1
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
2
|
Cloud V, Thapa A, Morales-Sosa P, Miller TM, Miller SA, Holsapple D, Gerhart PM, Momtahan E, Jack JL, Leiva E, Rapp SR, Shelton LG, Pierce RA, Martin-Brown S, Florens L, Washburn MP, Mohan RD. Ataxin-7 and Non-stop coordinate SCAR protein levels, subcellular localization, and actin cytoskeleton organization. eLife 2019; 8:e49677. [PMID: 31348003 PMCID: PMC6693919 DOI: 10.7554/elife.49677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Atxn7, a subunit of SAGA chromatin remodeling complex, is subject to polyglutamine expansion at the amino terminus, causing spinocerebellar ataxia type 7 (SCA7), a progressive retinal and neurodegenerative disease. Within SAGA, the Atxn7 amino terminus anchors Non-stop, a deubiquitinase, to the complex. To understand the scope of Atxn7-dependent regulation of Non-stop, substrates of the deubiquitinase were sought. This revealed Non-stop, dissociated from Atxn7, interacts with Arp2/3 and WAVE regulatory complexes (WRC), which control actin cytoskeleton assembly. There, Non-stop countered polyubiquitination and proteasomal degradation of WRC subunit SCAR. Dependent on conserved WRC interacting receptor sequences (WIRS), Non-stop augmentation increased protein levels, and directed subcellular localization, of SCAR, decreasing cell area and number of protrusions. In vivo, heterozygous mutation of SCAR did not significantly rescue knockdown of Atxn7, but heterozygous mutation of Atxn7 rescued haploinsufficiency of SCAR.
Collapse
Affiliation(s)
- Veronica Cloud
- University of Missouri - Kansas CityKansas CityUnited States
| | - Ada Thapa
- University of Missouri - Kansas CityKansas CityUnited States
| | | | - Tayla M Miller
- University of Missouri - Kansas CityKansas CityUnited States
| | - Sara A Miller
- University of Missouri - Kansas CityKansas CityUnited States
| | | | - Paige M Gerhart
- University of Missouri - Kansas CityKansas CityUnited States
| | - Elaheh Momtahan
- University of Missouri - Kansas CityKansas CityUnited States
| | - Jarrid L Jack
- University of Missouri - Kansas CityKansas CityUnited States
| | - Edgardo Leiva
- University of Missouri - Kansas CityKansas CityUnited States
| | - Sarah R Rapp
- University of Missouri - Kansas CityKansas CityUnited States
| | | | | | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUnited States
| | - Ryan D Mohan
- University of Missouri - Kansas CityKansas CityUnited States
| |
Collapse
|
3
|
Mardani G, Bolhassani A, Agi E, Shahbazi S, Mehdi Sadat S. Protein vaccination with HPV16 E7/Pep-1 nanoparticles elicits a protective T-helper cell-mediated immune response. IUBMB Life 2016; 68:459-67. [DOI: 10.1002/iub.1503] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Golnaz Mardani
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; Tehran Iran
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch; Islamic Azad University; Tehran Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; Tehran Iran
| | - Elnaz Agi
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; Tehran Iran
| | - Sepideh Shahbazi
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; Tehran Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
4
|
Zhang Z, Wu B, Chai W, Cao L, Wang Y, Yu Y, Yang L. Knockdown of WAVE1 enhances apoptosis of leukemia cells by downregulating autophagy. Int J Oncol 2016; 48:2647-56. [PMID: 27035872 DOI: 10.3892/ijo.2016.3446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/20/2016] [Indexed: 11/05/2022] Open
Abstract
Chemoresistance of leukemia constitutes a great challenge for successful treatment of leukemia. Autophagy has recently attracted increasing attention for its role in conferring resistance to various conventional anti-neoplastic regiments. In the present study, the authors showed that WAVE1, a member of WASP family verprolin-homologous proteins, is a critical regulator of chemoresistance during autophagy. It is positively correlated with clinical status in pediatric acute myeloblastic leukemia (AML) and leukemia cell lines. The knockdown of WAVE1 expression decreased autophagy was accompanied by an upregulation of autophagic marker microtubule-associated protein light chain 3 (LC3)-Ⅱ, a degradation of SQSTM1/sequestosome 1 (p62) and the formation of autophagosomes. Moreover, a suppression of WAVE1 expression increased the sensitivity of leukemia cells to chemotherapy and apoptosis, and depletion of WAVE1 expression promoted the translocation of Bcl-2 from mitochondria into the cytoplasm. In addition, a knockdown of PI3K-Ⅲ expression significantly inhibited WAVE1-mediated autophagy. Furthermore, suppression of WAVE1 expression blocked the interactions between Beclin1 and PI3K-Ⅲ and the disassociation of Beclin1-Bcl-2 during enhanced autophagy. The above results suggested that WAVE1 is a critical pro-autophagic protein capable of enhancing cell survival and regulating chemoresistance in leukemia cells potentially through the Beclin1/Bcl-2 and Beclin1/PI3K-Ⅲ complex-dependent pathways.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Benqing Wu
- Department of Pediatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hu Nan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yangping Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
5
|
FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk. Cell Signal 2016; 28:294-306. [PMID: 26772752 DOI: 10.1016/j.cellsig.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may represent an important paradigm for the regulation of cellular signaling networks.
