1
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2024:10.1007/s13346-024-01747-y. [PMID: 39661312 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
2
|
Sheikh AR, Vitore JG, Bhalekar VS, Jain S, Kukreja D, Giri T, Sharma N, Benival D, Shah RP. Reactivity of N terminal histidine of peptides towards excipients/impurity of excipients: A case study of liraglutide excipient compatibility study. J Pharm Sci 2024; 113:3246-3254. [PMID: 39179028 DOI: 10.1016/j.xphs.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The selection of quality excipients is a crucial step in peptide formulation development. Apart from excipient incompatibility, process-related impurities or degradants of an excipient can interact with peptide-active pharmaceutical ingredients, forming the interaction products. The formaldehyde has been reported as an impurity of excipient in polyethylene glycol, glycerol, magnesium stearate, microcrystalline cellulose, mannitol, etc. The peptide contains various amino acids such as histidine, lysine, and arginine having free amine groups. These amine groups act as strong nucleophile and can increase the reactivity of peptides. PLGA is the most widely used biodegradable polymer in sustained-release formulations. The hydrolysis of PLGA generates glycolic acid and lactic acid impurities, which can form the interaction product with the amines of peptides. During the formulation development of Liraglutide, we have found few interaction products. The systematic characterization and mechanistic understanding of these interaction products lead us to imidazopyrimidine, glycolyl, and lactolyl moieties. These interaction products have been characterized thoroughly with the use of LC-HRMS, MS/MS, and hydrogen-deuterium exchange mass studies. The study revealed that the reactivity of N-terminal histidine must be considered for formulation development. Moreover, the quality of excipients with respect to presence of impurities must be considered as critical material attributes.
Collapse
Affiliation(s)
- Azahar R Sheikh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Jyotsna G Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Vijay S Bhalekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Sonali Jain
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Divya Kukreja
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Tushar Giri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India.
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India.
| | - Ravi P Shah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), India.
| |
Collapse
|
3
|
Nickel B. Optimizing peripheral I.V. access outcomes - Part 2. Nursing 2024; 54:19-29. [PMID: 39302746 DOI: 10.1097/nsg.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
ABSTRACT Peripheral I.V. access failure is a source of patient discomfort and dissatisfaction with a significant financial impact on healthcare. This article reviews the benefits and the risks of peripheral I.V. catheter (PIVC) utilization, infusate characteristics and their impact on peripheral vasculature, PIVC site assessment and management, and PIVC research priorities. Part 1 of this series was published in Nursing's September 2024 issue.
Collapse
Affiliation(s)
- Barb Nickel
- Barb Nickel is a clinical nurse specialist and the chair of the 2024 Infusion Nurses Society Standards of Practice Committee
| |
Collapse
|
4
|
Nguyen HD, Ngo HV, Lee B. Novel pH-Responsive Structural Rearrangement of Myristic Acid-Conjugated Quetiapine Nanosuspension for Enhanced Long-Acting Delivery Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405200. [PMID: 39225461 PMCID: PMC11516153 DOI: 10.1002/advs.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Quetiapine myristate (QM), an ester-bonded lipophilic prodrug of quetiapine (QTP), is synthesized and converted into an amphiphilic structure in acidic pH to trigger a novel self-assembled QM nanosuspension (QMN). Following injection, this QMN rearranges within physiological pH to form nanoaggregates in structure, resulting in enhanced physicochemical properties and in vivo therapeutic performance without an initial burst release. The 200-nm-sized QMN exhibits less invasive injection, higher drug content, and better storage stability profile than conventional poly(lactide-co-glycolide) (PLGA) nanosuspensions containing QTP or QM. Following a single intramuscular injection to beagle dogs (35 mg kg-1 QTP), QMN undergoes pH-responsive nanoaggregation to form the lipophilic prodrug, providing esterase-oriented sustained release for five weeks compared with the two-week period of PLGA nanosuspensions. Notably, QMN exhibits improved in vivo pharmacokinetic performance with long-acting delivery while minimizing issues associated with polymeric PLGA formulations, including the initial massive burst release, cellular toxicity, and adverse side effects. These results support the further development of QMN as a novel long-acting injectable to improve patient compliance and dosing frequency.
Collapse
Affiliation(s)
- Hy Dinh Nguyen
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
| | - Hai Van Ngo
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
| | - Beom‐Jin Lee
- Department of Pharmacy, College of PharmacyAjou UniversitySuwon16499Republic of Korea
- Institute of Pharmaceutical Science and TechnologyAjou UniversitySuwon16499Republic of Korea
| |
Collapse
|
5
|
Gorski LA, Ong J, Van Gerpen R, Nickel B, Kokotis K, Hadaway L. Development of an Evidence-Based List of Non-Antineoplastic Vesicants: 2024 Update. JOURNAL OF INFUSION NURSING 2024; 47:290-323. [PMID: 39250767 DOI: 10.1097/nan.0000000000000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Infiltration of a vesicant, called extravasation, can result in severe patient injuries. Recognition of vesicants and their relative risk of injury is essential to extravasation prevention, early recognition, and appropriate treatment. In this article, the Vesicant Task Force (VTF) updates the previously published Infusion Nurses Society (INS) vesicant list from 2017. The 2024 INS list diverges from earlier vesicant lists, such as the 2017 VTF list, by adopting a risk stratification approach based upon documented patient outcomes, in contrast to the reliance on expert consensus or only surrogate risk indicators, such as pH and osmolarity. The methodology used to create the updated list is explained, and the criteria for high- and moderate-risk vesicants and cautionary vesicants are defined.
Collapse
Affiliation(s)
- Lisa A Gorski
- Author Affiliations: Ascension at Home, Brentwood, Tennessee (Gorski); Bryan Medical Center, Lincoln, Nebraska (Ong); Retired from Bryan Medical Center, Lincoln, Nebraska (Van Gerpen); Omaha, Nebraska (Nickel); Retired from BD Medical, Munster, Indiana (Kokotis); Lynn Hadaway Associates, Inc., Milner, Georgia (Hadaway)
| | | | | | | | | | | |
Collapse
|
6
|
Nickel B. Vascular access device selection: Optimizing patient outcomes - Part 1. Nursing 2024; 54:25-37. [PMID: 39186158 DOI: 10.1097/nsg.0000000000000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT A systematic evaluation of vascular access device (VAD) selection incorporates patient, device, and infusate characteristics to ensure optimal device placement. This article explores VAD selection from the perspective of vessel health and preservation and describes VAD selection options and indications, VAD-related complications, and strategies to reduce those complications.
Collapse
Affiliation(s)
- Barb Nickel
- Barb Nickel is a clinical nurse specialist and the 2024 Infusion Nurses Society Standards of Practice Committee chair
| |
Collapse
|
7
|
Karpuz M, Aydin HH, Ozgenc E, Erel-Akbaba G, Atlihan-Gundogdu E, Senyigit Z. 99mTc-labeled, tofacitinib citrate encapsulated chitosan microspheres loaded in situ gel formulations for intra-articular treatment of rheumatoid arthritis. Drug Dev Res 2024; 85:e22247. [PMID: 39138857 DOI: 10.1002/ddr.22247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Inflammatory diseases including rheumatoid arthritis are major health problems. Although different techniques and drugs are clinically available for the diagnosis and therapy of the disease, novel approaches regarding radiolabeled drug delivery systems are researched. Hence, in the present study, it was aimed to design, prepare, and characterize 99mTc-radiolabeled and tofacitinib citrate-encapsulated microsphere loaded poloxamer in situ gel formulations for the intra-articular treatment. Among nine different microsphere formulations, MS/TOFA-9 was chosen as the most proper one due to particle size, high encapsulation efficiency, and in vitro drug release behavior. Poloxamer 338 at a concentration of 15% was used to prepare in situ gel formulations. For intra-articular administration, microspheres were dispersed in an in situ gel containing 15% Poloxamer 338 and characterized in terms of gelation temperature, viscosity, rheological, mechanical, and spreadability properties. After the determination of the safe dose for MS/TOFA-9 and PLX-MS/TOFA-9 as 40 µL/mL in the cell culture study performed on healthy cells, the high anti-inflammatory effects were due to significant cellular inhibition of fibroblasts. In the radiolabeling studies with 99mTc, the optimum radiolabeling condition was determined as 200 ppm SnCl2 and 0.5 mg ascorbic acid, and both 99mTc-MS/TOFA-9 and 99mTc-PLX-MS/TOFA-9 exhibited high cellular binding capacity. In conclusion, although further in vivo experiments are required, PLX-MS/TOFA-9 was found to be a promising agent for intra-articular injection in rheumatoid arthritis.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Husniye Hande Aydin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | | | - Zeynep Senyigit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|
8
|
O'Brien Laramy MN, Bezawada P, Horst R, Jaini R, Lillis J, Liu Y, Luthra S, Nguyen B, Patel N, Soni S, Sullivan BP, Thiel A, Ticehurst MD. Self-Assembly Properties of an Amphiphilic Phosphate Ester Prodrug Designed for the Treatment of COVID-19. J Pharm Sci 2024; 113:1515-1522. [PMID: 37543257 DOI: 10.1016/j.xphs.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
PF-07304814 is a water-soluble phosphate ester prodrug of a small molecule inhibitor for the SARS CoV-2 3CL protease designed for the treatment of COVID-19. The amphiphilicity and self-assembly behavior of the prodrug was investigated computationally and experimentally via multiple orthogonal techniques to better design formulations for intravenous infusion. The self-assembly of PF-07304814 into micellar structures enabled an increase in the solubility of lipophilic impurities by up to 1900x in clinically relevant formulations. The observed solubilization could help extend the drug product shelf-life and in use stability through inhibition of precipitation, without the need for solubilizing excipients. The work presented in this manuscript provides a roadmap for the characterization of prodrug self-assembly and highlights the potential for prodrug modifications to enhance solubility of both active ingredients and impurities and to extend drug product shelf-life.
