1
|
Sipowicz P, Murad Leite Andrade MH, Fernandes Filho CC, Benevenuto J, Muñoz P, Ferrão LFV, Resende MFR, Messina C, Rios EF. Optimization of high-throughput marker systems for genomic prediction in alfalfa family bulks. THE PLANT GENOME 2025; 18:e20526. [PMID: 39635923 PMCID: PMC11726437 DOI: 10.1002/tpg2.20526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage legume esteemed for its exceptional quality and dry matter yield (DMY); however, alfalfa has historically exhibited low genetic gain for DMY. Advances in genotyping platforms paved the way for a cost-effective application of genomic prediction in alfalfa family bulks. In this context, the optimization of marker density holds potential to reallocate resources within genomic prediction pipelines. This study aimed to (i) test two genotyping platforms for population structure discrimination and predictive ability (PA) of genomic prediction models (G-BLUP) for DMY, and (ii) explore optimal levels of marker density to predict DMY in family bulks. For this, 160 nondormant alfalfa families were phenotyped for DMY across 11 harvests and genotyped via targeted sequencing using Capture-seq with 17K probes and the DArTag 3K panel. Both platforms discriminated similarly against the population structure and resulted in comparable PA for DMY. For genotyping optimization, different levels of marker density were randomly extracted from each platform. In both cases, a plateau was achieved around 500 markers, yielding similar PA as the full set of markers. For phenotyping optimization, models with 500 markers built with data from five harvests resulted in similar PA compared to the full set of 11 harvests and full set of markers. Altogether, genotyping and phenotyping efforts were optimized in terms of number of markers and harvests. Capture-seq and DArTag yielded similar results and have the flexibility to adjust their panels to meet breeders' needs in terms of marker density.
Collapse
Affiliation(s)
- Pablo Sipowicz
- Plant Breeding Graduate ProgramUniversity of FloridaGainesvilleFloridaUSA
- Instituto Nacional de Tecnologia AgropecuariaManfrediArgentina
| | | | | | - Juliana Benevenuto
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Patricio Muñoz
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | | | | | - C. Messina
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Esteban F. Rios
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
2
|
Jiang J, Ren J, Zeng Y, Xu X, Lin S, Fan Z, Meng Y, Ma Y, Li X, Wu P. Integration of GWAS models and GS reveals the genetic architecture of ear shank in maize. Gene 2025; 938:149140. [PMID: 39645098 DOI: 10.1016/j.gene.2024.149140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Maize is one of the most important crops for human food, animal feed, and industrial raw materials. Ear shank length (ESL) and ear shank node number (ESNN) are crucial selection criteria in maize breeding, impacting grain yield and dehydration rate during mechanical harvesting. To unravel the genetic basis of ESL and ESNN in maize, an association panel consisting of 379 multi-parent doubled-haploid (DH) lines was developed for genome-wide association studies (GWAS) and genomic selection (GS). The heritabilities of ESL and ESNN were 0.68 and 0.55, respectively, which were controlled by genetic factors and genotype-environment interaction factors. Using five different models for GWAS, 11 significant single nucleotide polymorphisms (SNPs) located on chromosomes 1, 2, and 4 were identified for ESL, with the phenotypic variation explained (PVE) value of each single SNP ranging from 4.91% to 21.35%, and 11 significant SNPs located on chromosomes 1, 2, 4, and 5 were identified for ESNN, with the PVE value of each SNP ranging from 1.22% to 18.42%. Genetic regions in bins 1.06, 2.06, and 2.08 were significantly enriched in SNPs associated with ear shank-related traits. The GS prediction accuracy using all markers by the five-fold cross-validation method for ESL and ESNN was 0.39 and 0.37, respectively, which was significantly improved by using only 500-1000 significant SNPs with the lowest P-values. The optimal training population size (TPS) and marker density (MD) for ear shank-related traits were 50%-60% and 3000, respectively. Our results provide new insights into the GS of ear shank-related traits.
Collapse
Affiliation(s)
- Jiale Jiang
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jiaojiao Ren
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yukang Zeng
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiaoming Xu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shaohang Lin
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zehui Fan
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yao Meng
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yirui Ma
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Li
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
3
|
Xu Y, Yang W, Qiu J, Zhou K, Yu G, Zhang Y, Wang X, Jiao Y, Wang X, Hu S, Zhang X, Li P, Lu Y, Chen R, Tao T, Yang Z, Xu Y, Xu C. Metabolic marker-assisted genomic prediction improves hybrid breeding. PLANT COMMUNICATIONS 2024:101199. [PMID: 39614617 DOI: 10.1016/j.xplc.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Hybrid breeding is widely acknowledged as the most effective method for increasing crop yield, particularly in maize and rice. However, a major challenge in hybrid breeding is the selection of desirable combinations from the vast pool of potential crosses. Genomic selection (GS) has emerged as a powerful tool to tackle this challenge, but its success in practical breeding depends on prediction accuracy. Several strategies have been explored to enhance prediction accuracy for complex traits, such as the incorporation of functional markers and multi-omics data. Metabolome-wide association studies (MWAS) help to identify metabolites that are closely linked to phenotypes, known as metabolic markers. However, the use of preselected metabolic markers from parental lines to predict hybrid performance has not yet been explored. In this study, we developed a novel approach called metabolic marker-assisted genomic prediction (MM_GP), which incorporates significant metabolites identified from MWAS into GS models to improve the accuracy of genomic hybrid prediction. In maize and rice hybrid populations, MM_GP outperformed genomic prediction (GP) for all traits, regardless of the method used (genomic best linear unbiased prediction or eXtreme gradient boosting). On average, MM_GP demonstrated 4.6% and 13.6% higher predictive abilities than GP for maize and rice, respectively. MM_GP could also match or even surpass the predictive ability of M_GP (integrated genomic-metabolomic prediction) for most traits. In maize, the integration of only six metabolic markers significantly associated with multiple traits resulted in 5.0% and 3.1% higher average predictive ability compared with GP and M_GP, respectively. With advances in high-throughput metabolomics technologies and prediction models, this approach holds great promise for revolutionizing genomic hybrid breeding by enhancing its accuracy and efficiency.
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kai Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Guangning Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yuxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yuxin Jiao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xinyi Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Shujun Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Mexico D.F. 06600, Mexico
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China; BGI Bioverse, Shenzhen 518083, China; MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, China.
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Yu G, Li F, Wang X, Zhang Y, Zhou K, Yang W, Guan X, Zhang X, Xu C, Xu Y. Enhancing Across-Population Genomic Prediction for Maize Hybrids. PLANTS (BASEL, SWITZERLAND) 2024; 13:3105. [PMID: 39520023 PMCID: PMC11548338 DOI: 10.3390/plants13213105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In crop breeding, genomic selection (GS) serves as a powerful tool for predicting unknown phenotypes by using genome-wide markers, aimed at enhancing genetic gain for quantitative traits. However, in practical applications of GS, predictions are not always made within populations or for individuals that are genetically similar to the training population. Therefore, exploring possibilities and effective strategies for across-population prediction becomes an attractive avenue for applying GS technology in breeding practices. In this study, we used an existing maize population of 5820 hybrids as the training population to predict another population of 523 maize hybrids using the GBLUP and BayesB models. We evaluated the impact of optimizing the training population based on the genetic relationship between the training and breeding populations on the accuracy of across-population predictions. The results showed that the prediction accuracy improved to some extent with varying training population sizes. However, the optimal size of the training population differed for various traits. Additionally, we proposed a population structure-based across-population genomic prediction (PSAPGP) strategy, which integrates population structure as a fixed effect in the GS models. Principal component analysis, clustering, and Q-matrix analysis were used to assess the population structure. Notably, when the Q-matrix was used, the across-population prediction exhibited the best performance, with improvements ranging from 8 to 11% for ear weight, ear grain weight and plant height. This is a promising strategy for reducing phenotyping costs and enhancing maize hybrid breeding efficiency.
Collapse
Affiliation(s)
- Guangning Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Furong Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yuxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kai Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiusheng Guan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City 06600, Mexico;
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; (G.Y.); (F.L.); (X.W.); (Y.Z.); (K.Z.); (W.Y.); (X.G.); (C.X.)
- Zhongshan Biological Breeding Laboratory/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Ye H, Louden M, Reinders JAT. A novel in vivo genome editing doubled haploid system for Zea mays L. NATURE PLANTS 2024; 10:1493-1501. [PMID: 39333351 DOI: 10.1038/s41477-024-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Abstract
Doubled haploid (DH) technologies accelerate maize inbred development. Recently, methods using CRISPR-Cas have created gene-edited maize DH populations, albeit with relatively low editing frequencies. Restoring fertility via haploid chromosome doubling remains a critically important production constraint. Thus, improved editing and chromosome doubling outcomes are needed. Here we obtained maternally derived diploid embryos in vivo by ectopically co-expressing Zea mays BABY BOOM and cyclin D-like gene products within unfertilized egg cells. When combined with gene editing, the in vivo method enables the production of mature seed with a maternally derived, gene-edited diploid embryo without requiring in vitro tissue culture methods nor the use of a chemical chromosome doubling agent. In summary, we report a novel approach for creating gene-edited maize DH populations that we expect can accelerate genetic gain in a scalable, cost-effective manner.