Collapse
|
6
|
Duncan FE, Padilla-Banks E, Bernhardt ML, Ord TS, Jefferson WN, Moss SB, Williams CJ. Transducin-like enhancer of split-6 (TLE6) is a substrate of protein kinase A activity during mouse oocyte maturation. Biol Reprod 2014; 90:63. [PMID: 24501176 DOI: 10.1095/biolreprod.113.112565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fully grown oocytes in the ovary are arrested at prophase of meiosis I because of high levels of intraoocyte cAMP that maintain increased levels of cAMP-dependent protein kinase (PKA) activity. Following the luteinizing hormone surge at the time of ovulation, cAMP levels drop, resulting in a reduction in PKA activity that triggers meiotic resumption. Although much is known about the molecular mechanisms of how PKA activity fluctuations initiate the oocyte's reentry into meiosis, significantly less is known about the requirement for PKA activity in the oocyte after exit from the prophase I arrest. Here we show that although PKA activity decreases in the oocyte upon meiotic resumption, it increases throughout meiotic progression from the time of germinal vesicle breakdown (GVBD) until the metaphase II (MII) arrest. Blocking this meiotic maturation-associated increase in PKA activity using the pharmacological inhibitor H89 resulted in altered kinetics of GVBD, defects in chromatin and spindle dynamics, and decreased ability of oocytes to reach MII. These effects appear to be largely PKA specific because inhibitors targeting other kinases did not have the same outcomes. To determine potential proteins that may require PKA phosphorylation during meiosis, we separated oocyte protein extracts on an SDS-PAGE gel, extracted regions of the gel that had corresponding immune reactivity towards an anti-PKA substrate antibody, and performed mass spectrometry and microsequencing. Using this approach, we identified transducin-like enhancer of split-6 (TLE6)-a maternal effect gene that is part of the subcortical maternal complex-as a putative PKA substrate. TLE6 localized to the oocyte cortex throughout meiosis in a manner that is spatially and temporally consistent with the localization of critical PKA subunits. Moreover, we demonstrated that TLE6 becomes phosphorylated in a narrow window following meiotic resumption, and H89 treatment can completely block this phosphorylation when added prior to GVBD but not after. Taken together, these results highlight the importance of oocyte-intrinsic PKA in regulating meiotic progression after the prophase I arrest and offer new insights into downstream targets of its activity.