Collapse
Affiliation(s)
| | - Padmavani Bezawada
- Pfizer Inc., Worldwide Research, Development, & Medical, Lake Forest, IL 60045, USA
| | - Reto Horst
- Pfizer Inc., Worldwide Research, Development, & Medical, Groton 06340, CT
| | - Rohit Jaini
- Pfizer Inc., Worldwide Research, Development, & Medical, Lake Forest, IL 60045, USA
| | - Jonathan Lillis
- Pfizer Inc., Worldwide Research, Development, & Medical, Sandwich, UK
| | - Yizhou Liu
- Pfizer Inc., Worldwide Research, Development, & Medical, Groton 06340, CT
| | - Suman Luthra
- Pfizer Inc., Worldwide Research, Development, & Medical, Cambridge, MA 02139, USA
| | - Bao Nguyen
- Pfizer Inc., Worldwide Research, Development, & Medical, Groton 06340, CT
| | - Nandini Patel
- Pfizer Inc., Worldwide Research, Development, & Medical, Cambridge, MA 02139, USA
| | - Smita Soni
- Pfizer Inc., Worldwide Research, Development, & Medical, Lake Forest, IL 60045, USA
| | - Bradley P Sullivan
- Pfizer Inc., Worldwide Research, Development, & Medical, Lake Forest, IL 60045, USA
| | - Andrew Thiel
- Pfizer Inc., Worldwide Research, Development, & Medical, Lake Forest, IL 60045, USA
| | | |
Collapse
|
9
|
Mathias N, Huille S, Picci M, Mahoney RP, Pettis RJ, Case B, Helk B, Kang D, Shah R, Ma J, Bhattacharya D, Krishnamachari Y, Doucet D, Maksimovikj N, Babaee S, Garidel P, Esfandiary R, Gandhi R. Towards more tolerable subcutaneous administration: Review of contributing factors for improving combination product design. Adv Drug Deliv Rev 2024; 209:115301. [PMID: 38570141 DOI: 10.1016/j.addr.2024.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.
Collapse
Affiliation(s)
- Neil Mathias
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| | - Sylvain Huille
- Sanofi, 13 quai Jules Guesde, 94400 Vitry-Sur-Seine, France.
| | - Marie Picci
- Novartis Pharma AG, Fabrikstrasse 4, CH-4056 Basel, Switzerland
| | - Robert P Mahoney
- Comera Life Sciences, 12 Gill St, Suite 4650, Woburn, MA 01801 USA
| | - Ronald J Pettis
- Becton-Dickinson, 21 Davis Drive, Research Triangle Park, NC 27513 USA
| | - Brian Case
- KORU Medical Systems, 100 Corporate Dr, Mahwah, NJ 07430 USA
| | - Bernhard Helk
- Novartis Pharma AG, Werk Klybeck, WKL-681.4.42, CH-4057 Basel, Switzerland
| | - David Kang
- Halozyme Therapeutics, Inc., 12390 El Camino Real, San Diego, CA 92130 USA
| | - Ronak Shah
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| | - Junchi Ma
- Johnson & Johnson Innovative Medicine, 200 Great Valley Pkwy, Malvern, PA 19355 USA
| | | | | | - Dany Doucet
- GSK, 1250 South Collegeville Road, Collegeville, PA 19426 USA
| | | | - Sahab Babaee
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065 USA
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach/Riss, Germany
| | | | - Rajesh Gandhi
- Bristol-Myers Squibb, Co., 1 Squibb Dr, New Brunswick, NJ, 08901 USA
| |
Collapse
|
10
|
Wozniewski M, Besheer A, Huwyler J, Mahler HC, Sediq AS, Levet V. Impact of the Design of Different Infusion Containers on the Dosing Accuracy of a Therapeutic Drug Product. J Pharm Sci 2024; 113:990-998. [PMID: 37813303 DOI: 10.1016/j.xphs.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Residual volumes of infusion solutions vary greatly due to container and dimensional variances. Manufacturers use overfill to compensate, but the exact amounts vary significantly. This variability in overfill - when carrier solutions are used to dilute other parenteral preparations - may lead to variable concentrations and dosing, hence, potential risk for patients. We analyzed the overfill and residual volume of 22 pre-filled infusion containers and evaluated the impact on the (simulated) dosing accuracy of a therapeutic drug product for different handling scenarios. In addition, compendial properties of the diluents (i.e. sub-visible particles, pH, color and opalescence) were assessed. The overfill and residual volume between different containers for the same diluent varied. As container size increased, the relative volume of overfill decreased while the residual volume remained constant. The design and material of the containers (e.g. port systems) defined the residual volume. Different handling scenarios led to differences in dosing accuracy. As a result, no universal approach applicable for all containers can be defined. To ensure the right dose, it is recommended to pre-select the preferred diluent, evaluate fill volumes of carrier solutions, and assess in-use compatibility of the product solution with its diluent in terms of concentration and volume.
Collapse
Affiliation(s)
- Maximilian Wozniewski
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland; Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ahmed Besheer
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Ahmad S Sediq
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland
| | - Vincent Levet
- Drug Product Services, Lonza AG, Hochbergerstrasse 60G, 4057 Basel, Switzerland.
| |
Collapse
|
11
|
Morici L, Gonzalez-Fernandez P, Jenni S, Porcello A, Allémann E, Jordan O, Rodríguez-Nogales C. Nanocrystal-chitosan particles for intra-articular delivery of disease-modifying osteoarthritis drugs. Int J Pharm 2024; 651:123754. [PMID: 38163526 DOI: 10.1016/j.ijpharm.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is the most common chronic joint disease and a major health care concern due to the lack of efficient treatments. This is mainly related to the local and degenerative nature of this disease. Kartogenin was recently reported as a disease-modifying osteoarthritis drug that promotes cartilage repair, but its therapeutic effect is impeded by its very low solubility. Therefore, we designed a unique nanocrystal-chitosan particle intra-articular delivery system for osteoarthritis treatment that merges the following formulation techniques: nanosize reduction of a drug by wet milling and spray drying. The intermediate formulation (kartogenin nanocrystals) increased the solubility and dissolution rates of kartogenin. The final drug delivery system consisted of an easily resuspendable and ready-to-use microsphere powder for intra-articular injection. Positively charged chitosan microspheres with a median size of approximately 10 µm acted as a mothership drug delivery system for kartogenin nanocrystals in a simulated intra-articular injection. The microspheres showed suitable stability and a controlled release profile in synovial fluid and were nontoxic in human synoviocytes. The cartilage retention skills of the microspheres were also explored ex vivo using cartilage. This drug delivery system shows promise for advancement to preclinical stages in osteoarthritis therapy and scale-up production.
Collapse
Affiliation(s)
- Luca Morici
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Sébastien Jenni
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
12
|
Foor JS, Moureau NL, Gibbons D, Gibson SM. Investigative study of hemodilution ratio: 4Vs for vein diameter, valve, velocity, and volumetric blood flow as factors for optimal forearm vein selection for intravenous infusion. J Vasc Access 2024; 25:140-148. [PMID: 35531766 PMCID: PMC10845825 DOI: 10.1177/11297298221095287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Multimodal research and guidelines recognize veins in the forearm used for peripheral intravenous catheter (PIVC) insertion can optimize dwell time. Yet, many PIVCs are still placed in areas of flexion or suboptimal locations such as the back of the hand causing premature failure of >50%. This study identified characteristics of the forearm cephalic vein that make the anatomical location highly successful for PIVC insertion. The goal was to increase the understanding of the human vasculature in association with fluid mechanics in veins above the wrist and below the antecubital fossa. METHODOLOGY A prospective in-vivo study with 10 consented healthy human volunteers (HHVs) was performed with Color Pulse Wave Doppler Ultrasound that captured high-resolution video and images of vein diameter, velocity of blood flow, and location of venous valves in the forearm. RESULTS Forearm vein diameter was not directly correlated with higher or lower Velocity of Blood Flow (0.58 cm = 3.0 cm/s). However, Volumetric Blood Flow rates tended to be lower (2.51-8.28 mL/min) with Vein Diameters smaller than 0.29 cm. Ultrasound assessments and Volumetric Blood Flow calculations confirmed natural turbulence in blood and retrograde blood reflux correlated with venous valves opening and closing. Areas of turbulence, with pulse flushing, created backflow with retrograde blood flow around and into the catheter. CONCLUSIONS Placement of long PIVCs in the cephalic veins of the upper forearm yield adequate flow and hemodilution capacity for veins with at least a 3 to 1 hemodilution ratio. The data from this study, along with previous research, suggest that PIVC placement in the cephalic vein, based on selection criteria, may help to reduce or eliminate intravenous complications such as chemical or mechanical thrombophlebitis causing premature catheter failure. Application of these investigational principles may result in better outcomes and catheter longevity for patients who require intravenous infusions.
