochlorothiazide was also tested in absence and presence of xylitol and HPMC-E5. The products were assessed using Fourier-transform infrared (FTIR), differential scanning calorimetry, X-ray powder diffraction (XRPD), in addition to dissolution studies. Optimum formulations were fabricated as oral disintegrating tablets (ODT).Results: Co-processing of triamterene with xylitol formed eutectic system which hastened dissolution rate. HPMC-E5 resulted in partial amorphization and improved triamterene dissolution. Co-grinding with both materials combined their effects. Co-processing of triamterene with hydrochlorothiazide resulted in eutexia but the product was slowly dissolving due to aggregation. This problem was vanished in presence of HPMC-E5 and xylitol. Compression of the optimum formulation into ODT underwent fast disintegration and liberated acceptable amounts of both drugs. CONCLUSION The study introduced simple co-processing with traditional excipients for development of ODT of triamterene and hydrochlorothiazide.
Collapse
Affiliation(s)
- Hend A Awad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr city, Egypt
| | - Mohamed I Fetouh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr city, Egypt
| | - Amal A Sultan
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Ren J, Liu T, Bi B, Sohail S, Din FU. Development and Evaluation of Tacrolimus Loaded Nano-Transferosomes for Skin Targeting and Dermatitis Treatment. J Pharm Sci 2024; 113:471-485. [PMID: 37898166 DOI: 10.1016/j.xphs.2023.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Tacrolimus (TRL) is used for the treatment of atopic dermatitis (AD) due to its T-cell stimulation effect. However, its significantly poor water solubility, low penetration and cytotoxicity have reduced its topical applications. Herein, tacrolimus loaded nano transfersomes (TRL-NTs) were prepared, followed by their incorporation into chitosan gel to prepare tacrolimus loaded nano transfersomal gel (TRL-NTsG). TEM analysis of the TRL-NTs was performed to check their morphology. DSC, XRD and FTIR analysis of the TRL-NTs were executed after lyophilization. Similarly, rheology, spreadability and deformability of the TRL-NTsG were investigated. In vitro release, ex vivo permeation and in vitro interaction of TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures were investigated along with their in vitro cell viability analysis. Moreover, in vivo skin deposition, ear thickness, histopathology and IgE level were also determined. Besides, 6 months stability study was also performed. Results demonstrated the uniformly distributed negatively charged nanovesicles with a mean particle size distribution of 163 nm and zeta potential of -27 mV. DSC and XRD exhibited the thermal stability and amorphous form of the drug, respectively. The TRL-NTsG showed excellent deformability, spreadability and rheological behavior. In vitro release studies exhibited an 8-fold better release of TRL from the TRL-NTsG. Similarly, 6-fold better permeation and stability of the TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures was observed. Furthermore, the ear thickness (0.6 mm) of the TRL-NTsG was found significantly reduced when compared with the untreated (1.7 mm) and TRL conventional gel treated mice (1.3 mm). The H&E staining showed no toxicity of the TRL-NTsG with significantly reduced IgE levels (120 ng/mL). The formulation was found stable for at least 6 months. These results suggested the efficacy of TRL in AD-induced animal models most importantly when incorporated in NTsG.