Collapse
Affiliation(s)
- Huaxun Ye
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Academy of Agricultural Sciences, Wenzhou, China
| | - Mei Louden
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA
| | - Jon A T Reinders
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA.
| |
Collapse
|
6
|
Lee AMJ, Foong MYM, Song BK, Chew FT. Genomic selection for crop improvement in fruits and vegetables: a systematic scoping review. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:60. [PMID: 39267903 PMCID: PMC11391014 DOI: 10.1007/s11032-024-01497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
To ensure the nutritional needs of an expanding global population, it is crucial to optimize the growing capabilities and breeding values of fruit and vegetable crops. While genomic selection, initially implemented in animal breeding, holds tremendous potential, its utilization in fruit and vegetable crops remains underexplored. In this systematic review, we reviewed 63 articles covering genomic selection and its applications across 25 different types of fruit and vegetable crops over the last decade. The traits examined were directly related to the edible parts of the crops and carried significant economic importance. Comparative analysis with WHO/FAO data identified potential economic drivers underlying the study focus of some crops and highlighted crops with potential for further genomic selection research and application. Factors affecting genomic selection accuracy in fruit and vegetable studies are discussed and suggestions made to assist in their implementation into plant breeding schemes. Genetic gain in fruits and vegetables can be improved by utilizing genomic selection to improve selection intensity, accuracy, and integration of genetic variation. However, the reduction of breeding cycle times may not be beneficial in crops with shorter life cycles such as leafy greens as compared to fruit trees. There is an urgent need to integrate genomic selection methods into ongoing breeding programs and assess the actual genomic estimated breeding values of progeny resulting from these breeding programs against the prediction models. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01497-2.
Collapse
Affiliation(s)
- Adrian Ming Jern Lee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Republic of Singapore
- NUS Agritech Centre, National University of Singapore, 85 Science Park Dr, #01-03, Singapore, 118258 Republic of Singapore
| | - Melissa Yuin Mern Foong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Beng Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Republic of Singapore
- NUS Agritech Centre, National University of Singapore, 85 Science Park Dr, #01-03, Singapore, 118258 Republic of Singapore
| |
Collapse
|
7
|
Sivabharathi RC, Rajagopalan VR, Suresh R, Sudha M, Karthikeyan G, Jayakanthan M, Raveendran M. Haplotype-based breeding: A new insight in crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112129. [PMID: 38763472 DOI: 10.1016/j.plantsci.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Haplotype-based breeding (HBB) is one of the cutting-edge technologies in the realm of crop improvement due to the increasing availability of Single Nucleotide Polymorphisms identified by Next Generation Sequencing technologies. The complexity of the data can be decreased with fewer statistical tests and a lower probability of spurious associations by combining thousands of SNPs into a few hundred haplotype blocks. The presence of strong genomic regions in breeding lines of most crop species facilitates the use of haplotypes to improve the efficiency of genomic and marker-assisted selection. Haplotype-based breeding as a Genomic Assisted Breeding (GAB) approach harnesses the genome sequence data to pinpoint the allelic variation used to hasten the breeding cycle and circumvent the challenges associated with linkage drag. This review article demonstrates ways to identify candidate genes, superior haplotype identification, haplo-pheno analysis, and haplotype-based marker-assisted selection. The crop improvement strategies that utilize superior haplotypes will hasten the breeding progress to safeguard global food security.
Collapse
Affiliation(s)
- R C Sivabharathi
- Department of Genetics and Plant breeding, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - R Suresh
- Department of Rice, CPBG, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, CPPS, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Jayakanthan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Raveendran
- Directorate of research, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
8
|
Vourlaki IT, Ramos-Onsins SE, Pérez-Enciso M, Castanera R. Evaluation of deep learning for predicting rice traits using structural and single-nucleotide genomic variants. PLANT METHODS 2024; 20:121. [PMID: 39127715 DOI: 10.1186/s13007-024-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Structural genomic variants (SVs) are prevalent in plant genomes and have played an important role in evolution and domestication, as they constitute a significant source of genomic and phenotypic variability. Nevertheless, most methods in quantitative genetics focusing on crop improvement, such as genomic prediction, consider only Single Nucleotide Polymorphisms (SNPs). Deep Learning (DL) is a promising strategy for genomic prediction, but its performance using SVs and SNPs as genetic markers remains unknown. RESULTS We used rice to investigate whether combining SVs and SNPs can result in better trait prediction over SNPs alone and examine the potential advantage of Deep Learning (DL) networks over Bayesian Linear models. Specifically, the performances of BayesC (considering additive effects) and a Bayesian Reproducible Kernel Hilbert space (RKHS) regression (considering both additive and non-additive effects) were compared to those of two different DL architectures, the Multilayer Perceptron, and the Convolution Neural Network, to explore their prediction ability by using various marker input strategies. We found that exploiting structural and nucleotide variation slightly improved prediction ability on complex traits in 87% of the cases. DL models outperformed Bayesian models in 75% of the studied cases, considering the four traits and the two validation strategies used. Finally, DL systematically improved prediction ability of binary traits against the Bayesian models. CONCLUSIONS Our study reveals that the use of structural genomic variants can improve trait prediction in rice, independently of the methodology used. Also, our results suggest that Deep Learning (DL) networks can perform better than Bayesian models in the prediction of binary traits, and in quantitative traits when the training and target sets are not closely related. This highlights the potential of DL to enhance crop improvement in specific scenarios and the importance to consider SVs in addition to SNPs in genomic selection.
Collapse
Affiliation(s)
- Ioanna-Theoni Vourlaki
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, 08193, Barcelona, Spain.
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Caldes de Montbui, 08140, Barcelona, Spain.
| | - Sebastián E Ramos-Onsins
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, 08193, Barcelona, Spain
| | - Miguel Pérez-Enciso
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, 08193, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
- Universitat Autónoma de Barcelona, 08193, Barcelona, Spain
| | - Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, 08193, Barcelona, Spain.
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Caldes de Montbui, 08140, Barcelona, Spain.
| |
Collapse
|
9
|
Xu Y, Zhang Y, Cui Y, Zhou K, Yu G, Yang W, Wang X, Li F, Guan X, Zhang X, Yang Z, Xu S, Xu C. GA-GBLUP: leveraging the genetic algorithm to improve the predictability of genomic selection. Brief Bioinform 2024; 25:bbae385. [PMID: 39101500 PMCID: PMC11299030 DOI: 10.1093/bib/bbae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Genomic selection (GS) has emerged as an effective technology to accelerate crop hybrid breeding by enabling early selection prior to phenotype collection. Genomic best linear unbiased prediction (GBLUP) is a robust method that has been routinely used in GS breeding programs. However, GBLUP assumes that markers contribute equally to the total genetic variance, which may not be the case. In this study, we developed a novel GS method called GA-GBLUP that leverages the genetic algorithm (GA) to select markers related to the target trait. We defined four fitness functions for optimization, including AIC, BIC, R2, and HAT, to improve the predictability and bin adjacent markers based on the principle of linkage disequilibrium to reduce model dimension. The results demonstrate that the GA-GBLUP model, equipped with R2 and HAT fitness function, produces much higher predictability than GBLUP for most traits in rice and maize datasets, particularly for traits with low heritability. Moreover, we have developed a user-friendly R package, GAGBLUP, for GS, and the package is freely available on CRAN (https://CRAN.R-project.org/package=GAGBLUP).
Collapse
Affiliation(s)
- Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yanru Cui
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Kai Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guangning Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyan Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Furong Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiusheng Guan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuecai Zhang
- Global Maize Program, International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, United States
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
10
|
Zhang H, Tang Y, Yue Y, Chen Y. Advances in the evolution research and genetic breeding of peanut. Gene 2024; 916:148425. [PMID: 38575102 DOI: 10.1016/j.gene.2024.148425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peanut is an important cash crop used in oil, food and feed in our country. The rapid development of sequencing technology has promoted the research on the related aspects of peanut genetic breeding. This paper reviews the research progress of peanut origin and evolution, genetic breeding, molecular markers and their applications, genomics, QTL mapping and genome selection techniques. The main problems of molecular genetic breeding in peanut research worldwide include: the narrow genetic resources of cultivated species, unstable genetic transformation and unclear molecular mechanism of important agronomic traits. Considering the severe challenges regarding the supply of edible oil, and the main problems in peanut production, the urgent research directions of peanut are put forward: The de novo domestication and the exploitation of excellent genes from wild resources to improve modern cultivars; Integration of multi-omics data to enhance the importance of big data in peanut genetics and breeding; Cloning the important genes related to peanut agronomic traits and analyzing their fine regulation mechanisms; Precision molecular design breeding and using gene editing technology to accurately improve the key traits of peanut.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yueyi Tang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Yunlai Yue
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Nascimento M, Nascimento ACC, Azevedo CF, de Oliveira ACB, Caixeta ET, Jarquin D. Enhancing genomic prediction with Stacking Ensemble Learning in Arabica Coffee. FRONTIERS IN PLANT SCIENCE 2024; 15:1373318. [PMID: 39086911 PMCID: PMC11288849 DOI: 10.3389/fpls.2024.1373318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024]
Abstract
Coffee Breeding programs have traditionally relied on observing plant characteristics over years, a slow and costly process. Genomic selection (GS) offers a DNA-based alternative for faster selection of superior cultivars. Stacking Ensemble Learning (SEL) combines multiple models for potentially even more accurate selection. This study explores SEL potential in coffee breeding, aiming to improve prediction accuracy for important traits [yield (YL), total number of the fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer)] in Coffea Arabica. We analyzed data from 195 individuals genotyped for 21,211 single-nucleotide polymorphism (SNP) markers. To comprehensively assess model performance, we employed a cross-validation (CV) scheme. Genomic Best Linear Unbiased Prediction (GBLUP), multivariate adaptive regression splines (MARS), Quantile Random Forest (QRF), and Random Forest (RF) served as base learners. For the meta-learner within the SEL framework, various options were explored, including Ridge Regression, RF, GBLUP, and Single Average. The SEL method was able to predict the predictive ability (PA) of important traits in Coffea Arabica. SEL presented higher PA compared with those obtained for all base learner methods. The gains in PA in relation to GBLUP were 87.44% (the ratio between the PA obtained from best Stacking model and the GBLUP), 37.83%, 199.82%, and 14.59% for YL, NF, LM and Cer, respectively. Overall, SEL presents a promising approach for GS. By combining predictions from multiple models, SEL can potentially enhance the PA of GS for complex traits.