Collapse
Affiliation(s)
- John S Foor
- Mount Carmel Medical Group, Columbus, OH, USA
| | | | - David Gibbons
- Mount Carmel Hospital St. Ann’s, Westerville, OH, USA
| | | |
Collapse
|
13
|
Ren S. Effects of arginine in therapeutic protein formulations: a decade review and perspectives. Antib Ther 2023; 6:265-276. [PMID: 38075239 PMCID: PMC10702853 DOI: 10.1093/abt/tbad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2024] Open
Abstract
Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein-protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.
Collapse
Affiliation(s)
- Steven Ren
- CMC Management, WuXi Biologics, 7 Clarke Drive, Cranbury, NJ 08512, USA
| |
Collapse
|
14
|
Grossen P, Skaripa Koukelli I, van Haasteren J, H E Machado A, Dürr C. The ice age - A review on formulation of Adeno-associated virus therapeutics. Eur J Pharm Biopharm 2023; 190:1-23. [PMID: 37423416 DOI: 10.1016/j.ejpb.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Gene therapies offer promising therapeutic alternatives for many disorders that currently lack efficient treatment options. Due to their chemical nature and physico-chemical properties, delivery of polynucleic acids into target cells and subcellular compartments remains a significant challenge. Adeno-associated viruses (AAV) have gained a lot of interest for the efficient delivery of therapeutic single-stranded DNA (ssDNA) genomes over the past decades. More than a hundred products have been tested in clinical settings and three products have received market authorization by the US FDA in recent years. A lot of effort is being made to generate potent recombinant AAV (rAAV) vectors that show favorable safety and immunogenicity profiles for either local or systemic administration. Manufacturing processes are gradually being optimized to deliver a consistently high product quality and to serve potential market needs beyond rare indications. In contrast to protein therapeutics, most rAAV products are still supplied as frozen liquids within rather simple formulation buffers to enable sufficient product shelf life, significantly hampering global distribution and access. In this review, we aim to outline the hurdles of rAAV drug product development and discuss critical formulation and composition aspects of rAAV products under clinical evaluation. Further, we highlight recent development efforts in order to achieve stable liquid or lyophilized products. This review therefore provides a comprehensive overview on current state-of-the-art rAAV formulations and can further serve as a map for rational formulation development activities in the future.
Collapse
Affiliation(s)
- Philip Grossen
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Irini Skaripa Koukelli
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Joost van Haasteren
- F.Hoffmann-La Roche AG, Cell and Gene Therapy Unit, Gene Therapy Development Clinical Manufacturing, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandra H E Machado
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christoph Dürr
- F.Hoffmann-La Roche AG, Pharma Technical Development, Pharmaceutical Development and Supplies EU, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
15
|
Borgonovo F, Quici M, Gidaro A, Giustivi D, Cattaneo D, Gervasoni C, Calloni M, Martini E, La Cava L, Antinori S, Cogliati C, Gori A, Foschi A. Physicochemical Characteristics of Antimicrobials and Practical Recommendations for Intravenous Administration: A Systematic Review. Antibiotics (Basel) 2023; 12:1338. [PMID: 37627758 PMCID: PMC10451375 DOI: 10.3390/antibiotics12081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Most antimicrobial drugs need an intravenous (IV) administration to achieve maximum efficacy against target pathogens. IV administration is related to complications, such as tissue infiltration and thrombo-phlebitis. This systematic review aims to provide practical recommendations about diluent, pH, osmolarity, dosage, infusion rate, vesicant properties, and phlebitis rate of the most commonly used antimicrobial drugs evaluated in randomized controlled studies (RCT) till 31 March 2023. The authors searched for available IV antimicrobial drugs in RCT in PUBMED EMBASE®, EBSCO® CINAHL®, and the Cochrane Controlled Clinical trials. Drugs' chemical features were searched online, in drug data sheets, and in scientific papers, establishing that the drugs with a pH of <5 or >9, osmolarity >600 mOsm/L, high incidence of phlebitis reported in the literature, and vesicant drugs need the adoption of utmost caution during administration. We evaluated 931 papers; 232 studies were included. A total of 82 antimicrobials were identified. Regarding antibiotics, 37 reach the "caution" criterion, as well as seven antivirals, 10 antifungals, and three antiprotozoals. In this subgroup of antimicrobials, the correct vascular access device (VAD) selection is essential to avoid complications due to the administration through a peripheral vein. Knowing the physicochemical characteristics of antimicrobials is crucial to improve the patient's safety significantly, thus avoiding administration errors and local side effects.
Collapse
Affiliation(s)
- Fabio Borgonovo
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Massimiliano Quici
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Antonio Gidaro
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Davide Giustivi
- Emergency Department and Vascular Access Team ASST Lodi, 26900 Lodi, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Cristina Gervasoni
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Maria Calloni
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Elena Martini
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Leyla La Cava
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Spinello Antinori
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Chiara Cogliati
- Internal Medicine Unit, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| | - Antonella Foschi
- Department of Infectious Diseases, Luigi Sacco Hospital, ASST Fatebenefratelli-Sacco, University of Milan, 20157 Milan, Italy
| |
Collapse
|
16
|
Huang Z, Liu W, Ma T, Zhao H, He X, Liu B. Slow Cooling and Controlled Ice Nucleation Enabling the Cryopreservation of Human T Lymphocytes with Low-Concentration Extracellular Trehalose. Biopreserv Biobank 2023; 21:417-426. [PMID: 36001824 DOI: 10.1089/bio.2022.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.
Collapse
Affiliation(s)
- Zhiyong Huang
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | | - Xiaowen He
- Origincell Technology Group Co., Shanghai, China
| | - Baolin Liu
- Institute of Bio-Thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Dragar Č, Rekar Ž, Potrč T, Nemec S, Kralj S, Kocbek P. Influence of Polymer Concentration on Drying of SPION Dispersions by Electrospinning. Pharmaceutics 2023; 15:1619. [PMID: 37376067 DOI: 10.3390/pharmaceutics15061619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
To improve the physical stability of nanoparticle dispersions, several methods for their transformation into stable and easily dispersible dry products have been investigated thus far. Recently, electrospinning was shown to be a novel nanoparticle dispersion drying method, which addresses the crucial challenges of the current drying methods. It is a relatively simple method, but it is affected by various ambient, process, and dispersion parameters, which impact the properties of the electrospun product. The aim of this study was, thus, to investigate the influence of the most important dispersion parameter, namely the total polymer concentration, on the drying method efficiency and the properties of the electrospun product. The formulation was based on a mixture of hydrophilic polymers poloxamer 188 and polyethylene oxide in the weight ratio of 1:1, which is acceptable for potential parenteral application. We showed that the total polymer concentration of prior-drying samples is closely related to their viscosity and conductivity, also affecting the morphology of the electrospun product. However, the change in morphology of the electrospun product does not affect the efficiency of SPION reconstitution from the electrospun product. Regardless of the morphology, the electrospun product is not in powder form and is therefore safer to handle compared to powder nanoformulations. The optimal total polymer concentration in the prior-drying SPION dispersion, which enables the formation of an easily dispersible electrospun product with high SPION-loading (65% (w/w)) and fibrillar morphology, was shown to be 4.2% (w/v).
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Žan Rekar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tanja Potrč
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department for Materials Synthesis, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., SI-1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Jindal AB, Bhide AR, Salave S, Rana D, Benival D. Long-acting Parenteral Drug Delivery Systems for the Treatment of Chronic Diseases. Adv Drug Deliv Rev 2023; 198:114862. [PMID: 37160247 DOI: 10.1016/j.addr.2023.114862] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The management of chronic conditions often requires patients to take daily medication for an extended duration. However, the need for daily dosing can lead to nonadherence to the therapy, which can result in the recurrence of the disease. Long-acting parenteral drug delivery systems have the potential to improve the treatment of chronic conditions. These systems use various technologies, such as oil-based injectables, PLGA-based microspheres, and in situ forming gel-based depots, to deliver different types of drugs. The use of long-acting parenteral formulations for the treatment of chronic infections such as HIV/AIDS and tuberculosis is a recent development in the field. Researchers are also exploring the use of long-acting parenteral formulations for the treatment of malaria, with the aim of reducing dosing frequency and improving adherence to treatment. This review discusses various aspects of long-acting formulation development, including the impact of the physicochemical properties of the drug, the type of long-acting formulation, and the route of administration. The clinical significance of long-acting formulations and recent advances in the field, such as long-acting nanoformulations and long-acting products currently in clinical trials, have also been highlighted.