Collapse
Affiliation(s)
- Jingyu Ren
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Tao Liu
- Shanxi Provincial Inspection and Testing Center, Taiyuan City, Shanxi Province, 030001, China
| | - Bo Bi
- Department of Dermatology, Yangquan Coalmine Group General Hospital, Yangquan City, Shanxi Province, 045000, China.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
8
|
Baek MJ, Park JH, Nguyen DT, Kim D, Kim J, Kang IM, Kim DD. Bentonite as a water-insoluble amorphous solid dispersion matrix for enhancing oral bioavailability of poorly water-soluble drugs. J Control Release 2023; 363:525-535. [PMID: 37797889 DOI: 10.1016/j.jconrel.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Bentonite (BT), an orally administrable natural clay, is widely used for medical and pharmaceutical purposes due to its unique properties, including swelling, adsorption and ion-exchange. However, its application as a matrix of amorphous solid dispersion (ASD) formulations is rarely reported, despite the fact that drugs can adsorb to BT in an amorphous state. The objective of this study was to explore the feasibility of BT as a water-insoluble ASD matrix for enhancing the oral bioavailability of poorly water-soluble drugs, including sorafenib (SF). We prepared a novel BT-based ASD of an SF-BT composite (SFBTC) by adsorbing SF onto BT under acidic conditions using the ionic interaction between cationic SF and negatively charged BT. Scanning electron microscopy (SEM), powder X-ray diffractometry (pXRD), and differential scanning calorimetry (DSC) analyses revealed that SF adsorbed to BT in an amorphous state at SF:BT ratios from 1:3 to 1:10. In pharmacokinetic studies in rats, SFBTC (1:3) significantly improved the oral bioavailability of SF, and the AUClast of SFBTC (1:3) was 3.3-fold higher than that of NEXAVAR®, a commercial product of SF. An in vitro release study under sink conditions revealed that SFBTC (1:3) completely released SF in a pH-dependent manner, while a nonsink condition study indicated the generation of supersaturation under intestinal pH conditions. A kinetic solubility study showed that the release of SFBTC (1:3) followed the diffusion-controlled mechanism, which is a typical characteristic of water-insoluble matrix-based ASDs. The pharmacokinetic studies of drug-BT composites of various drugs belonging to BCS class II indicated that the pKa value of the adsorbed drugs is one of the most important factors determining their dissolution and oral bioavailability. These results suggest that BT could be a promising water-insoluble ASD matrix for improving the oral bioavailability of poorly water-soluble drugs, including SF.
Collapse
Affiliation(s)
- Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ju-Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea
| | - Il-Mo Kang
- Advanced Geo-materials Research Department, Korea Institute of Geoscience and Mineral Resources, Pohang 37559, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Kapourani A, Chatzitaki AT, S Vizirianakis I, Fatouros DG, Barmpalexis P. Assessing the performance of thermally crosslinked amorphous solid dispersions with high drug loadings. Int J Pharm 2023; 640:123004. [PMID: 37142138 DOI: 10.1016/j.ijpharm.2023.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Continuing what previous studies had also intended, the present study aims to shed light on some unanswered questions concerning a recently introduced class of high drug loading (HD) amorphous solid dispersions (ASDs), based on the in-situ thermal crosslinking of poly (acrylic acid) (PAA) and poly (vinyl alcohols) (PVA). Initially, the effect of supersaturated dissolution conditions on the kinetic solubility profiles of the crosslinked HD ASDSs having indomethacin (IND) as a model drug, was determined. Subsequently, the safety profile of these new crosslinked formulations was determined for the first time by evaluating their cytotoxic effect on human intestinal epithelia cell line (Caco-2), while their ex-vivo intestinal permeability was also studied via the non-everted gut sac method. According to the obtained findings, the in-situ thermal crosslinked IND HD ASDs present similar kinetic solubility profiles when the dissolution studies are conducted with a steady sink index value, regardless of the different dissolution medium's volume and the total dose of the API. Additionally, the results showed a concentration- and time- dependent cytotoxicity profile for all formulations, while the neat crosslinked PAA/PVA matrices did not elicit cytotoxicity during the first 24 h, even at the highest examined concentration. Finally, the newly proposed HD ASD system, resulted in a remarkably increased ex-vivo intestinal permeability of IND.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Aikaterini-Theodora Chatzitaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Ioannis S Vizirianakis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Department of Life & Health Sciences, University of Nicosia, Nicosia CY-1700 (Cyprus)
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001 (Greece).