Collapse
Affiliation(s)
- Moyses Nascimento
- Laboratory of Intelligence Computational and Statistical Learning (LICAE), Department of Statistics, Federal University of Viçosa, Viçosa, Brazil
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Ana Carolina Campana Nascimento
- Laboratory of Intelligence Computational and Statistical Learning (LICAE), Department of Statistics, Federal University of Viçosa, Viçosa, Brazil
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Camila Ferreira Azevedo
- Laboratory of Intelligence Computational and Statistical Learning (LICAE), Department of Statistics, Federal University of Viçosa, Viçosa, Brazil
| | | | | | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
13
|
Jighly A. Boosting genome-wide association power and genomic prediction accuracy for date palm fruit traits with advanced statistics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112110. [PMID: 38704095 DOI: 10.1016/j.plantsci.2024.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The date palm is economically vital in the Middle East and North Africa, providing essential fibres, vitamins, and carbohydrates. Understanding the genetic architecture of its traits remains complex due to the tree's perennial nature and long generation times. This study aims to address these complexities by employing advanced genome-wide association (GWAS) and genomic prediction models using previously published data involving fruit acid content, sugar content, dimension, and colour traits. The multivariate GWAS model identified seven QTL, including five novel associations, that shed light on the genetic control of these traits. Furthermore, the research evaluates different genomic prediction models that considered genotype by environment and genotype by trait interactions. While colour- traits demonstrate strong predictive power, other traits display moderate accuracies across different models and scenarios aligned with the expectations when using small reference populations. When designing the cross-validation to predict new individuals, the accuracy of the best multi-trait model was significantly higher than all single-trait models for dimension traits, but not for the remaining traits, which showed similar performances. However, the cross-validation strategy that masked random phenotypic records (i.e., mimicking the unbalanced phenotypic records) showed significantly higher accuracy for all traits except acid contents. The findings underscore the importance of understanding genetic architecture for informed breeding strategies. The research emphasises the need for larger population sizes and multivariate models to enhance gene tagging power and predictive accuracy to advance date palm breeding programs. These findings support more targeted breeding in date palm, improving productivity and resilience to various environments.
Collapse
|
14
|
Zhu L, Li G, Guo D, Li X, Xue M, Jiang H, Yan Q, Xie F, Ning X, Xie L. Genome-wide association study and genomic selection of flax powdery mildew in Xinjiang Province. FRONTIERS IN PLANT SCIENCE 2024; 15:1403276. [PMID: 38863531 PMCID: PMC11165360 DOI: 10.3389/fpls.2024.1403276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal disease of flax, and seriously impairs its yield and quality. To data, only three resistance genes and a few putative quantitative trait loci (QTL) have been reported for flax PM resistance. To dissect the resistance mechanism against PM and identify resistant genetic regions, based on four years of phenotypic datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were detected. Sixty-four loci shared in at least two datasets were found to be significant in haplotype analyses, and 20 of these sites were shared by multiple models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly, which was present in the mapping study of flax pasmo resistance loci. Oil flax had more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM resistance than fiber flax, indicating that effects of these QTL were mainly additive. Furthermore, an excellent resistant variety C120 was identified and can be used to promote planting. Based on 331 QTLs identified through GWAS and the statistical model GBLUP, a genomic selection (GS) model related to flax PM resistance was constructed, and the prediction accuracy rate was 0.96. Our results provide valuable insights into the genetic basis of resistance and contribute to the advancement of breeding programs.
Collapse
Affiliation(s)
- Leilei Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Gongze Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, China
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Basic Medicine, Xinjiang Second Medical College, Karamay, China
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Haixia Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Qingcheng Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Fang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xuefei Ning
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
15
|
Montesinos-López OA, Crespo-Herrera L, Pierre CS, Cano-Paez B, Huerta-Prado GI, Mosqueda-González BA, Ramos-Pulido S, Gerard G, Alnowibet K, Fritsche-Neto R, Montesinos-López A, Crossa J. Feature engineering of environmental covariates improves plant genomic-enabled prediction. FRONTIERS IN PLANT SCIENCE 2024; 15:1349569. [PMID: 38812738 PMCID: PMC11135473 DOI: 10.3389/fpls.2024.1349569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/31/2024]
Abstract
Introduction Because Genomic selection (GS) is a predictive methodology, it needs to guarantee high-prediction accuracies for practical implementations. However, since many factors affect the prediction performance of this methodology, its practical implementation still needs to be improved in many breeding programs. For this reason, many strategies have been explored to improve the prediction performance of this methodology. Methods When environmental covariates are incorporated as inputs in the genomic prediction models, this information only sometimes helps increase prediction performance. For this reason, this investigation explores the use of feature engineering on the environmental covariates to enhance the prediction performance of genomic prediction models. Results and discussion We found that across data sets, feature engineering helps reduce prediction error regarding only the inclusion of the environmental covariates without feature engineering by 761.625% across predictors. These results are very promising regarding the potential of feature engineering to enhance prediction accuracy. However, since a significant gain in prediction accuracy was observed in only some data sets, further research is required to guarantee a robust feature engineering strategy to incorporate the environmental covariates.
Collapse
Affiliation(s)
| | | | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
| | - Bernabe Cano-Paez
- Facultad de Ciencias, Universidad Nacioanl Autónoma de México (UNAM), México City, Mexico
| | | | | | - Sofia Ramos-Pulido
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
| | - Khalid Alnowibet
- Department of Statistics and Operations Research, King Saud University, Riyah, Saudi Arabia
| | | | - Abelardo Montesinos-López
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Edo. de Mexico, Mexico
- Louisiana State University, Baton Rouge, LA, United States
- Distinguished Scientist Fellowship Program, King Saud University, Riyah, Saudi Arabia
- Instituto de Socieconomia, Estadistica e Informatica, Colegio de Postgraduados, Montecillos, Edo. de México, Texcoco, Mexico
| |
Collapse
|
16
|
Jadhav Y, Thakur NR, Ingle KP, Ceasar SA. The role of phenomics and genomics in delineating the genetic basis of complex traits in millets. PHYSIOLOGIA PLANTARUM 2024; 176:e14349. [PMID: 38783512 DOI: 10.1111/ppl.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.
Collapse
Affiliation(s)
- Yashoda Jadhav
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
| | - Niranjan Ravindra Thakur
- International Crops Research Institutes for the Semi-Arid Tropics, Patancheru, TS, India
- Vasantrao Naik Marathwada Agricultural University, Parbhani, MS, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, KL, India
| |
Collapse
|
17
|
Alemu A, Åstrand J, Montesinos-López OA, Isidro Y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A. Genomic selection in plant breeding: Key factors shaping two decades of progress. MOLECULAR PLANT 2024; 17:552-578. [PMID: 38475993 DOI: 10.1016/j.molp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden
| | | | - Julio Isidro Y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Javier Fernández-Gónzalez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, Texcoco, México 52640, Mexico
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
18
|
Raza A, Chen H, Zhang C, Zhuang Y, Sharif Y, Cai T, Yang Q, Soni P, Pandey MK, Varshney RK, Zhuang W. Designing future peanut: the power of genomics-assisted breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:66. [PMID: 38438591 DOI: 10.1007/s00122-024-04575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
KEY MESSAGE Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yuhui Zhuang
- College of Life Science, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Yasir Sharif
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Tiecheng Cai
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Qiang Yang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| | - Pooja Soni
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, India
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Center of Legume Crop Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China.
| |
Collapse
|
19
|
Khanna A, Anumalla M, Ramos J, Cruz MTS, Catolos M, Sajise AG, Gregorio G, Dixit S, Ali J, Islam MR, Singh VK, Rahman MA, Khatun H, Pisano DJ, Bhosale S, Hussain W. Genetic gains in IRRI's rice salinity breeding and elite panel development as a future breeding resource. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:37. [PMID: 38294550 PMCID: PMC10830834 DOI: 10.1007/s00122-024-04545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE Estimating genetic gains and formulating a future salinity elite breeding panel for rice pave the way for developing better high-yielding salinity tolerant lines with enhanced genetic gains. Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. To estimate the genetic gains in IRRI's salinity breeding program and identify the best genotypes based on high breeding values for grain yield (kg/ha), we analyzed the historical data from the trials conducted in the IRRI, Philippines and Bangladesh. A two-stage mixed-model approach accounting for experimental design factors and a relationship matrix was fitted to obtain the breeding values for grain yield and estimate genetic trends. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha was observed in IRRI, Philippines. In Bangladesh, we observed a genetic gain of 0.31% per annum with a yield advantage of 14.02 kg/ha. In the released varieties, we observed a genetic gain of 0.12% per annum with a 2.2 kg/ha/year yield advantage in the IRRI, Philippines. For the Bangladesh dataset, a genetic gain of 0.14% per annum with a yield advantage of 5.9 kg/ha/year was observed in the released varieties. Based on breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of > 2400 kg/ha in the IRRI, Philippines, and > 3500 kg/ha in Bangladesh with a reliability of > 0.4 were selected to develop the elite breeding panel. Conclusively, a recurrent selection breeding strategy integrated with novel technologies like genomic selection and speed breeding is highly required to achieve higher genetic gains in IRRI's salinity breeding programs.