Collapse
Affiliation(s)
- Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India.
| | - Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan - 333031, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A) An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, India
| |
Collapse
|
19
|
El-Kawy OA, Ibrahim IT, Shewatah HA, Attalah KM. Preparation and evaluation of radiolabeled gliclazide parenteral nanoemulsion as a new tracer for pancreatic β-cells mass. Int J Radiat Biol 2023; 99:1738-1748. [PMID: 37071445 DOI: 10.1080/09553002.2023.2204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE The present investigation aims to develop and evaluate a radiopharmaceutical for targeting and assessing β-cells mass based on gliclazide, an antidiabetic drug that specifically binds the sulfonylurea receptor unique to the β-cells of the pancreas. METHODS Conditions were optimized to radiolabel gliclazide with radioiodine via electrophilic substitution reaction. Then, it was formulated as a nanoemulsion system using olive oil and egg lecithin by hot homogenization followed by ultrasonication. The system was assessed for its suitability for parenteral administration and drug release. Then, the tracer was evaluated in silico and in vivo in normal and diabetic rats. RESULTS AND CONCLUSIONS The labeled compound was obtained with a high radiochemical yield (99.3 ± 1.1%) and good stability (>48 h). The radiolabeled nanoemulsion showed an average droplet size of 24.7 nm, a polydispersity index of 0.21, a zeta potential of -45.3 mV, pH 7.4, an osmolality of 285.3 mOsm/kg, and viscosity of 1.24 mPa.s, indicating suitability for parenteral administration. In silico assessment suggested that the labeling did not affect the biological activity of gliclazide. The suggestion was further supported by the in vivo blocking study. Following intravenous administration of nanoemulsion, the pancreas uptake was highest in normal rats (19.57 ± 1.16 and 12 ± 0.13% ID) compared to diabetic rats (8.51 ± 0.16 and 5 ± 0.13% ID) at 1 and 4 h post-injection, respectively. All results supported the feasibility of radioiodinated gliclazide nanoemulsion as a tracer for pancreatic β-cells.
Collapse
Affiliation(s)
- O A El-Kawy
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | - I T Ibrahim
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - K M Attalah
- Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
20
|
Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics 2023; 15:pharmaceutics15020443. [PMID: 36839768 PMCID: PMC9966342 DOI: 10.3390/pharmaceutics15020443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Contemporary trends in combinatorial chemistry and the design of pharmaceuticals targeting brain disorders have favored the development of drug candidates with increased lipophilicity and poorer water solubility, with the expected improvement in delivery across the blood-brain barrier (BBB). The growing availability of innovative excipients/ligands allowing improved brain targeting and controlled drug release makes the lipid nanocarriers a reasonable choice to overcome the factors impeding drug delivery through the BBB. However, a wide variety of methods, study designs and experimental conditions utilized in the literature hinder their systematic comparison, and thus slows the advances in brain-targeting by lipid-based nanoparticles. This review provides an overview of the methods most commonly utilized during the preclinical testing of liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers intended for the treatment of various CNS disorders via the parenteral route. In order to fully elucidate the structure, stability, safety profiles, biodistribution, metabolism, pharmacokinetics and immunological effects of such lipid-based nanoparticles, a transdisciplinary approach to preclinical characterization is mandatory, covering a comprehensive set of physical, chemical, in vitro and in vivo biological testing.
Collapse
|
21
|
Honokiol-Loaded Nanoemulsion for Glioblastoma Treatment: Statistical Optimization, Physicochemical Characterization, and an In Vitro Toxicity Assay. Pharmaceutics 2023; 15:pharmaceutics15020448. [PMID: 36839769 PMCID: PMC9959519 DOI: 10.3390/pharmaceutics15020448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely invasive and heterogenous malignant brain tumor. Despite advances in current anticancer therapy, treatment options for glioblastoma remain limited, and tumor recurrence is inevitable. Therefore, alternative therapies or new active compounds that can be used as adjuvant therapy are needed. This study aimed to develop, optimize, and characterize honokiol-loaded nanoemulsions intended for intravenous administration in glioblastoma therapy. METHODS Honokiol-loaded nanoemulsion was developed by incorporating honokiol into Lipofundin MCT/LCT 20% using a horizontal shaker. The Box-Behnken design, coupled with response surface methodology, was used to optimize the incorporation process. The effect of the developed formulation on glioblastoma cell viability was determined using the MTT test. Long-term and short-term stress tests were performed to evaluate the effect of honokiol on the stability of the oil-in-water system and the effect of different stress factors on the stability of honokiol, respectively. Its physicochemical properties, such as MDD, PDI, ZP, OSM, pH, and loading efficiency (LE%), were determined. RESULTS The optimized honokiol-loaded nanoemulsion was characterized by an MDD of 201.4 (0.7) nm with a PDI of 0.07 (0.02) and a ZP of -28.5 (0.9) mV. The LE% of honokiol was above 95%, and pH and OSM were sufficient for intravenous administration. The developed formulation was characterized by good stability and a satisfactory toxicity effect of the glioblastoma cell lines. CONCLUSIONS The honokiol-loaded nanoemulsion is a promising pharmaceutical formulation for further development in the adjuvant therapy of glioblastoma.
Collapse
|
22
|
Son JW, Son JM, Hur KH, Lee W, Song I, Na DH. Application of isothermal chemical denaturation to early‐stage formulation development of fibrinogen. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jae Woon Son
- GC Biopharma Yongin Republic of Korea
- College of Pharmacy Kyungpook National University Daegu Republic of Korea
| | - Jong Mun Son
- GC Biopharma Yongin Republic of Korea
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| | - Ki Ho Hur
- GC Biopharma Yongin Republic of Korea
- College of Pharmacy Chungbuk National University Cheongju South Korea
| | - Wonhwa Lee
- Department of Chemistry Sungkyunkwan University Suwon Republic of Korea
| | - Im‐Sook Song
- College of Pharmacy Kyungpook National University Daegu Republic of Korea
| | - Dong Hee Na
- College of Pharmacy Chung‐Ang University Seoul Republic of Korea
| |
Collapse
|
23
|
Castañeda Ruiz AJ, Shetab Boushehri MA, Phan T, Carle S, Garidel P, Buske J, Lamprecht A. Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics 2022; 14:2575. [PMID: 36559072 PMCID: PMC9781097 DOI: 10.3390/pharmaceutics14122575] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after. The aim of this paper is to review potential alternative excipients from different families, including surfactants, carbohydrate- and amino acid-based excipients, synthetic amphiphilic polymers, and ionic liquids that enable protein stabilization. For each category, important characteristics such as the ability to stabilize proteins against thermal and mechanical stresses, current knowledge related to the safety profile for parenteral administration, potential interactions with other formulation components, and primary packaging are debated. Based on the provided information and the detailed discussion thereof, this paper may pave the way for the identification or development of efficient excipients for biotherapeutic protein stabilization.
Collapse
Affiliation(s)
- Angel J. Castañeda Ruiz
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | | | - Tamara Phan
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Stefan Carle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
24
|
Dragar Č, Ileršič N, Potrč T, Nemec S, Kralj S, Kocbek P. Electrospinning as a method for preparation of redispersible dry product with high content of magnetic nanoparticles. Int J Pharm 2022; 629:122389. [DOI: 10.1016/j.ijpharm.2022.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
25
|
Nelson BJB, Andersson JD, Wuest F, Spreckelmeyer S. Good practices for 68Ga radiopharmaceutical production. EJNMMI Radiopharm Chem 2022; 7:27. [PMID: 36271969 PMCID: PMC9588110 DOI: 10.1186/s41181-022-00180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background The radiometal gallium-68 (68Ga) is increasingly used in diagnostic positron emission tomography (PET), with 68Ga-labeled radiopharmaceuticals developed as potential higher-resolution imaging alternatives to traditional 99mTc agents. In precision medicine, PET applications of 68Ga are widespread, with 68Ga radiolabeled to a variety of radiotracers that evaluate perfusion and organ function, and target specific biomarkers found on tumor lesions such as prostate-specific membrane antigen, somatostatin, fibroblast activation protein, bombesin, and melanocortin. Main body These 68Ga radiopharmaceuticals include agents such as [68Ga]Ga-macroaggregated albumin for myocardial perfusion evaluation, [68Ga]Ga-PLED for assessing renal function, [68Ga]Ga-t-butyl-HBED for assessing liver function, and [68Ga]Ga-PSMA for tumor imaging. The short half-life, favourable nuclear decay properties, ease of radiolabeling, and convenient availability through germanium-68 (68Ge) generators and cyclotron production routes strongly positions 68Ga for continued growth in clinical deployment. This progress motivates the development of a set of common guidelines and standards for the 68Ga radiopharmaceutical community, and recommendations for centers interested in establishing 68Ga radiopharmaceutical production. Conclusion This review outlines important aspects of 68Ga radiopharmacy, including 68Ga production routes using a 68Ge/68Ga generator or medical cyclotron, standardized 68Ga radiolabeling methods, quality control procedures for clinical 68Ga radiopharmaceuticals, and suggested best practices for centers with established or upcoming 68Ga radiopharmaceutical production. Finally, an outlook on 68Ga radiopharmaceuticals is presented to highlight potential challenges and opportunities facing the community.