| |
Collapse
|
10
|
Hermans A, Milsmann J, Li H, Jede C, Moir A, Hens B, Morgado J, Wu T, Cohen M. Challenges and Strategies for Solubility Measurements and Dissolution Method Development for Amorphous Solid Dispersion Formulations. AAPS J 2022; 25:11. [PMID: 36513860 DOI: 10.1208/s12248-022-00760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022] Open
Abstract
This manuscript represents the view of the Dissolution Working Group of the IQ Consortium on the challenges of and recommendations on solubility measurements and development of dissolution methods for immediate release (IR) solid oral dosage forms formulated with amorphous solid dispersions. Nowadays, numerous compounds populate the industrial pipeline as promising drug candidates yet suffer from low aqueous solubility. In the oral drug product development process, solubility along with permeability is a key determinant to assure sufficient drug absorption along the intestinal tract. Formulating the drug candidate as an amorphous solid dispersion (ASD) is one potential option to address this issue. These formulations demonstrate the rapid onset of drug dissolution and can achieve supersaturated concentrations, which poses significant challenges to appropriately characterize solubility and develop quality control dissolution methods. This review strives to categorize the different dissolution and solubility challenges for ASD associated with 3 different topics: (i) definition of solubility and sink conditions for ASD dissolution, (ii) applications and development of non-sink dissolution (according to conventional definition) for ASD formulation screening and QC method development, and (iii) the advantages and disadvantages of using dissolution in detecting crystallinity in ASD formulations. Related to these challenges, successful examples of dissolution experiments in the context of control strategies are shared and may lead as an example for scientific consensus concerning dissolution testing of ASD.
Collapse
Affiliation(s)
- Andre Hermans
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA.
| | - Johanna Milsmann
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Hanlin Li
- Technical Operations, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Christian Jede
- Analytical Development, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Andrea Moir
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Bart Hens
- Drug Product Design, Pfizer UK, Sandwich, UK
| | | | - Tian Wu
- AffaMed Therapeutics Inc., Sacramento, California, USA
| | - Michael Cohen
- Global Chemistry and Manufacturing Controls, Pfizer, Groton, Connecticut, USA
| |
Collapse
|
11
|
Recent advances in novel formulation approaches for tacrolimus delivery in treatment of various ocular diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Tsakiridou G, O'Dwyer PJ, Margaritis A, Box KJ, Vertzoni M, Kalantzi L, Reppas C. On the usefulness of four in vitro methodologies in screening for product related differences in tacrolimus exposure after oral administration of amorphous solid dispersions with modified release characteristics in the fasted state. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Discovery solubility measurement and assessment of small molecules with drug development in mind. Drug Discov Today 2022; 27:1315-1325. [PMID: 35114363 DOI: 10.1016/j.drudis.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Solubility is a key physicochemical property for the success of any drug candidate. Although the methods used and their rationales for determining solubility are subject to project needs and stages along the drug discovery-drug development pipeline, an artificial boundary can exist at the discovery-development interface. This boundary results in less effective solubility knowledge sharing and data integration among scientists in both drug discovery and drug development. Herein, we present a refreshed perspective on solubility. Solubility experimentation is not a one-size-fits-all measurement; instead, we stress the importance of constructing a seamless solubility understanding of a molecule as it progresses from a new chemical entity into a drug product.