Collapse
Affiliation(s)
- Apurva Khanna
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Mahender Anumalla
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Joie Ramos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Ma Teresa Sta Cruz
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Margaret Catolos
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Andres Godwin Sajise
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Glenn Gregorio
- Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA) and University of Philippines, 4031, Los Baños, Laguna, Philippines
| | - Shalabh Dixit
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Md Rafiqul Islam
- IRRI South Asia Regional Center (IRRI-SA Hub), Hyderabad, Telangana, 502324, India
| | - Vikas Kumar Singh
- IRRI South Asia Regional Center (IRRI-SA Hub), Hyderabad, Telangana, 502324, India
| | - Md Akhlasur Rahman
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Hasina Khatun
- Plant Breeding Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Daniel Joseph Pisano
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Sankalp Bhosale
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Waseem Hussain
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
20
|
Tuggle CK, Clarke JL, Murdoch BM, Lyons E, Scott NM, Beneš B, Campbell JD, Chung H, Daigle CL, Das Choudhury S, Dekkers JCM, Dórea JRR, Ertl DS, Feldman M, Fragomeni BO, Fulton JE, Guadagno CR, Hagen DE, Hess AS, Kramer LM, Lawrence-Dill CJ, Lipka AE, Lübberstedt T, McCarthy FM, McKay SD, Murray SC, Riggs PK, Rowan TN, Sheehan MJ, Steibel JP, Thompson AM, Thornton KJ, Van Tassell CP, Schnable PS. Current challenges and future of agricultural genomes to phenomes in the USA. Genome Biol 2024; 25:8. [PMID: 38172911 PMCID: PMC10763150 DOI: 10.1186/s13059-023-03155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.
Collapse
|
21
|
Freitas LA, Savegnago RP, Alves AAC, Stafuzza NB, Pedrosa VB, Rocha RA, Rosa GJM, Paz CCP. Genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep using parametric models and artificial neural networks. Res Vet Sci 2024; 166:105099. [PMID: 38091815 DOI: 10.1016/j.rvsc.2023.105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/01/2024]
Abstract
This study aimed to assess the predictive ability of parametric models and artificial neural network method for genomic prediction of the following indicator traits of resistance to gastrointestinal nematodes in Santa Inês sheep: packed cell volume (PCV), fecal egg count (FEC), and Famacha© method (FAM). After quality control, the number of genotyped animals was 551 (PCV), 548 (FEC), and 565 (FAM), and 41,676 SNP. The average prediction accuracy (ACC) calculated by Pearson correlation between observed and predicted values and mean squared errors (MSE) were obtained using genomic best unbiased linear predictor (GBLUP), BayesA, BayesB, Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayesian regularized artificial neural network (three and four hidden neurons, BRANN_3 and BRANN_4, respectively) in a 5-fold cross-validation technique. The average ACC varied from moderate to high according to the trait and models, ranging between 0.418 and 0.546 (PCV), between 0.646 and 0.793 (FEC), and between 0.414 and 0.519 (FAM). Parametric models presented nearly the same ACC and MSE for the studied traits and provided better accuracies than BRANN. The GBLUP, BayesA, BayesB and BLASSO models provided better accuracies than the BRANN_3 method, increasing by around 23% for PCV, and 18.5% for FEC. In conclusion, parametric models are suitable for genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep. Due to the small differences in accuracy found between them, the use of the GBLUP model is recommended due to its lower computational costs.
Collapse
Affiliation(s)
- L A Freitas
- University of Sao Paulo, Department of Genetics, Ribeirão Preto, São Paulo 14049-900, Brazil; University of Wisconsin, Department of Animal and Dairy Sciences, Madison 53706, USA.
| | - R P Savegnago
- Michigan State University, Department of Animal Science, MI 48864, USA.
| | - A A C Alves
- University of Wisconsin, Department of Animal and Dairy Sciences, Madison 53706, USA.
| | - N B Stafuzza
- Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, São Paulo 15130-000, Brazil
| | - V B Pedrosa
- State University of Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil.
| | - R A Rocha
- State University of Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil.
| | - G J M Rosa
- University of Wisconsin, Department of Animal and Dairy Sciences, Madison 53706, USA.
| | - C C P Paz
- University of Sao Paulo, Department of Genetics, Ribeirão Preto, São Paulo 14049-900, Brazil; Sustainable Livestock Research Center, Animal Science Institute, São José do Rio Preto, São Paulo 15130-000, Brazil.
| |
Collapse
|
22
|
Liu H, Yu S. A dimensionality-reduction genomic prediction method without direct inverse of the genomic relationship matrix for large genomic data. PLANT CELL REPORTS 2023; 42:1825-1832. [PMID: 37750948 DOI: 10.1007/s00299-023-03069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
KEY MESSAGE A new genomic prediction method (RHPP) was developed via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. Computational efficiency is becoming a hot issue in the practical application of genomic prediction due to the large number of data generated by the high-throughput genotyping technology. In this study, we developed a fast genomic prediction method RHPP via combining randomized Haseman-Elston regression (RHE-reg), PCR based on genomic information of core population, and preconditioned conjugate gradient (PCG) algorithm. The simulation results demonstrated similar prediction accuracy between RHPP and GBLUP, and significantly higher computational efficiency of the former with the increase of individuals. The results of real datasets of both bread wheat and loblolly pine demonstrated that RHPP had a similar or better predictive accuracy in most cases compared with GBLUP. In the future, RHPP may be an attractive choice for analyzing large-scale and high-dimensional data.
Collapse
Affiliation(s)
- Hailan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
23
|
de Verdal H, Baertschi C, Frouin J, Quintero C, Ospina Y, Alvarez MF, Cao TV, Bartholomé J, Grenier C. Optimization of Multi-Generation Multi-location Genomic Prediction Models for Recurrent Genomic Selection in an Upland Rice Population. RICE (NEW YORK, N.Y.) 2023; 16:43. [PMID: 37758969 PMCID: PMC10533757 DOI: 10.1186/s12284-023-00661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Genomic selection is a worthy breeding method to improve genetic gain in recurrent selection breeding schemes. The integration of multi-generation and multi-location information could significantly improve genomic prediction models in the context of shuttle breeding. The Cirad-CIAT upland rice breeding program applies recurrent genomic selection and seeks to optimize the scheme to increase genetic gain while reducing phenotyping efforts. We used a synthetic population (PCT27) of which S0 plants were all genotyped and advanced by selfing and bulk seed harvest to the S0:2, S0:3, and S0:4 generations. The PCT27 was then divided into two sets. The S0:2 and S0:3 progenies for PCT27A and the S0:4 progenies for PCT27B were phenotyped in two locations: Santa Rosa the target selection location, within the upland rice growing area, and Palmira, the surrogate location, far from the upland rice growing area but easier for experimentation. While the calibration used either one of the two sets phenotyped in one or two locations, the validation population was only the PCT27B phenotyped in Santa Rosa. Five scenarios of genomic prediction and 24 models were performed and compared. Training the prediction model with the PCT27B phenotyped in Santa Rosa resulted in predictive abilities ranging from 0.19 for grain zinc concentration to 0.30 for grain yield. Expanding the training set with the inclusion of the PCT27A resulted in greater predictive abilities for all traits but grain yield, with increases from 5% for plant height to 61% for grain zinc concentration. Models with the PCT27B phenotyped in two locations resulted in higher prediction accuracy when the models assumed no genotype-by-environment (G × E) interaction for flowering (0.38) and grain zinc concentration (0.27). For plant height, the model assuming a single G × E variance provided higher accuracy (0.28). The gain in predictive ability for grain yield was the greatest (0.25) when environment-specific variance deviation effect for G × E was considered. While the best scenario was specific to each trait, the results indicated that the gain in predictive ability provided by the multi-location and multi-generation calibration was low. Yet, this approach could lead to increased selection intensity, acceleration of the breeding cycle, and a sizable economic advantage for the program.
Collapse
Affiliation(s)
- Hugues de Verdal
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France.
| | - Cédric Baertschi
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| | - Constanza Quintero
- Alliance Bioversity-CIAT, A.A.6713, Km 17 Recta Palmira Cali, Cali, Colombia
| | - Yolima Ospina
- Alliance Bioversity-CIAT, A.A.6713, Km 17 Recta Palmira Cali, Cali, Colombia
| | | | - Tuong-Vi Cao
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
| | - Jérôme Bartholomé
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
- Alliance Bioversity-CIAT, A.A.6713, Km 17 Recta Palmira Cali, Cali, Colombia
| | - Cécile Grenier
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France.