Collapse
Affiliation(s)
- Bryce J B Nelson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Jan D Andersson
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.,Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
26
|
Lohrke J, Berger M, Frenzel T, Hilger CS, Jost G, Panknin O, Bauser M, Ebert W, Pietsch H. Preclinical Profile of Gadoquatrane: A Novel Tetrameric, Macrocyclic High Relaxivity Gadolinium-Based Contrast Agent. Invest Radiol 2022; 57:629-638. [PMID: 35703267 PMCID: PMC9444293 DOI: 10.1097/rli.0000000000000889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this report was to characterize the key physicochemical, pharmacokinetic (PK), and magnetic resonance imaging (MRI) properties of gadoquatrane (BAY 1747846), a newly designed tetrameric, macrocyclic, extracellular gadolinium-based contrast agent (GBCA) with high relaxivity and stability. MATERIALS AND METHODS The r1-relaxivities of the tetrameric gadoquatrane at 1.41 and 3.0 T were determined in human plasma and the nuclear magnetic relaxation dispersion profiles in water and plasma. The complex stability was analyzed in human serum over 21 days at pH 7.4 at 37°C and was compared with the linear GBCA gadodiamide and the macrocyclic GBCA (mGBCA) gadobutrol. In addition, zinc transmetallation assay was performed to investigate the kinetic inertness. Protein binding and the blood-to-plasma ratio were determined in vitro using rat and human plasma. The PK profile was evaluated in rats (up to 7 days postinjection). Magnetic resonance imaging properties were investigated using a glioblastoma (GS9L) rat model. RESULTS The new chemical entity gadoquatrane is a macrocyclic tetrameric Gd complex with one inner sphere water molecule per Gd ( q = 1). Gadoquatrane showed high solubility in buffer (1.43 mol Gd/L, 10 mM Tris-HCl, pH 7.4), high hydrophilicity (logP -4.32 in 1-butanol/water), and negligible protein binding. The r1-relaxivity of gadoquatrane in human plasma per Gd of 11.8 mM -1 ·s -1 (corresponding to 47.2 mM -1 ·s -1 per molecule at 1.41 T at 37°C, pH 7.4) was more than 2-fold (8-fold per molecule) higher compared with established mGBCAs. Nuclear magnetic relaxation dispersion profiles confirmed the more than 2-fold higher r1-relaxivity in human plasma for the clinically relevant magnetic field strengths from 0.47 to 3.0 T. The complex stability of gadoquatrane at physiological conditions was very high. The observed Gd release after 21 days at 37°C in human serum was below the lower limit of quantification. Gadoquatrane showed no Gd 3+ release in the presence of zinc in the transmetallation assay. The PK profile (plasma elimination, biodistribution, recovery) was comparable to that of gadobutrol. In MRI, the quantitative evaluation of the tumor-to-brain contrast in the rat glioblastoma model showed significantly improved contrast enhancement using gadoquatrane compared with gadobutrol at the same Gd dose administered (0.1 mmol Gd/kg body weight). In comparison to gadoterate meglumine, similar contrast enhancement was reached with gadoquatrane with 75% less Gd dose. In terms of the molecule dose, this was reduced by 90% when compared with gadoterate meglumine. Because of its tetrameric structure and hence lower number of molecules per volume, all prepared formulations of gadoquatrane were iso-osmolar to blood. CONCLUSIONS The tetrameric gadoquatrane is a novel, highly effective mGBCA for use in MRI. Gadoquatrane provides favorable physicochemical properties (high relaxivity and stability, negligible protein binding) while showing essentially the same PK profile (fast extracellular distribution, fast elimination via the kidneys in an unchanged form) to established mGBCAs on the market. Overall, gadoquatrane is an excellent candidate for further clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wolfgang Ebert
- Program Management and Operations, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | |
Collapse
|
27
|
Salata GC, Lopes LB. Phosphatidylcholine-Based Nanoemulsions for Paclitaxel and a P-Glycoprotein Inhibitor Delivery and Breast Cancer Intraductal Treatment. Pharmaceuticals (Basel) 2022; 15:ph15091110. [PMID: 36145331 PMCID: PMC9503599 DOI: 10.3390/ph15091110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, incorporation of the cytotoxic agent paclitaxel and the P-glycoprotein inhibitor elacridar in hyaluronic acid (HA)-modified nanoemulsions was studied for intraductal delivery and breast cancer localized treatment. To improve cytotoxicity, we investigated the incorporation of perillyl alcohol or tributyrin as components of the nanoemulsion oil phase. The nanoemulsions presented size <180 nm and negative zeta potential. Both tributyrin and perillyl alcohol increased nanoemulsion cytotoxicity in MCF-7 cells, but not in MDA-MB-231. However, perillyl alcohol reduced nanoemulsion stability in the presence of the drugs. Concomitant incorporation of paclitaxel and elacridar in HA- and tributyrin-containing nanoemulsions (PE-NETri) increased cytotoxicity and reduced IC50 by 1.6 to 3-fold in MCF-7 and MDA-MB-231 cells compared to the nanoemulsion containing only paclitaxel (P-NE). This nanoemulsion also produced a 3.3-fold reduction in the viability of MDA-MB-231 spheroids. Elacridar incorporated in the nanoemulsion was capable of inhibiting P-glycoprotein in membranes. In vivo intraductal administration of the NE containing HA resulted in a three-fold higher retention of a fluorescent marker compared to a solution or nanoemulsion without HA, demonstrating the importance of HA. The nanoemulsion produced no histological changes in the mammary tissue. These results support the potential applicability of the nanoemulsion for local breast cancer management.
Collapse
|
28
|
Dwiecki PM, Wróblewska KB, Krzywańska J, Parmonik A, Muszalska-Kolos I. Critical Points in the Methodology of Preparing Copper (II) Histidinate Injections and their Quality Assessment Applying Color Measurement. J Pharm Sci 2022; 111:2471-2480. [PMID: 35341720 DOI: 10.1016/j.xphs.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
Copper (II) histidinate injection solution, applied in Menkes disease treatment, is characterized by low stability due to sensitivity to oxidation. The aim of this article was to determine the critical points of the injection preparation procedure, taking into account selection of appropriate packaging, determining the solution pH or application of an excess of L-histidine. In order to assess the stability of the Cu(His)2 complex, the spectrophotometric method (VIS: 400-800 nm), and the colorimetric method using a reflectance colorimeter were applied. The color changes observed using the CIELAB color system made it possible to determine: the differences in the observed color (ΔΕ) and the color chroma (C*) and hue (h°). It was found that the following parameters: λmax and ΔE enable fast and objective assessment of copper (II) histidinate injection solution quality. The advantage of the colorimetric method is the non-invasiveness of the analysis which is performed through the packaging material (transparent vial). The developed methodology of preparing Cu(His)2 injections in hospitals or community pharmacies guarantees their stability for at least 6 months, provided that the solution is stored at lower temperatures (2-8°C or 4°C).
Collapse
Affiliation(s)
- Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; Pharmaceutical Company "Ziołolek" Sp. z o.o., Starołęcka 189, 61-341 Poznań, Poland
| | - Katarzyna Barbara Wróblewska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Justyna Krzywańska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Agata Parmonik
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
29
|
Đoković JB, Demisli S, Savić SM, Marković BD, Cekić ND, Randjelovic DV, Mitrović JR, Lunter DJ, Papadimitriou V, Xenakis A, Savić SD. The Impact of the Oil Phase Selection on Physicochemical Properties, Long-Term Stability, In Vitro Performance and Injectability of Curcumin-Loaded PEGylated Nanoemulsions. Pharmaceutics 2022; 14:pharmaceutics14081666. [PMID: 36015291 PMCID: PMC9415641 DOI: 10.3390/pharmaceutics14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
A nanotechnology-based approach to drug delivery presents one of the biggest trends in biomedical science that can provide increased active concentration, bioavailability, and safety compared to conventional drug-delivery systems. Nanoemulsions stand out amongst other nanocarriers for being biodegradable, biocompatible, and relatively easy to manufacture. For improved drug-delivery properties, longer circulation for the nanoemulsion droplets should be provided, to allow the active to reach the target site. One of the strategies used for this purpose is PEGylation. The aim of this research was assessing the impact of the oil phase selection, soybean or fish oil mixtures with medium chain triglycerides, on the physicochemical characteristics and injectability of curcumin-loaded PEGylated nanoemulsions. Electron paramagnetic resonance spectroscopy demonstrated the structural impact of the oil phase on the stabilizing layer of nanoemulsions, with a more pronounced stabilizing effect of curcumin observed in the fish oil nanoemulsion compared to the soybean oil one. The design of the experiment study, employed to simultaneously assess the impact of the oil phase, different PEGylated phospholipids and their concentrations, as well as the presence of curcumin, showed that not only the investigated factors alone, but also their interactions, had a significant influence on the critical quality attributes of the PEGylated nanoemulsions. Detailed physicochemical characterization of the NEs found all formulations were appropriate for parenteral administration and remained stable during two years of storage, with the preserved antioxidant activity demonstrated by DPPH and FRAP assays. In vitro release studies showed a more pronounced release of curcumin from the fish oil NEs compared to that from the soybean oil ones. The innovative in vitro injectability assessment, designed to mimic intravenous application, proved that all formulations tested in selected experimental setting could be employed in prospective in vivo studies. Overall, the current study shows the importance of oil phase selection when formulating PEGylated nanoemulsions.