Collapse
Affiliation(s)
- Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
7
|
Nishimura T, Fujii W, Sugiura K, Naito K. Cytoplasmic Anchoring of cAMP-Dependent Protein Kinase (PKA) by A-Kinase Anchor Proteins (AKAPs) Is Required for Meiotic Arrest of Porcine Full-Grown and Growing Oocytes1. Biol Reprod 2014; 90:58. [DOI: 10.1095/biolreprod.113.114736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Looi CY, Sasahara Y, Watanabe Y, Satoh M, Hakozaki I, Uchiyama M, Wong WF, Du W, Uchiyama T, Kumaki S, Tsuchiya S, Kure S. The open conformation of WASP regulates its nuclear localization and gene transcription in myeloid cells. Int Immunol 2014; 26:341-52. [DOI: 10.1093/intimm/dxt072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
10
|
Miyamoto K, Teperek M, Yusa K, Allen GE, Bradshaw CR, Gurdon JB. Nuclear Wave1 is required for reprogramming transcription in oocytes and for normal development. Science 2013; 341:1002-5. [PMID: 23990560 PMCID: PMC3824084 DOI: 10.1126/science.1240376] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eggs and oocytes have a remarkable ability to induce transcription of sperm after normal fertilization and in somatic nuclei after somatic cell nuclear transfer. This ability of eggs and oocytes is essential for normal development. Nuclear actin and actin-binding proteins have been shown to contribute to transcription, although their mode of action is elusive. Here, we find that Xenopus Wave1, previously characterized as a protein involved in actin cytoskeleton organization, is present in the oocyte nucleus and is required for efficient transcriptional reprogramming. Moreover, Wave1 knockdown in embryos results in abnormal development and defective hox gene activation. Nuclear Wave1 binds by its WHD domain to active transcription components, and this binding contributes to the action of RNA polymerase II. We identify Wave1 as a maternal reprogramming factor that also has a necessary role in gene activation in development.
Collapse
Affiliation(s)
- Kei Miyamoto
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - George E Allen
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK
| | - J. B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street,Cambridge CB2 3EJ, UK
| |
Collapse
|
11
|
Spindler MJ, Burmeister BT, Huang Y, Hsiao EC, Salomonis N, Scott MJ, Srivastava D, Carnegie GK, Conklin BR. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy. PLoS One 2013; 8:e62705. [PMID: 23658642 PMCID: PMC3637253 DOI: 10.1371/journal.pone.0062705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. METHODOLOGY/PRINCIPAL FINDINGS To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. CONCLUSIONS These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Matthew J Spindler
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nishimura T, Sugiura K, Naito K. A-kinase anchor protein 1 (AKAP1) regulates cAMP-dependent protein kinase (PKA) localization and is involved in meiotic maturation of porcine oocytes. Biol Reprod 2013; 88:85. [PMID: 23426434 DOI: 10.1095/biolreprod.112.106351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In mammalian oocytes, cAMP-dependent protein kinase (PKA) has critical functions in meiotic arrest and meiotic maturation. Although subcellular localization of PKA is regulated by A-kinase anchor proteins (AKAPs) and PKA compartmentalization is essential for PKA functions, the role of AKAPs in meiotic regulation has not been fully elucidated. In the present study, we performed far-Western blot analysis using porcine PRKAR2A for detection of AKAPs and found, to our knowledge, several novel signals in porcine oocytes. Among these signals, a 150-kDa AKAP showed the major expression and was the product of porcine AKAP1. Overexpression of AKAP1 changed the PKA localization and promoted meiotic resumption of porcine oocytes even in the presence of a high concentration of cAMP, which inhibits meiotic resumption by inducing high PKA activity. On the contrary, knockdown of AKAP1 showed inhibitory effects on meiotic resumption and oocyte maturation. In addition, the expression level of AKAP1 in porcine growing oocytes, which show meiotic incompetence and PKA mislocalization, was significantly lower than that in fully grown oocytes. However, AKAP1 insufficiency was not the primary cause of the meiotic incompetence of the growing oocytes. These results suggest that the regulation of PKA localization by AKAP1 may be involved in meiotic resumption and oocyte maturation but not in meiotic incompetence of porcine growing oocytes.