- Alliance Bioversity-CIAT, A.A.6713, Km 17 Recta Palmira Cali, Cali, Colombia.
| |
Collapse
|
24
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
25
|
Tchounke B, Sanchez L, Bell JM, Cros D. Mate selection: A useful approach to maximize genetic gain and control inbreeding in genomic and conventional oil palm (Elaeis guineensis Jacq.) hybrid breeding. PLoS Comput Biol 2023; 19:e1010290. [PMID: 37695766 PMCID: PMC10513302 DOI: 10.1371/journal.pcbi.1010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023] Open
Abstract
Genomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings. However, in species with long breeding cycles, this cannot be studied empirically. Here, we investigated this aspect with forward genetic simulations on a high-performance computing cluster and massively parallel computing, considering the oil palm hybrid breeding example. We compared MS and simple methods of inbreeding management (limitation of the number of individuals selected per family, prohibition of self-fertilization and combination of these two methods), in terms of parental inbreeding and genetic progress over four generations of genomic selection and phenotypic selection. The results showed that, compared to the conventional method without optimization, MS could lead to significant decreases in inbreeding and increases in annual genetic progress, with the magnitude of the effect depending on MS parameters and breeding scenarios. The optimal solution retained by MS differed by five breeding characteristics from the conventional solution: selected individuals covering a broader range of genetic values, fewer individuals selected per full-sib family, decreased percentage of selfings, selfings preferentially made on the best individuals and unbalanced number of crosses among selected individuals, with the better an individual, the higher the number of times he is mated. Stronger slowing-down in inbreeding could be achieved with other methods but they were associated with a decreased genetic progress. We recommend that breeders use MS, with preliminary analyses to identify the proper parameters to reach the goals of the breeding program in terms of inbreeding and genetic gain.
Collapse
Affiliation(s)
- Billy Tchounke
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Joseph Martin Bell
- Department of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Sui Y, Che Y, Zhong Y, He L. Genome-Wide Association Studies Using 3VmrMLM Model Provide New Insights into Branched-Chain Amino Acid Contents in Rice Grains. PLANTS (BASEL, SWITZERLAND) 2023; 12:2970. [PMID: 37631180 PMCID: PMC10459631 DOI: 10.3390/plants12162970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Rice (Oryza sativa L.) is a globally important food source providing carbohydrates, amino acids, and dietary fiber for humans and livestock. The branched-chain amino acid (BCAA) level is a complex trait related to the nutrient quality of rice. However, the genetic mechanism underlying the BCAA (valine, leucine, and isoleucine) accumulation in rice grains remains largely unclear. In this study, the grain BCAA contents and 239,055 SNPs of a diverse panel containing 422 rice accessions were adopted to perform a genome-wide association study (GWAS) using a recently proposed 3VmrMLM model. A total of 357 BCAA-content-associated main-effect quantitative trait nucleotides (QTNs) were identified from 15 datasets (12 BCAA content datasets and 3 BLUP datasets of BCAA). Furthermore, the allelic variation of two novel candidate genes, LOC_Os01g52530 and LOC_Os06g15420, responsible for the isoleucine (Ile) content alteration were identified. To reveal the genetic basis of the potential interactions between the gene and environmental factor, 53 QTN-by-environment interactions (QEIs) were detected using the 3VmrMLM model. The LOC_Os03g24460, LOC_Os01g55590, and LOC_Os12g31820 were considered as the candidate genes potentially contributing to the valine (Val), leucine (Leu), and isoleucine (Ile) accumulations, respectively. Additionally, 10 QTN-by-QTN interactions (QQIs) were detected using the 3VmrMLM model, which were putative gene-by-gene interactions related to the Leu and Ile contents. Taken together, these findings suggest that the implementation of the 3VmrMLM model in a GWAS may provide new insights into the deeper understanding of BCAA accumulation in rice grains. The identified QTNs/QEIs/QQIs serve as potential targets for the genetic improvement of rice with high BCAA levels.
Collapse
Affiliation(s)
| | | | | | - Liqiang He
- School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
27
|
Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S, Das M, Banerjee S, Chowdhury S, Adeyemi SB, Chen JT. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes (Basel) 2023; 14:1484. [PMID: 37510388 PMCID: PMC10380062 DOI: 10.3390/genes14071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, India
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Punjab 50700, Pakistan
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Mukherjee
- Research Center for Natural and Applied Sciences, Department of Botany (UG & PG), Raja Narendralal Khan Women's College, Gope Palace, Midnapur 721102, India
| | - Sharmistha Ganguly
- Department of Dravyaguna, Institute of Post Graduate Ayurvedic Education and Research, Kolkata 700009, India
| | - Robina Aziz
- Department of Botany, Government, College Women University, Sialkot 51310, Pakistan
| | - Manika Bhatia
- TERI School of Advanced Studies, New Delhi 110070, India
| | - Aqsa Majgaonkar
- Department of Botany, St. Xavier's College (Autonomous), Mumbai 400001, India
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, India
| | - Moumita Das
- V. Sivaram Research Foundation, Bangalore 560040, India
| | - Swastika Banerjee
- Department of Botany, Kairali College of +3 Science, Champua, Keonjhar 758041, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin P.M.B 1515, Nigeria
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
28
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
29
|
Parveen R, Kumar M, Singh D, Shahani M, Imam Z, Sahoo JP. Understanding the genomic selection for crop improvement: current progress and future prospects. Mol Genet Genomics 2023; 298:813-821. [PMID: 37162565 DOI: 10.1007/s00438-023-02026-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Although increased use of modern breeding techniques and technology has resulted in long-term genetic gain, the pace of genetic gain must be sped up to satisfy global agricultural demand. However, marker-assisted selection has proven its potential for improving qualitative traits with large effects regulated by one to few genes. Its contribution to the improvement of the quantitative traits regulated by a number of small-effect genes is modest. In this context, genomic selection (GS) has been regarded as the most promising method for genetically enhancing complicated features that are regulated by several genes, each of which has minor effects. By examining a population's phenotypes and high-density marker scores, genomic selection can forecast the breeding potential of individual lines. The fact that GS uses all marker data in the prediction model prevents skewed marker effect estimations and maximizes the amount of variation caused by small-effect QTL. It has the ability to speed up the breeding cycle and as a consequence of which superior genotypes are selected rapidly. Developing the best GS models while taking into account non-additive effects, genotype-by-environment interaction, and cost-effectiveness will enable the widespread implementation of GS in plants. These steps will also increase heritability estimation and prediction accuracy. This review focuses on the shift from conventional selection methods to GS, underlying statistical tools and methodologies, the state of GS research in agricultural plants, and prospects for its effective use in the creation of climate-resilient crops.
Collapse
Affiliation(s)
- Rabiya Parveen
- Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Mankesh Kumar
- Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Digvijay Singh
- Department of Genetics and Plant Breeding, Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Sasaram, 821305, India
| | - Monika Shahani
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Zafar Imam
- Department of Genetics and Plant Breeding, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Jyoti Prakash Sahoo
- Department of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India.
| |
Collapse
|
30
|
Montesinos-López OA, Montesinos-López A. Two simple methods to improve the accuracy of the genomic selection methodology. BMC Genomics 2023; 24:220. [PMID: 37101112 PMCID: PMC10131336 DOI: 10.1186/s12864-023-09294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Genomic selection (GS) is revolutionizing plant and animal breeding. However, still its practical implementation is challenging since it is affected by many factors that when they are not under control make this methodology not effective. Also, due to the fact that it is formulated as a regression problem in general has low sensitivity to select the best candidate individuals since a top percentage is selected according to a ranking of predicted breeding values. RESULTS For this reason, in this paper we propose two methods to improve the prediction accuracy of this methodology. One of the methods consist in reformulating the GS (nowadays formulated as a regression problem) methodology as a binary classification problem. The other consists only in a postprocessing step that adjust the threshold used for classification of the lines predicted in its original scale (continues scale) to guarantee similar sensitivity and specificity. The postprocessing method is applied for the resulting predictions after obtaining the predictions using the conventional regression model. Both methods assume that we defined with anticipation a threshold, to divide the training data as top lines and not top lines, and this threshold can be decided in terms of a quantile (for example 80%, 90%, etc.) or as the average (or maximum) of the performance of the checks. In the reformulation method it is required to label as one those lines in the training set that are equal or larger than the specified threshold and as zero otherwise. Then we train a binary classification model with the conventional inputs, but using the binary response variable in place of the continuous response variable. The training of the binary classification should be done to guarantee a more similar sensitivity and specificity, to guarantee a reasonable probability of classification of the top lines. CONCLUSIONS We evaluated the proposed models in seven data sets and we found that the two proposed methods outperformed by large margin the conventional regression model (by 402.9% in terms of sensitivity, by 110.04% in terms of F1 score and by 70.96% in terms of Kappa coefficient, with the postprocessing methods). However, between the two proposed methods the postprocessing method was better than the reformulation as binary classification model. The simple postprocessing method to improve the accuracy of the conventional genomic regression models avoid the need to reformulate the conventional regression models as binary classification models with similar or better performance, that significantly improve the selection of the top best candidate lines. In general both proposed methods are simple and can easily be adopted for use in practical breeding programs, with the guarantee that will improve significantly the selection of the top best candidates lines.
Collapse
Affiliation(s)
| | - Abelardo Montesinos-López
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Jalisco, 44430, Guadalajara, México.
| |
Collapse
|
31
|
Xiong E, Qu X, Li J, Liu H, Ma H, Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective. THE PLANT GENOME 2023; 16:e20281. [PMID: 36345561 DOI: 10.1002/tpg2.20281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.