Collapse
Affiliation(s)
- Jelena B. Đoković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sotiria Demisli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | | | - Bojan D. Marković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Nebojša D. Cekić
- DCP Hemigal, Tekstilna 97, 16000 Leskovac, Serbia
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Danijela V. Randjelovic
- Department of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jelena R. Mitrović
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dominique Jasmin Lunter
- Institut für Pharmazeutische Technologie, Eberhard-Karls Universität, D-72076 Tübingen, Germany
| | | | - Aristotelis Xenakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Snežana D. Savić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
30
|
Alassadi S, Pisani MJ, Wheate NJ. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans 2022; 51:10835-10846. [PMID: 35781551 DOI: 10.1039/d2dt01875f] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platinum drugs have been a mainstay of cancer chemotherapy since the introduction of cisplatin in the 1970s. Since then, carboplatin and oxaliplatin have been approved world-wide and nedaplatin, lobaplatin, heptaplatin, dicycloplatin, and miriplatin have been approved in individual countries. The three main platinum drugs are not used in isolation but are combined in chemotherapy protocols from a range of 28 drugs that include: anthracyclines, alkylating agents, vinca alkaloids, antimetabolites, topoisomerase inhibitors, taxanes, and monoclonal antibodies. Interestingly, they are not yet used in combination with tyrosine kinase inhibitors or proteasome inhibitors. How platinum drugs are formulated for administration to patients is important to minimise aquation during storage and administration. Cisplatin is typically formulated in saline-based solutions while carboplatin and oxaliplatin are formulated in dextrose. Pharmacokinetics are an important factor in both the efficacy and safety of platinum drugs. This includes the quantity of protein-bound drug in blood serum, how fast the drugs are cleared by the body, and how fast the drugs are degraded and deactivated. Attempts to control platinum pharmacokinetics and side effects using rescue agents, macrocycles, and nanoparticles, and through the design of platinum(IV)-based drugs have not yet resulted in clinically successful outcomes. As cancer is predominantly a disease of old age, many cancer patients who are administered a platinum drug may have other medical conditions which means they may also be taking many non-cancer medicines. The co-administration of non-cancer medicines to patients can potentially affect the efficacy of platinum drugs and/or change the severity of their side effects through drug-drug interactions.
Collapse
Affiliation(s)
- Shoohb Alassadi
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Michelle J Pisani
- East Hills Boys High School, Lucas Road, Panania, NSW, 2213, Australia
| | - Nial J Wheate
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
31
|
Klepach A, Tran H, Ahmad Mohammed F, ElSayed ME. Characterization and impact of peptide physicochemical properties on oral and subcutaneous delivery. Adv Drug Deliv Rev 2022; 186:114322. [PMID: 35526665 DOI: 10.1016/j.addr.2022.114322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Peptides, an emerging modality within the biopharmaceutical industry, are often delivered subcutaneously with evolving prospects on oral delivery. Barrier biology within the subcutis or gastrointestinal tract is a significant challenge in limiting absorption or otherwise disrupting peptide disposition. Aspects of peptide pharmacokinetic performance and ADME can be mitigated with careful molecular design that tailors for properties such as effective size, hydrophobicity, net charge, proteolytic stability, and albumin binding. In this review, we endeavor to highlight effective techniques in qualifying physicochemical properties of peptides and discuss advancements of in vitro models of subcutaneous and oral delivery. Additionally, we will delineate empirical findings around the relationship of these physicochemical properties and in vivo (animal or human) impact. We conclude that robust peptide characterization methods and in vitro techniques with demonstrated correlations to in vivo data are key routines to incorporate in the drug discovery and development to improve the probability of technical and commercial success of peptide therapeutics.
Collapse
|
32
|
Fu X, Xu S, Li Z, Chen K, Fan H, Wang Y, Xie Z, Kou L, Zhang S. Enhanced Intramuscular Bioavailability of Cannabidiol Using Nanocrystals: Formulation, In Vitro Appraisal, and Pharmacokinetics. AAPS PharmSciTech 2022; 23:85. [PMID: 35288801 DOI: 10.1208/s12249-022-02239-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Cannabidiol (CBD) has poor water solubility and is subjected to extensive first-pass metabolism. These absorption obstacles are responsible for low and variable oral bioavailability of CBD. This study endeavored to improve CBD bioavailability by intramuscular (IM) injection of CBD nanocrystals (CBD-NC). The nanocrystals were prepared by antisolvent precipitation method and were characterized in terms of the particle size, polydispersity index (PDI), zeta potential, morphology, and crystalline status. CBD-NC displayed a particle size of 141.7±1.5 nm, a PDI of 0.18±0.01, and a zeta potential of -25.73 mV. CBD-NC freeze-dried powder using bovine serum albumin (BSA) as cryoprotectant had good redispersibility, and the average particle size was 139.1±1.4 nm after reconstitution. Moreover, these freeze-dried powders were characterized for drug loading and pH and were evaluated for in vitro dissolution and in vivo studies in a rat model. The in vivo results showed that AUC0-24 h and Cmax of CBD by IM injection of CBD nanocrystals increased significantly compared with that of oral (P.O) administration of CBD nanocrystals and CBD oil solution. This underlines the nano-sized CBD could be suggested as a practical and simple nanosystem for IM delivery with improved bioavailability. More importantly, these results pave the way for future development of CBD-NC retentive dosage forms. Graphical abstract.
Collapse
|
33
|
Particle Engineering of Innovative Nanoemulsion Designs to Modify the Accumulation in Female Sex Organs by Particle Size and Surface Charge. Pharmaceutics 2022; 14:pharmaceutics14020301. [PMID: 35214035 PMCID: PMC8877295 DOI: 10.3390/pharmaceutics14020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Particle engineering of nanosized drug delivery systems (DDS) can be used as a strategic tool to influence their pharmacokinetics after intravenous (i.v.) application by the targeted adaptation of their particle properties according to the needs at their site of action. This study aimed to investigate particle properties depending on patterns in the biodistribution profile to modify the accumulation in the female sex organs using tailor-made nanoemulsion designs and thereby to either increase therapeutic efficiency for ovarian dysfunctions and diseases or to decrease the side effects caused by unintended accumulation. Through the incorporation of the anionic phospholipid phosphatidylglycerol (PG) into the stabilizing macrogol 15 hydroxystearate (MHS) layer of the nanoemulsions droplets, it was possible to produce tailor-made nanoparticles with tunable particle size between 25 to 150 nm in diameter as well as tunable surface charges between −2 to nearly −30 mV zeta potential using a phase inversion-based process. Three chosen negatively surface-charged nanoemulsions of 50, 100, and 150 nm in diameter showed very low cellular toxicities on 3T3 and NHDF fibroblasts and merely interacted with the blood cells, but instead stayed inert in the plasma. In vivo and ex vivo fluorescence imaging of adult female mice i.v. injected with the negatively surface-charged nanoemulsions revealed a high accumulation depending on their particle size in the reticuloendothelial system (RES), being found in the liver and spleen with a mean portion of the average radiant efficiency (PARE) between 42–52%, or 8–10%, respectively. With increasing particle size, an accumulation in the heart was detected with a mean PARE up to 8%. These three negatively surface-charged nanoemulsions overcame the particle size-dependent accumulation in the female sex organs and accumulated equally with a small mean PARE of 5%, suitable to reduce the side effects caused by unintended accumulation while maintaining different biodistribution profiles. In contrast, previously investigated neutral surface-charged nanoemulsions accumulated with a mean PARE up to 10%, strongly dependent on their particle sizes, which is useful to improve the therapeutic efficacy for ovarian dysfunctions and diseases.