Collapse
|
14
|
Lentz KA, Plum J, Steffansen B, Arvidsson PO, Omkvist DH, Pedersen AJ, Sennbro CJ, Pedersen GP, Jacobsen J. Predicting in vivo performance of fenofibrate amorphous solid dispersions using in vitro non-sink dissolution and dissolution permeation setup. Int J Pharm 2021; 610:121174. [PMID: 34655705 DOI: 10.1016/j.ijpharm.2021.121174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Amorphous solid dispersion (ASD) is emerging as a useful formulation strategy to increase the bioavailability of active pharmaceutical ingredients with poor solubility. In vitro dissolution testing under non-sink conditions has often been used to evaluate the ability of ASDs to generate and maintain supersaturation to predict the in vivo performance. However, such a single compartment dissolution setup can fail to predict the oral bioavailability, due to an interdependence between precipitation and permeation. Hence, the use of two compartment dissolution-permeation setups is emerging. In this study, three ASDs containing fenofibrate as model drug substance were developed using Soluplus®, and Hypromellose Acetate Succinate in two different grades (high and low), respectively. The aim was to compare the use of a small-scale in vitro non-sink dissolution setup and a small-scale in vitro dissolution-permeation setup to predict the in vivo oral exposure of the ASDs in rats. The maximum concentration (Cmax) and area under curve (AUC) obtained in the in vitro studies were used to predict the in vivo rank order of the formulations. The results showed that the two in vitro studies resulted in the same rank order based on both Cmax and AUC. Interestingly, Cmax resulted in a better in vitro/in vivo correlation than the in vitro AUC, and based on the in vitro Cmax, the in vivo rank order was predicted.
Collapse
Affiliation(s)
- Karoline Aagaard Lentz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Pharma, A/S, Industriparken 55, DK-2750 Ballerup, Denmark
| | - Jakob Plum
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; LEO Pharma, A/S, Industriparken 55, DK-2750 Ballerup, Denmark.
| | | | | | | | | | | | | | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Badr MY, Abdulrahman NS, Schatzlein AG, Uchegbu IF. A polymeric aqueous tacrolimus formulation for topical ocular delivery. Int J Pharm 2021; 599:120364. [DOI: 10.1016/j.ijpharm.2021.120364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
|
17
|
McCarthy CA, Zemlyanov DY, Crean AM, Taylor LS. Comparison of Drug Release and Adsorption under Supersaturating Conditions for Ordered Mesoporous Silica with Indomethacin or Indomethacin Methyl Ester. Mol Pharm 2020; 17:3062-3074. [PMID: 32633973 DOI: 10.1021/acs.molpharmaceut.0c00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incomplete drug release from mesoporous silica systems has been observed in several studies. This work aims to increase the understanding of this phenomenon by investigating the mechanism of drug-silica interactions and adsorption behavior from supersaturated aqueous solutions of two similar drug molecules with different hydrogen bonding capabilities. Drug-silica interactions between indomethacin or its methyl ester and SBA-15 were investigated using spectroscopic techniques (infrared, fluorescence and X-ray photoelectron) and adsorption experiments. The results demonstrate that the predominant mechanism of interaction of both drugs with silica is hydrogen bonding between drug acceptor carbonyl groups with donor groups on the silica surface. The presence of a drug hydrogen bond donor group did not enhance drug adsorption. No evidence was obtained for drug adsorption through nonspecific hydrophobic interactions. Drug adsorption onto the silica surface was investigated under supersaturating conditions through the generation of adsorption isotherms. Similar adsorption isotherms were observed for each compound when the concentration scale was normalized to the drug amorphous solubility. In other words, the equilibrium between the drug adsorbed on the silica surface and free drug in solution was related to the drug activity in solution. The high tendency of the drug to adsorb when the solution is supersaturated was, in turn, found to limit the extent of drug release during dissolution under nonsink conditions. Thus, adsorption provides an explanation for incomplete drug release.