Collapse
Affiliation(s)
- Takanori Nishimura
- Laboratory of Applied Genetics, Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
13
|
Tröger J, Moutty MC, Skroblin P, Klussmann E. A-kinase anchoring proteins as potential drug targets. Br J Pharmacol 2012; 166:420-33. [PMID: 22122509 DOI: 10.1111/j.1476-5381.2011.01796.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) crucially contribute to the spatial and temporal control of cellular signalling. They directly interact with a variety of protein binding partners and cellular constituents, thereby directing pools of signalling components to defined locales. In particular, AKAPs mediate compartmentalization of cAMP signalling. Alterations in AKAP expression and their interactions are associated with or cause diseases including chronic heart failure, various cancers and disorders of the immune system such as HIV. A number of cellular dysfunctions result from mutations of specific AKAPs. The link between malfunctions of single AKAP complexes and a disease makes AKAPs and their interactions interesting targets for the development of novel drugs. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Jessica Tröger
- Max Delbrück Center for Molecular Medicine Berlin-Buch (MDC), Berlin, Germany Leibniz Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 2012; 159:2-13. [PMID: 22056916 PMCID: PMC3288222 DOI: 10.1016/j.jconrel.2011.10.023] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 01/22/2023]
Abstract
Peptides are attracting increasing attention as therapeutic agents, as the technologies for peptide development and manufacture continue to mature. Concurrently, with booming research in nanotechnology for biomedical applications, peptides have been studied as an important class of components in nanomedicine, and they have been used either alone or in combination with nanomaterials of every reported composition. Peptides possess many advantages, such as smallness, ease of synthesis and modification, and good biocompatibility. Their functions in cancer nanomedicine, discussed in this review, include serving as drug carriers, as targeting ligands, and as protease-responsive substrates for drug delivery.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
15
|
Racedo SE, Rawe VY, Niemann H. Dynamic changes of the Golgi apparatus during bovine in vitro oocyte maturation. Reproduction 2012; 143:439-47. [DOI: 10.1530/rep-11-0492] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For successful fertilization by the male gamete, oocyte cytoplasmic organelles such as the Golgi apparatus have to undergo specific changes: the entire process is known as cytoplasmic maturation. The goal of this study was to unravel the dynamics of the Golgi apparatus in bovine oocytes at critical stages ofin vitromaturation, i.e. germinal vesicle (GV), GV breakdown (GVBD), metaphase I (MI) and metaphase II, and to investigate the role of various molecules critically involved therein. The cytoplasmic distribution of proteins was assessed by immunocytochemistry and laser confocal microscopy. We applied specific inhibitors, including nocodazole to unravel the functional role of the microtubular elements; sodium orthovanadate, which primarily inhibits cytoplasmic dynein ATPase activity; monastrol which inhibits the kinesin EG5; and roscovitine to inhibit the kinase cyclin-dependent kinase 2A (CDC2A). Prior to GVBD, the Golgi apparatus was translocated from the centre of the cytoplasm to the cortical area in the periphery, where it underwent fragmentation. A second translocation was observed between GVBD and MI stages, when the Golgi apparatus was moved from the cortex to the centre of the cytoplasm. Incubation with the specific inhibitors revealed that microtubules played an active role in the final localization at GVBD, while CDC2A was essential for Golgi fragmentation at GVBD stage. This partitioning was a precondition for the second movement. In conclusion, for the first time we show basic mechanisms critically involved in the regulation of the dynamic changes of Golgi apparatus during meiosis of the bovine oocyte.
Collapse
|
16
|
McGinnis LK, Carroll DJ, Kinsey WH. Protein tyrosine kinase signaling during oocyte maturation and fertilization. Mol Reprod Dev 2011; 78:831-45. [PMID: 21681843 DOI: 10.1002/mrd.21326] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/30/2011] [Indexed: 11/11/2022]
Abstract
The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
17
|
Yang MH, Zhao MY, Wang Z, Kang R, He YL, Yin XC, Liu LY, Yang LC, Zhan CX, Wu XS, Tang DL, Cao LZ. WAVE1 regulates P-glycoprotein expression via Ezrin in leukemia cells. Leuk Lymphoma 2011; 52:298-309. [PMID: 21281239 DOI: 10.3109/10428194.2010.538776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For children with acute myeloblastic leukemia (AML), multidrug resistance (MDR) reduces treatment effectiveness, and often leads to poor patient survival. While a number of factors have been described that affect MDR, the mechanisms underlying this effect remain unclear. In this study, the role of WAVE1 in MDR was investigated. Among 62 children with AML, high levels of WAVE1 were associated with poor patient outcomes. Proteomic techniques were used to identify novel WAVE1-interacting proteins from leukemia cells, one of which was the cytoskeleton regulator Ezrin. In leukemia cells, WAVE1 co-localized with both Ezrin and P-glycoprotein (P-gp), a critical regulator of the MDR phenotype. Overexpression of WAVE1 in K562 leukemia cells up-regulated P-gp and Ezrin, and reduced K562 cells' sensitivity to the chemotherapy drug adriamycin. The opposite effect was seen when WAVE1 expression was reduced via RNA interference. Critically, overexpression of WAVE1 in the absence of Ezrin did not affect P-gp levels or MDR. These data suggest that WAVE1 affects P-gp and MDR of leukemia cells through Ezrin.