Collapse
|
34
|
Busmann EF, Kollan J, Mäder K, Lucas H. Ovarian Accumulation of Nanoemulsions: Impact of Mice Age and Particle Size. Int J Mol Sci 2021; 22:ijms22158283. [PMID: 34361049 PMCID: PMC8347032 DOI: 10.3390/ijms22158283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology in the field of drug delivery comes with great benefits due to the unique physicochemical properties of newly developed nanocarriers. However, they may come as well with severe toxicological side effects because of unwanted accumulation in organs outside of their targeted site of actions. Several studies showed an unintended accumulation of various nanocarriers in female sex organs, especially in the ovaries. Some led to inflammation, fibrosis, or decreasing follicle numbers. However, none of these studies investigated ovarian accumulation in context to both reproductive aging and particle size. Besides the influences of particle size, the biodistribution profile may be altered as well by reproductive aging because of reduced capacities of the reticuloendothelial system (RES), changes in sex steroid hormone levels as well as altering ovarian stromal blood flow. This systematic investigation of the biodistribution of intravenously (i.v) injected nanoemulsions revealed significant dependencies on the two parameters particle size and age starting from juvenile prepubescent to senescent mice. Using fluorescent in vivo and ex vivo imaging, prepubescent mice showed nearly no accumulation of nanoemulsion in their uteri and ovaries, but high accumulations in the organs of the RES liver and spleen independently of the particle size. In fertile adult mice, the accumulation increased significantly in the ovaries with an increased particle size of the nanoemulsions by nearly doubling the portion of the average radiant efficiency (PARE) to ~10% of the total measured signal of all excised organs. With reproductive aging and hence loss of fertility in senescent mice, the accumulation decreased again to moderate levels, again independently of the particle size. In conclusion, the ovarian accumulation of these nanocarriers depended on both the age plus the particle size during maturity.
Collapse
|
35
|
Curcumin Loaded PEGylated Nanoemulsions Designed for Maintained Antioxidant Effects and Improved Bioavailability: A Pilot Study on Rats. Int J Mol Sci 2021; 22:ijms22157991. [PMID: 34360758 PMCID: PMC8347926 DOI: 10.3390/ijms22157991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of -40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078-0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.
Collapse
|
36
|
Lücking U, Kosemund D, Böhnke N, Lienau P, Siemeister G, Denner K, Bohlmann R, Briem H, Terebesi I, Bömer U, Schäfer M, Ince S, Mumberg D, Scholz A, Izumi R, Hwang S, von Nussbaum F. Changing for the Better: Discovery of the Highly Potent and Selective CDK9 Inhibitor VIP152 Suitable for Once Weekly Intravenous Dosing for the Treatment of Cancer. J Med Chem 2021; 64:11651-11674. [PMID: 34264057 DOI: 10.1021/acs.jmedchem.1c01000] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective inhibition of exclusively transcription-regulating positive transcription elongation factor b/CDK9 is a promising new approach in cancer therapy. Starting from atuveciclib, the first selective CDK9 inhibitor to enter clinical development, lead optimization efforts aimed at identifying intravenously (iv) applicable CDK9 inhibitors with an improved therapeutic index led to the discovery of the highly potent and selective clinical candidate VIP152. The evaluation of various scaffold hops was instrumental in the identification of VIP152, which is characterized by the underexplored benzyl sulfoximine group. VIP152 exhibited the best preclinical overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats upon once weekly iv administration. VIP152 has entered clinical trials for the treatment of cancer with promising longterm, durable monotherapy activity in double-hit diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Ulrich Lücking
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Dirk Kosemund
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Niels Böhnke
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Philip Lienau
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Gerhard Siemeister
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Karsten Denner
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Rolf Bohlmann
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Hans Briem
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Ildiko Terebesi
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Ulf Bömer
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Martina Schäfer
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Stuart Ince
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Dominik Mumberg
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Arne Scholz
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| | - Raquel Izumi
- Vincerx Pharma, Inc., 260 Sheridan Avenue, Suite 400, Palo Alto, California 94306, United States
| | - Stuart Hwang
- Vincerx Pharma, Inc., 260 Sheridan Avenue, Suite 400, Palo Alto, California 94306, United States
| | - Franz von Nussbaum
- Pharmaceuticals, Research and Development, Bayer Pharma AG, Müllerstr. 178, Berlin 13353, Germany
| |
Collapse
|
37
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
38
|
Dubey RD, Sarkar A, Shen Z, Bregadze VI, Sivaev IB, Druzina AA, Zhidkova OB, Shmal'ko AV, Kosenko ID, P S, Mandal S, Hosmane NS. Effects of Linkers on the Development of Liposomal Formulation of Cholesterol Conjugated Cobalt Bis(dicarbollides). J Pharm Sci 2020; 110:1365-1373. [PMID: 33340534 DOI: 10.1016/j.xphs.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Boron neutron capture therapy (BNCT) remains an important treatment arm for cancer patients with locally invasive malignant tumors. This therapy needs a significant amount of boron to deposit in cancer tissues selectively, sparing other healthy organs. Most of the liposomes contain water-soluble polyhedral boron salts stay in the core of the liposomes and have low encapsulation efficiency. Thus, modifying the polyhedral boron core to make it hydrophobic and incorporating those into the lipid layer could be one of the ways to increase drug loading and encapsulation efficiency. Additionally, a systematic study about the linker-dependent effect on drug encapsulation and drug-release is lacking, particularly for the liposomal formulation of hydrophobic-drugs. To achieve these goals, liposomal formulations of a series of lipid functionalized cobalt bis(dicarbollide) compounds have been prepared, with the linkers of different hydrophobicity. Hydrophobicity of the linkers have been evaluated through logP calculation and its effect on drug encapsulation and release have been investigated. The liposomes have shown high drug loading, excellent encapsulation efficiency, stability, and non-toxic behavior. Release experiment showed minimal release of drug from liposomes in phosphate buffer, ensuring some amount of drug, associated with liposomes, can be available to tumor tissues for Boron Neutron Capture Therapy.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi 110092, India
| | - Arindam Sarkar
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi 110092, India.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Vladimir I Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Anna A Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Olga B Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Akim V Shmal'ko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Irina D Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Sreejyothi P
- Department of Chemistry, Indian Institute of Science Education and Research, Mohanpur, 741246, India
| | - Swadhin Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Mohanpur, 741246, India
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
39
|
Francke NM, Bunjes H. Influence of drug loading on the physical stability of phospholipid-stabilised colloidal lipid emulsions. Int J Pharm X 2020; 2:100060. [PMID: 33305256 PMCID: PMC7711285 DOI: 10.1016/j.ijpx.2020.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
When poorly water-soluble drugs are formulated in colloidal lipid emulsions, adequate stability of the emulsion must be ensured. The aim of this work was to investigate different aspects related to drug loading in order to gain a better understanding on how drugs affect the stability of phospholipid-stabilised emulsions. To obtain information on emulsion stability, a rapid and reproduceable shaking test was developed. A passive loading approach was applied for drug loading of the commercially available nanoemulsion Lipofundin® MCT/LCT 10% with seven drugs of different charge and localisation tendency within the emulsion system. Localisation of drug molecules in the droplet interface did not generally lead to destabilisation of the emulsion, whereas the charge of the drug was of decisive importance. Aspects such as the drug concentration, its influence on the pH and the impact of zeta potential changes had an influence on emulsion stability as well. Certain destabilising effects of drugs could be counteracted by modification of the pH. Lipofundin® MCT/LCT 10%, passively loaded with propofol, was compared with two commercially available propofol preparations. No negative effect of the passive loading procedure could be detected.
Collapse
Affiliation(s)
- Nadine Monika Francke
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraße 1, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
40
|
Zhang Y, Zhang H, Ghosh D, Williams RO. Just how prevalent are peptide therapeutic products? A critical review. Int J Pharm 2020; 587:119491. [PMID: 32622810 PMCID: PMC10655677 DOI: 10.1016/j.ijpharm.2020.119491] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
Abstract
How prevalent are peptide therapeutic products? How innovative are the formulations used to deliver peptides? This review provides a critical analysis of therapeutic peptide products and the formulations approved by the United States Food and Drug administration (FDA), the European Medicines Agency (EMA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). This review also provides an in-depth analysis of dosage forms and administration routes for delivering peptide therapeutics, including injectables, oral dosage forms, and other routes of administration. We discuss the function of excipients in parenteral formulations in detail, since most peptide therapeutics are parenterally administered. We provide case studies of alternate delivery routes and dosage forms. Based on our analysis, therapeutic peptides administered as injectables remain the most commonly used dosage forms, particularly in the form of subcutaneous, intravenous, or intramuscular injections. In addition, therapeutic peptides are formulated to achieve prolonged release, often through the use of polymer carriers. The limited number of oral therapeutic peptide products and their poor absorption and subsequent low bioavailability indicate a need for new technologies to broaden the formulation design space. Therapeutic peptide products may also be delivered through other administration routes, including intranasal, implant, and sublingual routes. Therefore, an in-depth understanding of how therapeutic peptides are now formulated and administered is essential to improve peptide delivery, improve patient compliance, and reduce the healthcare burden for these crucial therapeutic agents.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Patel D, Zode SS, Bansal AK. Formulation aspects of intravenous nanosuspensions. Int J Pharm 2020; 586:119555. [PMID: 32562654 DOI: 10.1016/j.ijpharm.2020.119555] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023]
Abstract
Intravenous (IV) route is preferred for rapid onset of action, avoiding first pass metabolism and achieving site specific delivery. Development of IV formulations for poorly water soluble drugs poses significant challenges. Formulation approaches like salt formation, co-solvents, surfactants and inclusion complexation using cyclodextrins are used for solubilisation. However, these approaches are not applicable universally and have limitations in extent of solubilisation, hypersensitivity, toxicity and application to only specific type of molecules. IV nanosuspension have been attracting attention as a viable strategy for development of IV formulations of poorly water-soluble drugs. Nanosuspension consists of nanocrystals of poorly water soluble drug suspended in aqueous media and stabilized using minimal concentration of stabilizers. Recent years have witnessed their potential in formulations for toxicological studies and clinical trials. However various challenges are associated with the translational development of IV nanosuspensions. Therefore, the objective of the current review is to provide a holistic view of formulation development and desired properties of IV nanosuspensions. It will also focus on advancements in characterization tools, manufacturing techniques and post-production processing. Challenges associated with translational development and regulatory aspects of IV nanosuspension will be addressed. Additionally, their role in preclinical evaluation and special applications like targeting will also be discussed with the help of case studies. The applications of IV nanosuspensions shall expand as their applications move from preclinical phase to commercialization.