Collapse
Affiliation(s)
- Carol A McCarthy
- SSPC Pharm. Res. Centre, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette 47907, Indiana, United States
| | - Abina M Crean
- SSPC Pharm. Res. Centre, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette 47907, Indiana, United States
| |
Collapse
|
18
|
Hate SS, Reutzel-Edens SM, Taylor LS. Absorptive Dissolution Testing: An Improved Approach to Study the Impact of Residual Crystallinity on the Performance of Amorphous Formulations. J Pharm Sci 2020; 109:1312-1323. [DOI: 10.1016/j.xphs.2019.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
|
19
|
Experiments and modeling of controlled release behavior of commercial and model polymer-drug formulations using dialysis membrane method. Drug Deliv Transl Res 2019; 10:515-528. [DOI: 10.1007/s13346-019-00696-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Purohit HS, Trasi NS, Osterling DJ, Stolarik DF, Jenkins GJ, Gao W, Zhang GGZ, Taylor LS. Assessing the Impact of Endogenously Derived Crystalline Drug on the in Vivo Performance of Amorphous Formulations. Mol Pharm 2019; 16:3617-3625. [DOI: 10.1021/acs.molpharmaceut.9b00455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hitesh S. Purohit
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, Lafayette, Indiana 47907, United States
| | - Niraj S. Trasi
- Analytical Development, Celgene Corporation, 556 Morris Avenue, Summit, New Jersey 07901, United States
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, Lafayette, Indiana 47907, United States
| | | | | | | | | | | | - Lynne S. Taylor
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Elsayed I, El-Dahmy RM, Elshafeey AH, Abd El Gawad NA, El Gazayerly ON. Tripling the Bioavailability of Rosuvastatin Calcium Through Development and Optimization of an In-Situ Forming Nanovesicular System. Pharmaceutics 2019; 11:E275. [PMID: 31212660 PMCID: PMC6631901 DOI: 10.3390/pharmaceutics11060275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
In situ forming nanovesicular systems (IFNs) were prepared and optimized to improve Rosuvastatin calcium (RC) oral bioavailability through increasing its solubility and dissolution rate. The IFN was composed of Tween® 80 (T80), cetyl alcohol (CA), in addition to mannitol or Aerosil 200. A single simple step was adopted for preparation, then the prepared formulations were investigated by analyzing their particle size (PS), polydispersity index (PDI), Zeta potential (ZP), entrapment efficiency (EE), and flowability properties. D-optimal design was applied to choose the optimized formulations. The maximum desirability values were 0.754 and 0.478 for the optimized formulations containing 0.05 g CA, 0.18 g T80, and 0.5 g mannitol (OFM) or Aerosil (OFA), respectively. In vitro drug release from the optimized formulations showed a significantly faster dissolution rate when compared to the market product. In vivo performance of the optimized formulations in rabbits was investigated after filling them into enteric-coated capsules. Ultimately, OFA formulation achieved a 3 times increase in RC oral bioavailability in comparison with the market product, supporting the hypothesis of considering IFNs as promising nanocarriers able to boost the bioavailability of BCS class II drugs.
Collapse
Affiliation(s)
- Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, UAE.
| | - Rania Moataz El-Dahmy
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Cairo 12585, Egypt.
| | - Ahmed Hassen Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Nabaweya Abdelaziz Abd El Gawad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, October 6 University, Cairo 12585, Egypt.
| | - Omaima Naim El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
22
|
Hermans A, Kesisoglou F, Xu W, Dewitt K, Marota M, Colace T. Possibilities and Limiting Factors for the Use of Dissolution as a Quality Control Tool to Detect Presence of Crystallinity for Amorphous Solid Dispersions: An Experimental and Modeling Investigation. J Pharm Sci 2019; 108:3054-3062. [PMID: 31103787 DOI: 10.1016/j.xphs.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/29/2023]
Abstract
In this article, experiments on tablets containing a model compound, grazoprevir, were conducted to explore how media selection for a quality control dissolution method can influence the sensitivity for the dissolution method toward drug crystallinity detection in an amorphous solid dispersion formulation. The experiment shows that under ideal nonsink conditions with respect to crystalline solubility, dissolution can indeed be predictive of crystallinity in the formulation. However, the limit of detection for crystallinity with quality control dissolution can change based on inherent variabilities in the drug product. In addition, it is demonstrated that the method's sensitivity and accuracy might be reduced if the crystalline particles are sufficiently small with respect to the solid dispersion particles. To further demonstrate the limits of the dissolution method, a dissolution model was also explored to simulate and predict the sensitivity of the dissolution response toward crystallinity based on solubility in the media and particle size of the crystals.