Collapse
Affiliation(s)
- Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| |
Collapse
|
32
|
Yan H, Guo H, Li T, Zhang H, Xu W, Xie J, Zhu X, Yu Y, Chen J, Zhao S, Xu J, Hu M, Jiang Y, Zhang H, Ma M, He Z. High-precision early warning system for rice cadmium accumulation risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160135. [PMID: 36375547 DOI: 10.1016/j.scitotenv.2022.160135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid global industrialization has resulted in widespread cadmium contamination in agricultural soils and products. A considerable proportion of rice consumers are exposed to Cd levels above the provisional safe intake limit, raising widespread environmental concerns on risk management. Therefore, a generalized approach is urgently needed to enable correct evaluation and early warning of cadmium contaminants in rice products. Combining big data and computer science together, this study developed a system named "SMART Cd Early Warning", which integrated 4 modules including genotype-to-phenotype (G2P) modelling, high-throughput sequencing, G2P prediction and rice Cd contamination risk assessment, for rice cadmium accumulation early warning. This system can rapidly assess the risk of rice cadmium accumulation by genotyping leaves at seeding stage. The parameters including statistical methods, population size, training population-testing population ratio, SNP density were assessed to ensure G2P model exhibited superior performance in terms of prediction precision (up to 0.76 ± 0.003) and computing efficiency (within 2 h). In field trials of cadmium-contaminated farmlands in Wenling and Fuyang city, Zhejiang Province, "SMART Cd Early Warning" exhibited superior capability for identification risk rice varieties, suggesting a potential of "SMART Cd Early-Warning system" in OsGCd risk assessment and early warning in the age of smart.
Collapse
Affiliation(s)
- Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hanyao Guo
- Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hezifan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jianyin Xie
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yijun Yu
- Zhejiang Station for Management of Arable Land Quality and Fertilizer, Hangzhou 310020, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, China
| | - Shouqing Zhao
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, China
| | - Jun Xu
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Minjun Hu
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Yugen Jiang
- Fuyang Agricultural Technology Extension Center, Fuyang 311400, China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Mi Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
33
|
Xiong W, Reynolds M, Xu Y. Climate change challenges plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102308. [PMID: 36279790 DOI: 10.1016/j.pbi.2022.102308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Plant breeding is important to cope with climate change impacts, complementing crop management and policy interventions to ensure global food production. However, changes in environmental factors also affect the objectives, efficiency, and genetic gains of the current plant breeding system. In this review, we summarize the challenges prompted by climate change to breeding climate-resilient crops and the limitations of the next-generation breeding approach in addressing climate change. It is anticipated that the integration of multi-disciplines and technologies into three schemes of genotyping, phenotyping, and envirotyping will result in the delivery of climate change-ready crops in less time.
Collapse
Affiliation(s)
- Wei Xiong
- CIMMYT-Henan Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico.
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Ayalew H, Schapaugh W, Vuong T, Nguyen HT. Genome-wide association analysis identified consistent QTL for seed yield in a soybean diversity panel tested across multiple environments. THE PLANT GENOME 2022; 15:e20268. [PMID: 36258674 DOI: 10.1002/tpg2.20268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Improving seed yield is one of the main targets of soybean [Glycine max (L.) Merr.] breeding. Identification of loci that influence productivity and understanding their genetic mechanism will help marker-assisted trait introgression. The present study evaluated a diverse panel of 541 soybean genotypes consisting of three maturity groups (MGs III-V) in four environments in Kansas, U.S. Data on seed yield, seed weight, shattering resistance, days to maturity, and plant height showed significant genotype, environmental, and genotype × environment interaction variations. Seed yield and shattering had moderate broad-sense heritability (<85%), while the rest of the traits showed high broad-sense heritability (>90%). The SoySNP50K iSelect BeadChip dataset was used to identify significantly associated loci via genome-wide association studies (GWAS). A total of 19 single-nucleotide polymorphisms (SNPs) were significantly associated with seed yield. Particularly, two stable seed yield quantitative trait loci (QTL) on chromosomes 9 and 17 were consistently detected in at least three out of four environments. Candidate gene analysis surrounding seed yield QTL on chromosome 9 showed that Glyma.09G048900, an oxygen binding protein, was the closest to the QTL peak. Similarly, Glyma.17G090200 and Glyma.17G090400 were within 20-kb region of the seed yield QTL on chromosome 17. The candidate genes warrant further analysis to determine their functional mechanisms and develop markers for seed yield improvement.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Dep. of Agronomy, Kansas State Univ., Manhattan, Kansas, 66506, USA
| | | | - Tri Vuong
- Division of Plant Science and Technology, Univ. of Missouri, Columbia, Missouri, 65211, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology, Univ. of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
35
|
Wang K, Yang B, Li Q, Liu S. Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals. Genes (Basel) 2022; 13:genes13122247. [PMID: 36553514 PMCID: PMC9778314 DOI: 10.3390/genes13122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the Crassostrea gigas dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species.
Collapse
Affiliation(s)
- Kuiqin Wang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82032595
| |
Collapse
|
36
|
Rai M, Tyagi W. Haplotype breeding for unlocking and utilizing plant genomics data. Front Genet 2022; 13:1006288. [DOI: 10.3389/fgene.2022.1006288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
|
37
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. MOLECULAR PLANT 2022; 15:1664-1695. [PMID: 36081348 DOI: 10.1016/j.molp.2022.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Huihui Li
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Qian Qian
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
38
|
Mbo Nkoulou LF, Ngalle HB, Cros D, Adje COA, Fassinou NVH, Bell J, Achigan-Dako EG. Perspective for genomic-enabled prediction against black sigatoka disease and drought stress in polyploid species. FRONTIERS IN PLANT SCIENCE 2022; 13:953133. [PMID: 36388523 PMCID: PMC9650417 DOI: 10.3389/fpls.2022.953133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Genomic selection (GS) in plant breeding is explored as a promising tool to solve the problems related to the biotic and abiotic threats. Polyploid plants like bananas (Musa spp.) face the problem of drought and black sigatoka disease (BSD) that restrict their production. The conventional plant breeding is experiencing difficulties, particularly phenotyping costs and long generation interval. To overcome these difficulties, GS in plant breeding is explored as an alternative with a great potential for reducing costs and time in selection process. So far, GS does not have the same success in polyploid plants as with diploid plants because of the complexity of their genome. In this review, we present the main constraints to the application of GS in polyploid plants and the prospects for overcoming these constraints. Particular emphasis is placed on breeding for BSD and drought-two major threats to banana production-used in this review as a model of polyploid plant. It emerges that the difficulty in obtaining markers of good quality in polyploids is the first challenge of GS on polyploid plants, because the main tools used were developed for diploid species. In addition to that, there is a big challenge of mastering genetic interactions such as dominance and epistasis effects as well as the genotype by environment interaction, which are very common in polyploid plants. To get around these challenges, we have presented bioinformatics tools, as well as artificial intelligence approaches, including machine learning. Furthermore, a scheme for applying GS to banana for BSD and drought has been proposed. This review is of paramount impact for breeding programs that seek to reduce the selection cycle of polyploids despite the complexity of their genome.
Collapse
Affiliation(s)
- Luther Fort Mbo Nkoulou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- Institute of Agricultural Research for Development, Centre de Recherche Agricole de Mbalmayo (CRAM), Mbalmayo, Cameroon
| | - Hermine Bille Ngalle
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - David Cros
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, Montpellier, France
- Unité Mixte de Recherche (UMR) Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (AGAP) Institut, University of Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut Agro, Montpellier, France
| | - Charlotte O. A. Adje
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Nicodeme V. H. Fassinou
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| | - Joseph Bell
- Unit of Genetics and Plant Breeding (UGAP), Department of Plant Biology, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology, and Seed Science Unit (GBioS), Department of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey Calavi, Cotonou, Benin
| |
Collapse
|
39
|
Song J, Pang Y, Wang C, Zhang X, Zeng Z, Zhao D, Zhang L, Zhang Y. QTL mapping and genomic prediction of resistance to wheat head blight caused by Fusarium verticillioides. Front Genet 2022; 13:1039841. [PMID: 36353117 PMCID: PMC9638129 DOI: 10.3389/fgene.2022.1039841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
Fusarium head blight (FHB), is one of the destructive fugue diseases of wheat worldwide caused by the Fusarium verticillioides (F.v). In this study, a population consisting of 262 recombinant inbred lines (RILs) derived from Zhongmai 578 and Jimai 22 was used to map Quantitative Trait Locus (QTL) for FHB resistance, with the genotype data using the wheat 50 K single nucleotide polymorphism (SNP) array. The percentage of symptomatic spikelet (PSS) and the weighted average of PSS (PSSW) were collected for each RIL to represent their resistance to wheat head blight caused by F.v. In total, 22 QTL associated with FHB resistance were identified on chromosomes 1D, 2B, 3B, 4A, 5D, 7A, 7B, and 7D, respectively, from which 10 and 12 QTL were detected from PSS and PSSW respectively, explaining 3.82%-10.57% of the phenotypic variances using the inclusive composite interval mapping method. One novel QTL, Qfhb. haust-4A.1, was identified, explaining 10.56% of the phenotypic variation. One stable QTL, Qfhb. haust-1D.1 was detected on chromosome 1D across multiple environments explaining 4.39%-5.70% of the phenotypic variation. Forty-seven candidate genes related to disease resistance were found in the interval of Qfhb. haust-1D.1 and Qfhb. haust-4A.1. Genomic prediction accuracies were estimated from the five-fold cross-validation scheme ranging from 0.34 to 0.40 for PSS, and from 0.34 to 0.39 for PSSW in in-vivo inoculation treatment. This study provided new insight into the genetic analysis of resistance to wheat head blight caused by F.v, and genomic selection (GS) as a potential approach for improving the resistance of wheat head blight.