Collapse
Affiliation(s)
- Ming-Hua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McLaughlin WA, Hou T, Taylor SS, Wang W. The identification of novel cyclic AMP-dependent protein kinase anchoring proteins using bioinformatic filters and peptide arrays. Protein Eng Des Sel 2010; 24:333-9. [PMID: 21115539 DOI: 10.1093/protein/gzq106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) localize cyclic AMP-dependent protein kinase (PKA) to specific regions in the cell and place PKA in proximity to its phosphorylation targets. A computational model was created to identify AKAPs that bind to the docking/dimerization domain of the RII alpha isoform of the regulatory subunit of PKA. The model was used to search the entire human proteome, and the top candidates were tested for an interaction using peptide array experiments. Verified interactions include sphingosine kinase interacting protein and retinoic acid-induced protein 16. These interactions highlight new signaling pathways mediated by PKA.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Basic Science, The Commonwealth Medical College, 501 Madison Avenue, Scranton, PA 18510, USA.
| | | | | | | |
Collapse
|
19
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
20
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
21
|
Abstract
Bcl-2 proteins are over-expressed in many tumors and are critically important for cell survival. Their anti-apoptotic activities are determined by intracellular localization and post-translational modifications (such as phosphorylation). Here, we showed that WAVE1, a member of the Wiskott-Aldrich syndrome protein family, was over-expressed in blood cancer cell lines, and functioned as a negative regulator of apoptosis. Further enhanced expression of WAVE1 by gene transfection rendered leukemia cells more resistant to anti-cancer drug-induced apoptosis; whereas suppression of WAVE1 expression by RNA interference restored leukemia cells' sensitivity to anti-drug-induced apoptosis. WAVE1 was found to be associated with mitochondrial Bcl-2, and its depletion led to mitochondrial release of Bcl-2, and phosphorylation of ASK1/JNK and Bcl-2. Furthermore, depletion of WAVE1 expression increased anti-cancer drug-induced production of reactive oxygen species in leukemia cells. Taken together, these results suggest WAVE1 as a novel regulator of apoptosis, and potential drug target for therapeutic intervention of leukemia.
Collapse
|
22
|
Carnegie GK, Means CK, Scott JD. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 2009; 61:394-406. [PMID: 19319965 DOI: 10.1002/iub.168] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review, we focus on recent advances in the elucidation of AKAP function.
Collapse
Affiliation(s)
- Graeme K Carnegie
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, School of Medicine, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
23
|
Racedo SE, Branzini MC, Salamone D, Wójcik C, Rawe VY, Niemann H. Dynamics of microtubules, motor proteins and 20S proteasomes during bovine oocyte IVM. Reprod Fertil Dev 2009; 21:304-12. [DOI: 10.1071/rd08111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the distribution of cytoplasmic dynein, dynactin and 20S proteasomes in oocytes isolated from small (<2 mm) and large (2–8 mm) follicles during IVM. Immediately after chromatin condensation (germinal vesicle (GV) breakdown), dynactin was closely associated with the chromatin and interacted with tubulin at the MI and MII spindles in oocytes recovered from large follicles. Dynactin showed perinuclear concentration. Dynein was homogeneously distributed in the cytoplasm of GV oocytes in both groups and was associated with the chromatin at the MI and MII spindle. The 20S proteasomes were found predominantly in the nucleus at the GV stage and were associated with the chromatin up to the MII stage in both groups of oocytes. The use of sodium orthovanadate, an inhibitor or phosphatase and ATPase activity, and nocodazole, a known disruptor of microtubules, affected the localisation of proteasomes in the meiotic stages. The results demonstrate the distinct dynamics of molecular motors and proteasomes during bovine oocyte IVM, their possible relationship with the developmental competence of the oocyte and the link between microtubules, their associated molecular motors and the transport of proteasomes during bovine female meiosis.