Collapse
Affiliation(s)
- Dipeekakumari Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sandeep S Zode
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
42
|
Samiun WS, Ashari SE, Salim N, Ahmad S. Optimization of Processing Parameters of Nanoemulsion Containing Aripiprazole Using Response Surface Methodology. Int J Nanomedicine 2020; 15:1585-1594. [PMID: 32210553 PMCID: PMC7069580 DOI: 10.2147/ijn.s198914] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/12/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Aripiprazole, which is a quinolinone derivative, has been widely used to treat schizophrenia, major depressive disorder, and bipolar disorder. PURPOSE A Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM) was used purposely to optimize process parameters conditions for formulating nanoemulsion containing aripiprazole using high emulsification methods. METHODS This design is used to investigate the influences of four independent variables (overhead stirring time (A), shear rate (B), shear time (C), and the cycle of high-pressure homogenizer (D)) on the response variable namely, a droplet size (Y) of nanoemulsion containing aripiprazole. RESULTS The optimum conditions suggested by the predicted model were: 120 min of overhead stirring time, 15 min of high shear homogenizer time, 4400 rpm of high shear homogenizer rate and 11 cycles of high-pressure homogenizer, giving a desirable droplet size of nanoemulsion containing aripiprazole of 64.52 nm for experimental value and 62.59 nm for predicted value. The analysis of variance (ANOVA) showed the quadratic polynomial fitted the experimental values with F-value (9.53), a low p-value (0.0003) and a non-significant lack of-fit. It proved that the models were adequate to predict the relevance response. The optimized formulation with a viscosity value of 3.72 mPa.s and pH value of 7.4 showed good osmolality value (297 mOsm/kg) and remained stable for three months in three different temperatures (4°C, 25°C, and 45°C). CONCLUSION This proven that response surface methodology is an efficient tool to produce desirable droplet size of nanoemulsion containing aripiprazole for parenteral delivery application.
Collapse
Affiliation(s)
- Wan Sarah Samiun
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Siti Efliza Ashari
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| |
Collapse
|
43
|
Masse M, Genay S, Martin Mena A, Carta N, Lannoy D, Barthélémy C, Décaudin B, Odou P. Evaluation of the stability of vancomycin solutions at concentrations used in clinical services. Eur J Hosp Pharm 2020; 27:e87-e92. [PMID: 32296513 DOI: 10.1136/ejhpharm-2019-002076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 01/27/2023] Open
Affiliation(s)
- Morgane Masse
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Stéphanie Genay
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Anthony Martin Mena
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Natacha Carta
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Damien Lannoy
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Christine Barthélémy
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Bertrand Décaudin
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Pascal Odou
- Univ. Lille, CHU Lille, ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| |
Collapse
|
44
|
Busmann EF, Martínez DG, Lucas H, Mäder K. Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:213-224. [PMID: 32082961 PMCID: PMC7006485 DOI: 10.3762/bjnano.11.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Lipid nanoemulsions are attractive drug delivery systems for lipophilic drugs. To produce nanoemulsions with droplets of very small diameter (<100 nm), we investigated thermotropic phase transitions as an alternative to the standard procedure of high-pressure homogenization. Employing shock dilution with ice-cold water during the phase inversion gives the opportunity to produce nanoemulsions without any use of potentially toxic organic solvents. The systematic investigation of the relation of the three involved components surfactant, aqueous phase and lipid phase showed that depending on the ratio of surfactant to lipid the emulsions contained particles of diameters between 16 and 175 nm with narrow polydispersity index distributions and uncharged surfaces. Nanoemulsions with particles of 50 and 100 nm in diameter showed very little toxicity to fibroblast cells in vitro. An unusual, exponential-like nonlinear increase in osmolality was observed with increasing concentration of the nonionic surfactant Kolliphor HS 15. The experimental results indicate, that nanoemulsions with particles of small and tunable size can be easily formed without homogenization by thermal cycling.
Collapse
Affiliation(s)
- Eike Folker Busmann
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dailén García Martínez
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
45
|
Schuster J, Koulov A, Mahler HC, Detampel P, Huwyler J, Singh S, Mathaes R. In Vivo Stability of Therapeutic Proteins. Pharm Res 2020; 37:23. [DOI: 10.1007/s11095-019-2689-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/05/2023]
|
46
|
Lovsin Barle E, Pfister T, Fux C, Röthlisberger D, Jere D, Mahler HC. Use of the permitted daily exposure (PDE) concept for contaminants of intravitreal (IVT) drugs in multipurpose manufacturing facilities. Regul Toxicol Pharmacol 2019; 101:29-34. [PMID: 30367903 DOI: 10.1016/j.yrtph.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023]
Abstract
A toxicological evaluation to determine the product specific permitted daily exposure (PDE) value is an accepted method to determine a safe limit for the carry-over of product residues in multipurpose manufacturing facilities. The PDE calculation for intravitreal (IVT) injection of small and large molecular weight (MW) drugs follows the guiding principles set for systemic administration. However, there are specific differences with respect to the volume administered with IVT administration, pharmacokinetic and pharmacodynamics (PK-PD) parameters and potential for toxicity. In this publication, we have proposed a method to derive PDEIVT in the presence of IVT dose. In the absence of an IVT dose we have a proposed default extrapolationof the systemic PDE for intravenous (IV) administration to the PDEIVT dose by applying a factor of 500 based on comparison of the volume of vitreous humour with the plasma volume, as well as provided examples for PK-PD and toxicity considerations.
Collapse
|
47
|
Novel salts of dipicolinic acid as viscosity modifiers for high concentration antibody solutions. Int J Pharm 2018; 548:682-688. [DOI: 10.1016/j.ijpharm.2018.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
|
48
|
Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int J Pharm 2018; 546:61-69. [DOI: 10.1016/j.ijpharm.2018.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/26/2018] [Accepted: 05/12/2018] [Indexed: 02/01/2023]
|
49
|
Toprani VM, Cheng Y, Wahome N, Khasa H, Kueltzo LA, Schwartz RM, Middaugh CR, Joshi SB, Volkin DB. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate. J Pharm Sci 2018; 107:2544-2558. [PMID: 29883665 DOI: 10.1016/j.xphs.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
The zoonotic equine encephalitis viruses (EEVs) can cause debilitating and life-threatening disease, leading to ongoing vaccine development efforts for an effective virus-like particle (VLP) vaccine based on 3 strains of EEV (Eastern, Western, and Venezuelan or EEE, WEE and VEE VLPs, respectively). In this work, transmission electron microscopy and light scattering studies showed enveloped, spherical, and ∼70 nm sized VLPs. Biophysical studies demonstrated optimal VLP physical stability in the pH range of 7.5-8.5 and at temperatures below ∼50°C. Interestingly, the individual stability profiles differed notably between the 3 VLPs. Numerous pharmaceutical excipients were screened for their VLP stabilizing effects against thermal stress. Sucrose, sorbitol, sodium chloride, and pluronic F-68 were identified as promising stabilizers and the concentrations and combinations of these additives were optimized. Candidate monovalent VLP bulk formulations were incubated at temperatures ranging from -80°C to 40°C to establish freeze-thaw, long-term (2°C-8°C) and accelerated stability trends. Good VLP stability profiles were observed at each storage temperature, except for a distinct instability observed at -20°C. The interaction of monovalent and trivalent VLP formulations with aluminum adjuvants was examined, both in terms of antigen adsorption and desorption over time. The implications of these findings on future vaccine formulation development of EEV VLPs are discussed.
Collapse
Affiliation(s)
- Vishal M Toprani
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Yuan Cheng
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Newton Wahome
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Harshit Khasa
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
50
|
Harun SN, Nordin SA, Gani SSA, Shamsuddin AF, Basri M, Basri HB. Development of nanoemulsion for efficient brain parenteral delivery of cefuroxime: designs, characterizations, and pharmacokinetics. Int J Nanomedicine 2018; 13:2571-2584. [PMID: 29731632 PMCID: PMC5927357 DOI: 10.2147/ijn.s151788] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and aim Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood-brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered. Methods The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties. Results The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of -46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0-t , prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0-t , prolonged half-life, and lower clearance as compared to free cefuroxime solution. Conclusion Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain.
Collapse
Affiliation(s)
- Siti Norhawani Harun
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Salwa Abd Gani
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ahmad Fuad Shamsuddin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hamidon Bin Basri
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|