Collapse
Affiliation(s)
- Junqiao Song
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Yuhui Pang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Chunping Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zhankui Zeng
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Dehui Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Leiyi Zhang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
- The Shennong Laboratory, Zhengzhou, Henan, China
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Ballén-Taborda C, Lyerly J, Smith J, Howell K, Brown-Guedira G, Babar MA, Harrison SA, Mason RE, Mergoum M, Murphy JP, Sutton R, Griffey CA, Boyles RE. Utilizing genomics and historical data to optimize gene pools for new breeding programs: A case study in winter wheat. Front Genet 2022; 13:964684. [PMID: 36276956 PMCID: PMC9585219 DOI: 10.3389/fgene.2022.964684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid generation and preservation of both genomic and phenotypic information for many genotypes within crops and across locations, emerging breeding programs have a valuable opportunity to leverage these resources to 1) establish the most appropriate genetic foundation at program inception and 2) implement robust genomic prediction platforms that can effectively select future breeding lines. Integrating genomics-enabled1 breeding into cultivar development can save costs and allow resources to be reallocated towards advanced (i.e., later) stages of field evaluation, which can facilitate an increased number of testing locations and replicates within locations. In this context, a reestablished winter wheat breeding program was used as a case study to understand best practices to leverage and tailor existing genomic and phenotypic resources to determine optimal genetics for a specific target population of environments. First, historical multi-environment phenotype data, representing 1,285 advanced breeding lines, were compiled from multi-institutional testing as part of the SunGrains cooperative and used to produce GGE biplots and PCA for yield. Locations were clustered based on highly correlated line performance among the target population of environments into 22 subsets. For each of the subsets generated, EMMs and BLUPs were calculated using linear models with the ‘lme4’ R package. Second, for each subset, TPs representative of the new SC breeding lines were determined based on genetic relatedness using the ‘STPGA’ R package. Third, for each TP, phenotypic values and SNP data were incorporated into the ‘rrBLUP’ mixed models for generation of GEBVs of YLD, TW, HD and PH. Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was obtained for yield between all TPs. The validation performed with 58 SC elite breeding lines resulted in an accuracy of r = 0.62 when the TP included complete historical data. Lastly, QTL-by-environment interaction for 18 major effect genes across three geographic regions was examined. Lines harboring major QTL in the absence of disease could potentially underperform (e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of genomics-enabled breeding and multi-institutional partnerships to accelerate cultivar development.
Collapse
Affiliation(s)
- Carolina Ballén-Taborda
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
| | - Jeanette Lyerly
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Jared Smith
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Kimberly Howell
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Gina Brown-Guedira
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Md. Ali Babar
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Stephen A. Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Richard E. Mason
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - J. Paul Murphy
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, United States
| | - Russell Sutton
- Department of Soil and Crop Sciences, Texas A&M University, Commerce, TX, United States
| | - Carl A. Griffey
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Richard E. Boyles
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Pee Dee Research and Education Center, Clemson University, Florence, SC, United States
- *Correspondence: Richard E. Boyles,
| |
Collapse
|
41
|
Gudi S, Kumar P, Singh S, Tanin MJ, Sharma A. Strategies for accelerating genetic gains in crop plants: special focus on speed breeding. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1921-1938. [PMID: 36484026 PMCID: PMC9723045 DOI: 10.1007/s12298-022-01247-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 05/02/2023]
Abstract
Feeding 10 billion people sustainably by 2050 in the era of slow genetic progress has spurred urgent calls to bring more crops per unit time. Over the last century, crop physiologists and breeders have been trying to alter plant biology to investigate and intervene in developmental processes under controlled chambers. Accelerating the breeding cycle via "speed breeding" was the outcome of these experiments. Speed breeding accelerates the genetic gain via phenome and genome-assisted trait introgression, re-domestication, and plant variety registration. Furthermore, early varietal release through speed breeding offers incremental benefits over conventional methods. However, a lack of resources and species-specific protocols encumber the technological implementation, which can be alleviated by reallocating funds to establish speed breeding units. This review discusses the limitations of conventional breeding methods and various alternative strategies to accelerate the breeding process. It also discusses the intervention at various developmental stages to reduce the generation time and global impacts of speed breeding protocols developed so far. Low-cost, field-based speed breeding protocol developed by Punjab Agricultural University, Ludhiana, Punjab, India to harvest at least three generations of wheat in a year without demanding the expensive greenhouses or growth chambers is also discussed.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
42
|
Williamson HF, Leonelli S. Accelerating agriculture: Data-intensive plant breeding and the use of genetic gain as an indicator for agricultural research and development. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 95:167-176. [PMID: 36058040 DOI: 10.1016/j.shpsa.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Accelerating the rate of genetic gain has in recent years become a key objective in plant breeding for the Global South, building on the availability of new data technologies and bridging biological interest in crop improvement with economic interest in enhancing the cost efficiency of breeding programs. This paper explains the concept of genetic gain, the conditions for its emerging status as an indicator of agricultural development and the broader implications of this move, with particular emphasis on the changing knowledge-control regimes of plant breeding, the social and political consequences for smallholder farmers and climate-adaptive agriculture. We analyse how prioritising the variables used to derive the indicator when deciding on agricultural policies affects the relationship between development goals and practice. We conclude that genetic gain should not be considered as a primary indicator of agricultural development in the absence of information on other key areas (including agrobiodiversity, seed systems and the differential impact of climate change on soil, crops and communities), as well as tools to evaluate the pros and cons of the acceleration in seed selection, management and evaluation fostered by the adoption of genetic gain as a key indicator.
Collapse
Affiliation(s)
- Hugh F Williamson
- Exeter Centre for the Study of the Life Sciences, Department of Sociology, Philosophy and Anthropology, University of Exeter, Byrne House, St. German's Road, Exeter EX4 4PJ, UK.
| | - Sabina Leonelli
- Exeter Centre for the Study of the Life Sciences, Department of Sociology, Philosophy and Anthropology, University of Exeter, Byrne House, St. German's Road, Exeter EX4 4PJ, UK
| |
Collapse
|
43
|
Seyum EG, Bille NH, Abtew WG, Munyengwa N, Bell JM, Cros D. Genomic selection in tropical perennial crops and plantation trees: a review. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:58. [PMID: 37313015 PMCID: PMC10248687 DOI: 10.1007/s11032-022-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To overcome the multiple challenges currently faced by agriculture, such as climate change and soil deterioration, more efficient plant breeding strategies are required. Genomic selection (GS) is crucial for the genetic improvement of quantitative traits, as it can increase selection intensity, shorten the generation interval, and improve selection accuracy for traits that are difficult to phenotype. Tropical perennial crops and plantation trees are of major economic importance and have consequently been the subject of many GS articles. In this review, we discuss the factors that affect GS accuracy (statistical models, linkage disequilibrium, information concerning markers, relatedness between training and target populations, the size of the training population, and trait heritability) and the genetic gain expected in these species. The impact of GS will be particularly strong in tropical perennial crops and plantation trees as they have long breeding cycles and constrained selection intensity. Future GS prospects are also discussed. High-throughput phenotyping will allow constructing of large training populations and implementing of phenomic selection. Optimized modeling is needed for longitudinal traits and multi-environment trials. The use of multi-omics, haploblocks, and structural variants will enable going beyond single-locus genotype data. Innovative statistical approaches, like artificial neural networks, are expected to efficiently handle the increasing amounts of heterogeneous multi-scale data. Targeted recombinations on sites identified from profiles of marker effects have the potential to further increase genetic gain. GS can also aid re-domestication and introgression breeding. Finally, GS consortia will play an important role in making the best of these opportunities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01326-4.
Collapse
Affiliation(s)
- Essubalew Getachew Seyum
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Ngalle Hermine Bille
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Wosene Gebreselassie Abtew
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Norman Munyengwa
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| | - Joseph Martin Bell
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Univ. Montpellier, Institut Agro, 34398 Montpellier, France
| |
Collapse
|
44
|
Anilkumar C, Sunitha NC, Devate NB, Ramesh S. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. PLANTA 2022; 256:87. [PMID: 36149531 DOI: 10.1007/s00425-022-03996-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Genomic selection and its importance in crop breeding. Integration of GS with new breeding tools and developing SOP for GS to achieve maximum genetic gain with low cost and time. The success of conventional breeding approaches is not sufficient to meet the demand of a growing population for nutritious food and other plant-based products. Whereas, marker assisted selection (MAS) is not efficient in capturing all the favorable alleles responsible for economic traits in the process of crop improvement. Genomic selection (GS) developed in livestock breeding and then adapted to plant breeding promised to overcome the drawbacks of MAS and significantly improve complicated traits controlled by gene/QTL with small effects. Large-scale deployment of GS in important crops, as well as simulation studies in a variety of contexts, addressed G × E interaction effects and non-additive effects, as well as lowering breeding costs and time. The current study provides a complete overview of genomic selection, its process, and importance in modern plant breeding, along with insights into its application. GS has been implemented in the improvement of complex traits including tolerance to biotic and abiotic stresses. Furthermore, this review hypothesises that using GS in conjunction with other crop improvement platforms accelerates the breeding process to increase genetic gain. The objective of this review is to highlight the development of an appropriate GS model, the global open source network for GS, and trans-disciplinary approaches for effective accelerated crop improvement. The current study focused on the application of data science, including machine learning and deep learning tools, to enhance the accuracy of prediction models. Present study emphasizes on developing plant breeding strategies centered on GS combined with routine conventional breeding principles by developing GS-SOP to achieve enhanced genetic gain.