Collapse
|
24
|
Abstract
The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides), which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal models. This review focuses on the structure-function relationship of non-covalent MPG and Pep-1 strategies, and their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models.
Collapse
|
25
|
Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev 2008; 60:537-47. [PMID: 18037526 DOI: 10.1016/j.addr.2007.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made of delivery a key stone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including cell-penetrating peptides (CPPs), which have been successfully applied for in vivo delivery of biomolecules and constitute very promising tools. Distinct families of CPPs have been described; some require chemical linkage between the drug and the carrier for cellular drug internalization while others like Pep-and MPG-families, form stable complexes with drugs depending on their chemical nature. Pep and MPG are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG and Pep based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes in a fully biologically active form into a large variety of cell lines as well as in animal models. This review will focus on the mechanisms of non-covalent MPG and Pep-1 strategies and their applications in cultured cells and animal models.
Collapse
|
26
|
Branzini C, Lavolpe M, Nodar F, Rawe VY. Visualization of cytoskeleton components during fertilization in mammals. Fertil Steril 2007; 88:1435-6. [PMID: 17509591 DOI: 10.1016/j.fertnstert.2007.02.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
The authors analyzed the cytoskeletal dynamics during human and bovine fertilization. Microtubules, microfilaments, and actin-related proteins are differently required for pronuclear migration and apposition.
Collapse
Affiliation(s)
- Constanza Branzini
- Centro de Estudios en Ginecología y Reproducción, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
27
|
Newhall KJ, Criniti AR, Cheah CS, Smith KC, Kafer KE, Burkart AD, McKnight GS. Dynamic anchoring of PKA is essential during oocyte maturation. Curr Biol 2006; 16:321-7. [PMID: 16461287 PMCID: PMC1800587 DOI: 10.1016/j.cub.2005.12.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022]
Abstract
In the final stages of ovarian follicular development, the mouse oocyte remains arrested in the first meiotic prophase, and cAMP-stimulated PKA plays an essential role in this arrest. After the LH surge, a decrease in cAMP and PKA activity in the oocyte initiates an irreversible maturation process that culminates in a second arrest at metaphase II prior to fertilization. A-kinase anchoring proteins (AKAPs) mediate the intracellular localization of PKA and control the specificity and kinetics of substrate phosphorylation. Several AKAPs have been identified in oocytes including one at 140 kDa that we now identify as a product of the Akap1 gene. We show that PKA interaction with AKAPs is essential for two sequential steps in the maturation process: the initial maintenance of meiotic arrest and the subsequent irreversible progression to the polar body extruded stage. A peptide inhibitor (HT31) that disrupts AKAP/PKA interactions stimulates oocyte maturation in the continued presence of high cAMP. However, during the early minutes of maturation, type II PKA moves from cytoplasmic sites to the mitochondria, where it associates with AKAP1, and this is shown to be essential for maturation to continue irreversibly.
Collapse
Affiliation(s)
- Kathryn J. Newhall
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - Amy R. Criniti
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - Christine S. Cheah
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - Kimberly C. Smith
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - Katherine E. Kafer
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - Anna D. Burkart
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
| | - G. Stanley McKnight
- Department of Pharmacology,University of Washington School of Medicine, Seattle, Washington 98195
- *Correspondence:
| |
Collapse
|
28
|
Gros E, Deshayes S, Morris MC, Aldrian-Herrada G, Depollier J, Heitz F, Divita G. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:384-93. [PMID: 16545342 DOI: 10.1016/j.bbamem.2006.02.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/20/2006] [Accepted: 02/07/2006] [Indexed: 01/20/2023]
Abstract
The development of therapeutic peptides and proteins is limited by the poor permeability and the selectivity of the cell membrane. The discovery of protein transduction domains has given a new hope for administration of large proteins and peptides in vivo. We have developed a non-covalent strategy for protein transduction based on an amphipathic peptide, Pep-1, that consists of a hydrophobic domain and a hydrophilic lysine-rich domain. Pep-1 efficiently delivers a variety of fully biologically active peptides and proteins into cells, without the need for prior chemical cross-linking or chemical modifications. The mechanism through which Pep-1 delivers active macromolecules does not involve the endosomal pathway and the dissociation of the Pep-1/macromolecule particle occurs immediately after it crosses the cell membrane. Pep-1 has been successfully applied to the screening of therapeutic peptides in vivo and presents several advantages: stability in physiological buffer, lack of toxicity and of sensitivity to serum. In conclusion, Pep-1 technology could contribute significantly to the development of fundamental and therapeutic applications and be an alternative to covalent protein transduction domain-based technologies.