Collapse
Affiliation(s)
- Andre Hermans
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486.
| | | | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Kristel Dewitt
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Melanie Marota
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486
| | - Thomas Colace
- Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486
| |
Collapse
|
23
|
Sardana K, Khurana A, Gupta A. Parameters that determine dissolution and efficacy of itraconazole and its relevance to recalcitrant dermatophytoses. Expert Rev Clin Pharmacol 2019; 12:443-452. [PMID: 30952196 DOI: 10.1080/17512433.2019.1604218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Recalcitrant dermatophytoses is on the rise. Though myriad factors contribute to recalcitrance including terbinafine resistance, itraconazole largely remains sensitive. However, there are increasing instances of patients not responding adequately to itraconazole despite low MICs, probably due to issues plaguing the pelletization process, resulting in suboptimal quality. Data on this topic was searched on pubmed using the search items: itraconazole, MIC, MFC, quality, assay, pharmacokinetics, pharmacodynamics, dermatophytoses, and recalcitrance. Areas covered: A detailed analysis of the manufacturing process of itraconazole with emphasis on pelletization and parameters affecting the dissolution and bioavailability is presented. Important formulation factors including drug-polymer ratio, polymer type, coating thickness, bead size, and number are discussed. Also covered is the rationale of dosimetry of itraconazole in dermatophytoses based on the skin pharmacokinetics and MIC of the organism. Expert opinion: The process of pelletization has multiple components aiming to achieve maximum dissolution of the drug. Variations in the process, pellet quality, number, and polymer determine absorption. Morphometric analysis of pellets is a simple method to quantify quality of the drug. Once the process has been standardized, dosimetry depends on the route of secretion and site of infection, accounting for the variation of doses from 100 mg to 400 mg/day.
Collapse
Affiliation(s)
- Kabir Sardana
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| | - Ananta Khurana
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| | - Aastha Gupta
- a Department of Dermatology , Post Graduate Institute of Medical Education and Research Dr. Ram Manohar Lohia Hospital , New Delhi , India
| |
Collapse
|
24
|
Kitayama A, Kadota K, Fujioka S, Konishi Y, Uchiyama H, Tozuka Y, Shimosaka A, Yoshida M, Shirakawa Y. Assessment of amorphization behavior of a drug during co-grinding with an amino acid by discrete element method simulation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Investigating the Impact of Drug Crystallinity in Amorphous Tacrolimus Capsules on Pharmacokinetics and Bioequivalence Using Discriminatory In Vitro Dissolution Testing and Physiologically Based Pharmacokinetic Modeling and Simulation. J Pharm Sci 2018; 107:1330-1341. [DOI: 10.1016/j.xphs.2017.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
|
26
|
Bhardwaj V, Trasi NS, Zemlyanov DY, Taylor LS. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. Int J Pharm 2018; 540:106-119. [DOI: 10.1016/j.ijpharm.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/27/2023]
|
27
|
Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. Eur J Pharm Sci 2018; 114:74-83. [DOI: 10.1016/j.ejps.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
|
28
|
Hermans A, Abend AM, Kesisoglou F, Flanagan T, Cohen MJ, Diaz DA, Mao Y, Zhang L, Webster GK, Lin Y, Hahn DA, Coutant CA, Grady H. Approaches for Establishing Clinically Relevant Dissolution Specifications for Immediate Release Solid Oral Dosage Forms. AAPS JOURNAL 2017; 19:1537-1549. [DOI: 10.1208/s12248-017-0117-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
|
29
|
Evaluation of the Crystallization Tendency of Commercially Available Amorphous Tacrolimus Formulations Exposed to Different Stress Conditions. Pharm Res 2017; 34:2142-2155. [DOI: 10.1007/s11095-017-2221-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|