1
|
Ji Y, Li P, Ning T, Yang D, Shi H, Dong X, Zhu S, Li P, Zhang S. PANoptosis-related genes: Molecular insights into immune dysregulation in ulcerative colitis. J Gastroenterol Hepatol 2025; 40:177-191. [PMID: 39568189 DOI: 10.1111/jgh.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND AND AIM Ulcerative colitis (UC) is a chronic inflammatory disease driven by immune dysregulation. PANoptosis, a novel form of programmed cell death, has been implicated in inflammatory diseases, but its specific role in UC remains unclear. This study aimed to identify PANoptosis-related genes (PRGs) that may contribute to immune dysregulation in UC. METHODS Using bioinformatics analysis of the GEO databases, we identified seven hub PRGs. Based on these genes, we developed a predictive model to differentiate UC patients from healthy controls, and evaluated its diagnostic performance using ROC curve analysis. We further conducted functional enrichment, GSVA, and immune infiltration analyses. Immunohistochemistry (IHC) was used to validate the expression of hub genes in UC patients. RESULTS The prediction model, based on the seven hub genes, exhibited diagnostic ability in discriminating UC patients from controls. Furthermore, these hub PRGs were found to be associated with immune cells, including dendritic cells, NK cells, macrophages, regulatory T cells (Tregs), and CD8+ T cells. They were also linked to key signaling pathways implicated in UC pathogenesis, such as IFNγ, TNFα, IL6-and JAK-STAT3, as well as hypoxia and apoptosis. Immunohistochemistry analysis validated the expression levels of hub PRGs in UC patients using paraffin sections of intestinal biopsy specimens. CONCLUSIONS This study identified PANoptosis-related genes with potential diagnostic value for UC and suggest that PANoptosis may contribute to the pathogenesis of UC by regulating specific immune cells and interacting with key signaling pathways. This highlights the potential importance of PANoptosis-related genes as therapeutic targets in UC management.
Collapse
Affiliation(s)
- Yuxiao Ji
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Pengchong Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Deyi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Xueyu Dong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, China
| |
Collapse
|
2
|
Klitgaard M, Kristensen MN, Venkatasubramanian R, Guerra P, Jacobsen J, Berthelsen R, Rades T, Müllertz A. Assessing acute colitis induced by dextran sulfate sodium in rats and its impact on gastrointestinal fluids. Drug Deliv Transl Res 2023; 13:1484-1499. [PMID: 36913104 DOI: 10.1007/s13346-023-01313-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent. This study aimed to investigate the DSS model to improve the preclinical evaluation of new oral drug formulations. The induction of colitis was evaluated based on the disease activity index (DAI) score, colon length, histological tissue evaluation, spleen weight, plasma C-reactive protein, and plasma lipocalin-2. Furthermore, the study investigated how the DSS-induced colitis affected the luminal pH, lipase activity, and concentrations of bile salts, polar lipids, and neutral lipids. For all evaluated parameters, healthy rats were used as a reference. The DAI score, colon length, and histological evaluation of the colon were effective disease indicators in DSS-induced colitis rats, while spleen weight, plasma C-reactive protein, and plasma lipocalin-2 were not. The luminal pH of the colon and bile salt- and neutral lipid concentrations in regions of the small intestine were lower in DSS-induced rats compared to healthy rats. Overall, the colitis model was deemed relevant for investigating ulcerative colitis-specific formulations.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Maja Nørgaard Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Priscila Guerra
- Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark. .,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Luo Y, Wu J, Liu Y, Shen Y, Zhu F, Wu J, Hu Y. Metabolomics Study of Shaoyao Plants Decoction on the Proximal and Distal Colon in Mice with Dextran Sulfate Sodium-Induced Colitis by UPLC-Q-TOF-MS. Drug Des Devel Ther 2022; 16:4343-4364. [PMID: 36583115 PMCID: PMC9792814 DOI: 10.2147/dddt.s384607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Shaoyao decoction (SYD) is a traditional Chinese medicine used to treat ulcerative colitis (UC). The exact mechanism of action of SYD in UC treatment is still unclear. Here, we examined the therapeutic effects of SYD in mice with dextran sulfate sodium (DSS)-induced colitis and explored the underlying mechanism. Methods The experimental group was divided into normal control, UC, and SYD treatment groups. The UC model of C57BL/6 mice was induced using 3% (w/v) DSS for 7 days. SYD was orally administered for 7 days. The proximal and distal colonic metabolic profiles were detected using quadrupole-time-of-flight mass spectrometry-based untargeted metabolomics. Results SYD significantly increased weight, reduced disease activity index scores, and ameliorated colon length shortening and pathological damage in mice. In the distal colon, SYD increased the abundance of phosphatidic acid and lysophosphatidylethanolamine and decreased the abundance of lactosylceramide, erythrodiol 3-palmitate, and lysophosphatidylcholine. In the proximal colon, SYD increased the abundance of palmitic acid, cyclonormammein, monoacylglyceride, 13S-hydroxyoctadecadienoic acid, and ceanothine C and decreased the abundance of tetracosahexaenoic acid, phosphatidylserine, and diglyceride. Conclusion Our findings revealed that SYD could alleviate UC by regulating metabolic dysfunction, which provides a reference for further studies on SYD.
Collapse
Affiliation(s)
- Yiting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yan Shen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Fangyuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jiaqian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yuyao Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Correspondence: Yuyao Hu, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
4
|
Schimke LF, Marques AHC, Baiocchi GC, de Souza Prado CA, Fonseca DLM, Freire PP, Rodrigues Plaça D, Salerno Filgueiras I, Coelho Salgado R, Jansen-Marques G, Rocha Oliveira AE, Peron JPS, Cabral-Miranda G, Barbuto JAM, Camara NOS, Calich VLG, Ochs HD, Condino-Neto A, Overmyer KA, Coon JJ, Balnis J, Jaitovich A, Schulte-Schrepping J, Ulas T, Schultze JL, Nakaya HI, Jurisica I, Cabral-Marques O. Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells 2022; 11:cells11050847. [PMID: 35269470 PMCID: PMC8909161 DOI: 10.3390/cells11050847] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.
Collapse
Affiliation(s)
- Lena F. Schimke
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| | - Alexandre H. C. Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriela Crispim Baiocchi
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Dennyson Leandro M. Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Paula Paccielli Freire
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Igor Salerno Filgueiras
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Ranieri Coelho Salgado
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriel Jansen-Marques
- Information Systems, School of Arts, Sciences and Humanities, University of Sao Paulo, São Paulo 03828-000, Brazil;
| | - Antonio Edson Rocha Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Jean Pierre Schatzmann Peron
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gustavo Cabral-Miranda
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - José Alexandre Marzagão Barbuto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Laboratory of Medical Investigation in Pathogenesis, Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Vera Lúcia Garcia Calich
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Hans D. Ochs
- Department of Pediatrics, Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA;
| | - Antonio Condino-Neto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonas Schulte-Schrepping
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-020, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Otávio Cabral-Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| |
Collapse
|