Collapse
Affiliation(s)
- Edwige Gros
- Centre de Recherches de Biochimie Macromoléculaire, CRBM-CNRS, Department of Molecular Biophysics and Therapeutic, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhao Y, Zhang N, Kong Q. Does the cell-brain theory work in explaining carcinogenesis? Med Hypotheses 2006; 65:708-15. [PMID: 15975733 DOI: 10.1016/j.mehy.2005.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/25/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
As a major microtubule-organizing center, the centrosome, together with the embedded centrioles and connecting filaments (or microtubules), has lately been proposed to be the "brain" of a cell. Although there are a lot of works to be done to test this hypothesis, emerging data have suggested that this centrosome-centered "cell brain" is playing increasingly important roles in cell control. Genes seem not to tell the whole story, despite the commonly held view that genetic alteration is the cause of most medical problems including cancer development. Although the mechanisms through which gene expression and protein synthesis are regulated remain to be studied, current advances in our understanding of the roles of the centrosome in the regulation of DNA synthesis, DNA repair, cell cycle, apoptosis and in the maintenance of genetic stability are challenging our tradition thoughts. Genetic alterations may be repaired by the centrosome-centered "cell brain"-mediated self-defense, but the cell brain defects intend to cause genetic alterations, which, in turn, may result in cancer development. Further understanding of the roles of the centrosome/cell brain in these and other new aspects are becoming very helpful in comprehending why and how medical problems including tumors develop. Meanwhile, it suggests that great attention should be given to the centrosome/cell brain, instead of gene alone when treating medical problems, which is discussed in this paper on the basis of cell brain theory and may prove helpful in shedding light on the often paradoxical observations seen in cell control, particularly in cancer development.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Cell Brain Research Center, School of Life Science, Shandong University, Room 128, Biology Building, Jinan, Shandong Province 250100, China
| | | | | |
Collapse
|
30
|
Rawe VY, Payne C, Schatten G. Profilin and actin-related proteins regulate microfilament dynamics during early mammalian embryogenesis. Hum Reprod 2006; 21:1143-53. [PMID: 16428331 DOI: 10.1093/humrep/dei480] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Profilins are ubiquitous proteins widely distributed in animals, including humans. They regulate actin polymerization by sequestering actin monomers in association with other actin-related proteins (Arps). Actin remodelling is essential for oocyte maturation, fertilization and embryo development; yet the role of profilins in these events is not well understood. Here we investigate profilin distribution and function during bovine fertilization and early embryogenesis, and we examine profilin localization with respect to the co-distribution of other Arps. METHODS AND RESULTS Western blotting, confocal microscopy with immunofluorescence and protein inhibition studies with antibodies were implemented. Profilin distributes inside interphase nuclei, throughout the cytoplasm and near the cell cortex at different stages of bovine oocyte maturation, fertilization and embryo development. Expression is detected through the blastocyst stage, where profilin localizes to the inner cell mass as well as trophectoderm. Profilin co-distributes with actin monomers and Arps vasodilator-stimulated phospho protein, p140mDia, Arp 3 and p80 coilin in pronucleate-stage zygotes. Antiprofilin antibodies inhibit normal embryo development by disrupting microfilaments, but not microtubules, and result in a higher concentration of profilin and p140mDia mislocalized to the cortex. CONCLUSIONS These findings demonstrate that profilin regulates actin dynamics both within the cytoplasm and inside the nuclei of developing mammalian embryos and that its function is essential during fertilization to ensure successful development.