Collapse
Affiliation(s)
- C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, India
| | - N C Sunitha
- University of Agricultural Sciences, Bangalore, India
| | | | - S Ramesh
- University of Agricultural Sciences, Bangalore, India.
| |
Collapse
|
45
|
Yan M, Nie H, Wang Y, Wang X, Jarret R, Zhao J, Wang H, Yang J. Exploring and exploiting genetics and genomics for sweetpotato improvement: Status and perspectives. PLANT COMMUNICATIONS 2022; 3:100332. [PMID: 35643086 PMCID: PMC9482988 DOI: 10.1016/j.xplc.2022.100332] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 05/14/2023]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is one of the most important root crops cultivated worldwide. Because of its adaptability, high yield potential, and nutritional value, sweetpotato has become an important food crop, particularly in developing countries. To ensure adequate crop yields to meet increasing demand, it is essential to enhance the tolerance of sweetpotato to environmental stresses and other yield-limiting factors. The highly heterozygous hexaploid genome of I. batatas complicates genetic studies and limits improvement of sweetpotato through traditional breeding. However, application of next-generation sequencing and high-throughput genotyping and phenotyping technologies to sweetpotato genetics and genomics research has provided new tools and resources for crop improvement. In this review, we discuss the genomics resources that are available for sweetpotato, including the current reference genome, databases, and available bioinformatics tools. We systematically review the current state of knowledge on the polyploid genetics of sweetpotato, including studies of its origin and germplasm diversity and the associated mapping of important agricultural traits. We then outline the conventional and molecular breeding approaches that have been applied to sweetpotato. Finally, we discuss future goals for genetic studies of sweetpotato and crop improvement via breeding in combination with state-of-the-art multi-omics approaches such as genomic selection and gene editing. These approaches will advance and accelerate genetic improvement of this important root crop and facilitate its sustainable global production.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Haozhen Nie
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Yunze Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyi Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | - Jiamin Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
46
|
Murad Leite Andrade MH, Acharya JP, Benevenuto J, de Bem Oliveira I, Lopez Y, Munoz P, Resende MFR, Rios EF. Genomic prediction for canopy height and dry matter yield in alfalfa using family bulks. THE PLANT GENOME 2022; 15:e20235. [PMID: 35818699 DOI: 10.1002/tpg2.20235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Genomic selection (GS) has proven to be an effective method to increase genetic gain rates and accelerate breeding cycles in many crop species. However, its implementation requires large investments to phenotype of the training population and for routine genotyping. Alfalfa (Medicago sativa L.) is one of the major cultivated forage legumes, showing high-quality nutritional value. Alfalfa breeding is usually carried out by phenotypic recurrent selection and is commonly done at the family level. The application of GS in alfalfa could be simplified and less costly by genotyping and phenotyping families in bulks. For this study, an alfalfa reference population composed of 142 full-sib and 35 half-sib families was bulk-genotyped using target enrichment sequencing and phenotyped for dry matter yield (DMY) and canopy height (CH) in Florida, USA. Genotyping of the family bulks with 17,707 targeted probes resulted in 114,945 single-nucleotide polymorphisms. The markers revealed a population structure that matched the mating design, and the linkage disequilibrium slowly decayed in this breeding population. After exploring multiple prediction scenarios, a strategy was proposed including data from multiple harvests and accounting for the G×E in the training population, which led to a higher predictive ability of up to 38 and 24% for DMY and CH, respectively. Although this study focused on the implementation of GS in alfalfa families, the bulk methodology and the prediction schemes used herein could guide future studies in alfalfa and other crops bred in bulks.
Collapse
Affiliation(s)
| | - Janam P Acharya
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Juliana Benevenuto
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | | | - Yolanda Lopez
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Patricio Munoz
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Marcio F R Resende
- Horticultural Sciences Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| | - Esteban F Rios
- Agronomy Dep., Univ. of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
47
|
Vourlaki IT, Castanera R, Ramos-Onsins SE, Casacuberta JM, Pérez-Enciso M. Transposable element polymorphisms improve prediction of complex agronomic traits in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3211-3222. [PMID: 35931838 PMCID: PMC9482605 DOI: 10.1007/s00122-022-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE Transposon insertion polymorphisms can improve prediction of complex agronomic traits in rice compared to using SNPs only, especially when accessions to be predicted are less related to the training set. Transposon insertion polymorphisms (TIPs) are significant sources of genetic variation. Previous work has shown that TIPs can improve detection of causative loci on agronomic traits in rice. Here, we quantify the fraction of variance explained by single nucleotide polymorphisms (SNPs) compared to TIPs, and we explore whether TIPs can improve prediction of traits when compared to using only SNPs. We used eleven traits of agronomic relevance from by five different rice population groups (Aus, Indica, Aromatic, Japonica, and Admixed), 738 accessions in total. We assess prediction by applying data split validation in two scenarios. In the within-population scenario, we predicted performance of improved Indica varieties using the rest of Indica accessions. In the across population scenario, we predicted all Aromatic and Admixed accessions using the rest of populations. In each scenario, Bayes C and a Bayesian reproducible kernel Hilbert space regression were compared. We find that TIPs can explain an important fraction of total genetic variance and that they also improve genomic prediction. In the across population prediction scenario, TIPs outperformed SNPs in nine out of the eleven traits analyzed. In some traits like leaf senescence or grain width, using TIPs increased predictive correlation by 30-50%. Our results evidence, for the first time, that TIPs genotyping can improve prediction on complex agronomic traits in rice, especially when accessions to be predicted are less related to training accessions.
Collapse
Affiliation(s)
- Ioanna-Theoni Vourlaki
- Universitat Autònoma de Barcelona, Department of Animal Production, 08193, Bellaterra, Barcelona, Spain.
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain.
| | - Raúl Castanera
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain
| | - Sebastián E Ramos-Onsins
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain
| | - Miguel Pérez-Enciso
- Universitat Autònoma de Barcelona, Department of Animal Production, 08193, Bellaterra, Barcelona, Spain.
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193, Bellaterra, Barcelona, Spain.
- Catalan Institute for Research and Advanced studies, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
48
|
Lu Y, Chuan M, Wang H, Chen R, Tao T, Zhou Y, Xu Y, Li P, Yao Y, Xu C, Yang Z. Genetic and molecular factors in determining grain number per panicle of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:964246. [PMID: 35991390 PMCID: PMC9386260 DOI: 10.3389/fpls.2022.964246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
It was suggested that the most effective way to improve rice grain yield is to increase the grain number per panicle (GN) through the breeding practice in recent decades. GN is a representative quantitative trait affected by multiple genetic and environmental factors. Understanding the mechanisms controlling GN has become an important research field in rice biotechnology and breeding. The regulation of rice GN is coordinately controlled by panicle architecture and branch differentiation, and many GN-associated genes showed pleiotropic effect in regulating tillering, grain size, flowering time, and other domestication-related traits. It is also revealed that GN determination is closely related to vascular development and the metabolism of some phytohormones. In this review, we summarize the recent findings in rice GN determination and discuss the genetic and molecular mechanisms of GN regulators.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hanyao Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Rujia Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tianyun Tao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yong Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Youli Yao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
50
|
Kenny D, Sleator RD, Murphy CP, Evans RD, Berry DP. Detection of Genomic Imprinting for Carcass Traits in Cattle Using Imputed High-Density Genotype Data. Front Genet 2022; 13:951087. [PMID: 35910233 PMCID: PMC9334527 DOI: 10.3389/fgene.2022.951087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon defined as the silencing of an allele, at least partially, at a given locus based on the sex of the transmitting parent. The objective of the present study was to detect the presence of SNP-phenotype imprinting associations for carcass weight (CW), carcass conformation (CC) and carcass fat (CF) in cattle. The data used comprised carcass data, along with imputed, high-density genotype data on 618,837 single nucleotide polymorphisms (SNPs) from 23,687 cattle; all animal genotypes were phased with respect to parent of origin. Based on the phased genotypes and a series of single-locus linear models, 24, 339, and 316 SNPs demonstrated imprinting associations with CW, CC, and CF, respectively. Regardless of the trait in question, no known imprinted gene was located within 0.5 Mb of the SNPs demonstrating imprinting associations in the present study. Since all imprinting associations detected herein were at novel loci, further investigation of these regions may be warranted. Nonetheless, knowledge of these associations might be useful for improving the accuracy of genomic evaluations for these traits, as well as mate allocations systems to exploit the effects of genomic imprinting.
Collapse
Affiliation(s)
- David Kenny
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Co. Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland
| | - Craig P. Murphy
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland
| | - Donagh P. Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Co. Cork, Ireland
| |
Collapse
|