Collapse
Affiliation(s)
- Vanesa Y Rawe
- Centro de Estudios en Ginecología y Reproducción (CEGyR), Buenos Aires, Argentina.
| | | | | |
Collapse
|
31
|
Delaval B, Létard S, Lelièvre H, Chevrier V, Daviet L, Dubreuil P, Birnbaum D. Oncogenic tyrosine kinase of malignant hemopathy targets the centrosome. Cancer Res 2005; 65:7231-40. [PMID: 16103074 DOI: 10.1158/0008-5472.can-04-4167] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloproliferative disorders (MPD) are malignant diseases of hematopoietic progenitor cells. Many MPDs result from a chromosomal translocation that creates a fusion gene encoding a chimeric kinase. The fibroblast growth factor receptor 1 (FGFR1)-MPD is characterized by the fusion of the FGFR1 kinase with various partners, including FOP. We show here that both normal FOP and FOP-FGFR1 fusion kinase localize to the centrosome. The fusion kinase encounters substrates at the centrosome where it induces strong phosphorylation on tyrosine residues. Treatment with FGFR1 kinase inhibitor SU5402 abolishes FOP-FGFR1-induced centrosomal phosphorylation and suppresses the proliferative and survival potentials of FOP-FGFR1 Ba/F3 cells. We further show that FOP-FGFR1 allows cells to overcome G1 arrest. Therefore, the FOP-FGFR1 fusion kinase targets the centrosome, activates signaling pathways at this organelle, and sustains continuous entry in the cell cycle. This could represent a potential new mechanism of oncogenic transformation occurring specifically at the centrosome.
Collapse
Affiliation(s)
- Bénédicte Delaval
- Laboratories of Molecular Oncology and Molecular Hematopoiesis, Marseille Cancer Institute, UMR599 Inserm and Institut Paoli-Calmettes, Marseilles, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Simerly C, Navara C, Hyun SH, Lee BC, Kang SK, Capuano S, Gosman G, Dominko T, Chong KY, Compton D, Hwang WS, Schatten G. Embryogenesis and blastocyst development after somatic cell nuclear transfer in nonhuman primates: overcoming defects caused by meiotic spindle extraction. Dev Biol 2004; 276:237-52. [PMID: 15581862 DOI: 10.1016/j.ydbio.2004.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/28/2004] [Accepted: 10/12/2004] [Indexed: 01/07/2023]
Abstract
Therapeutic cloning or nuclear transfer for stem cells (NTSC) seeks to overcome immune rejection through the development of embryonic stem cells (ES cells) derived from cloned blastocysts. The successful derivation of a human embryonic stem cell (hESC) line from blastocysts generated by somatic cell nuclear transfer (SCNT) provides proof-of-principle for "therapeutic cloning," though immune matching of the differentiated NT-hES remains to be established. Here, in nonhuman primates (NHPs; rhesus and cynomologus macaques), the strategies used with human SCNT improve NHP-SCNT development significantly. Protocol improvements include the following: enucleation just prior to metaphase-II arrest; extrusion rather than extraction of the meiotic spindle-chromosome complex (SCC); nuclear transfer by electrofusion with simultaneous cytoplast activation; and sequential media. Embryo transfers (ET) of 135 SCNT-NHP into 25 staged surrogates did not result in convincing evidence of pregnancies after 30 days post-ET. These results demonstrate that (i) protocols optimized in humans generate preimplantation embryos in nonhuman primates; (ii) some, though perhaps not yet all, hurdles in deriving NT-nhpES cells from cloned macaque embryos (therapeutic cloning) have been overcome; (iii) reproductive cloning with SCNT-NHP embryos appears significantly less efficient than with fertilized embryos; (iv) therapeutic cloning with matured metaphase-II oocytes, aged oocytes, or "fertilization failures" might remain difficult since enucleation is optimally performed prior to metaphase-II arrest; and (v) challenges remain for producing reproductive successes since NT embryos appear inferior to fertilized ones due to spindle defects resulting from centrosome and motor deficiencies that produce aneuploid preimplantation embryos, among other anomalies including genomic imprinting, mitochondrial and cytoplasmic heterogeneities, cell cycle asynchronies, and improper nuclear reprogramming.
Collapse
Affiliation(s)
- Calvin Simerly
- Department of Obstetrics-Gynecology-Reproductive Sciences, Pittsburgh Development Center, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|