1
|
Ruan J, Kang M, Nirwane A, Yao Y. A dispensable role of mural cell-derived laminin- α5 in intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:1677-1690. [PMID: 39053486 PMCID: PMC11418671 DOI: 10.1177/0271678x241264083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Although most laminin isoforms are neuroprotective in stroke, mural cell-derived laminin-α5 plays a detrimental role in an ischemia-reperfusion model. To determine whether this deleterious effect is an intrinsic feature of mural cell-derived laminin-α5 or unique to ischemic stroke, we performed loss-of-function studies using middle-aged mice with laminin-α5 deficiency in mural cells (α5-PKO) in an intracerebral hemorrhage (ICH) model. Control and α5-PKO mice exhibited comparable changes in all parameters examined, including hematoma size, neuronal death, neurological function, blood-brain barrier integrity, and reactive gliosis. These findings highlight a minimal role of mural cell-derived laminin-α5 in ICH. Together with the detrimental role of mural cell-derived laminin-α5 in ischemic stroke, these negative results in ICH model suggest that mural cell-derived laminin-α5 may exert distinct functions in different diseases.
Collapse
Affiliation(s)
- Jingsong Ruan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Riazi G, Brizais C, Garali I, Al-rifai R, Quelquejay H, Monceau V, Vares G, Ould-Boukhitine L, Aubeleau D, Gilain F, Gloaguen C, Dos Santos M, Ait-Oufella H, Ebrahimian T. Effects of moderate doses of ionizing radiation on experimental abdominal aortic aneurysm. PLoS One 2024; 19:e0308273. [PMID: 39088551 PMCID: PMC11293671 DOI: 10.1371/journal.pone.0308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Exposure to ionizing radiation has been linked to cardiovascular diseases. However, the impact of moderate doses of radiation on abdominal aortic aneurysm (AAA) remains unknown. METHODS Angiotensin II-infused Apoe-/- mice were irradiated (acute, 1 Gray) either 3 days before (Day-3) or 1 day after (Day+1) pomp implantation. Isolated primary aortic vascular smooth muscle cells (VSMCs) were irradiated (acute 1 Gray) for mechanistic studies and functional testing in vitro. RESULTS Day-3 and Day+1 irradiation resulted in a significant reduction in aorta dilation (Control: 1.39+/-0.12; Day-3: 1.12+/-0.11; Day+1: 1.15+/-0.08 mm, P<0.001) and AAA incidence (Control: 81.0%; Day-3: 33.3%, Day+1: 53.3%) compared to the non-irradiated group. Day-3 and Day+1 irradiation led to an increase in collagen content in the adventitia (Thickness control: 23.64+/-2.9; Day-3: 54.39+/-15.5; Day+1 37.55+/-10.8 mm, P = 0.006). However, the underlying protective mechanisms were different between Day-3 and Day+1 groups. Irradiation before Angiotensin II (AngII) infusion mainly modulated vascular smooth muscle cell (VSMC) phenotype with a decrease in contractile profile and enhanced proliferative and migratory activity. Irradiation after AngII infusion led to an increase in macrophage content with a local anti-inflammatory phenotype characterized by the upregulation of M2-like gene and IL-10 expression. CONCLUSION Moderate doses of ionizing radiation mitigate AAA either through VSCM phenotype or inflammation modulation, depending on the time of irradiation.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/etiology
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/radiation effects
- Muscle, Smooth, Vascular/pathology
- Radiation, Ionizing
- Angiotensin II/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/radiation effects
- Myocytes, Smooth Muscle/pathology
- Male
- Disease Models, Animal
- Interleukin-10/metabolism
- Interleukin-10/genetics
- Collagen/metabolism
- Cell Proliferation/radiation effects
Collapse
Affiliation(s)
- Goran Riazi
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Chloe Brizais
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Imene Garali
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Rida Al-rifai
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
| | - Helene Quelquejay
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Virginie Monceau
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Guillaume Vares
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Lea Ould-Boukhitine
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Damien Aubeleau
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Florian Gilain
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Celine Gloaguen
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Accidental Exposure Radiobiology Laboratory (LRACC), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Hafid Ait-Oufella
- Université de Paris, Inserm U970, Paris-Cardiovascular Research Center, Paris, France
- Medical Intensive Care Unit, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
| | - Teni Ebrahimian
- Experimental Radiotoxicology and Radiobiology Laboratory (LRTOX), Institute for Radiobiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Wu ML, Wheeler K, Silasi R, Lupu F, Griffin CT. Endothelial Chromatin-Remodeling Enzymes Regulate the Production of Critical ECM Components During Murine Lung Development. Arterioscler Thromb Vasc Biol 2024; 44:1784-1798. [PMID: 38868942 DOI: 10.1161/atvbaha.124.320881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The chromatin-remodeling enzymes BRG1 (brahma-related gene 1) and CHD4 (chromodomain helicase DNA-binding protein 4) independently regulate the transcription of genes critical for vascular development, but their coordinated impact on vessels in late-stage embryos has not been explored. METHODS In this study, we genetically deleted endothelial Brg1 and Chd4 in mixed background mice (Brg1fl/fl;Chd4fl/fl;VE-Cadherin-Cre), and littermates that were negative for Cre recombinase were used as controls. Tissues were analyzed by immunostaining, immunoblot, and flow cytometry. Quantitative reverse transcription polymerase chain reaction was used to determine gene expression, and chromatin immunoprecipitation revealed gene targets of BRG1 and CHD4 in cultured endothelial cells. RESULTS We found Brg1/Chd4 double mutants grew normally but died soon after birth with small and compact lungs. Despite having normal cellular composition, distal air sacs of the mutant lungs displayed diminished ECM (extracellular matrix) components and TGFβ (transforming growth factor-β) signaling, which typically promotes ECM synthesis. Transcripts for collagen- and elastin-related genes and the TGFβ ligand Tgfb1 were decreased in mutant lung endothelial cells, but genetic deletion of endothelial Tgfb1 failed to recapitulate the small lungs and ECM defects seen in Brg1/Chd4 mutants. We instead found several ECM genes to be direct targets of BRG1 and CHD4 in cultured endothelial cells. CONCLUSIONS Collectively, our data highlight essential roles for endothelial chromatin-remodeling enzymes in promoting ECM deposition in the distal lung tissue during the saccular stage of embryonic lung development.
Collapse
Affiliation(s)
- Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.-L.W., K.W., R.S., F.L., C.T.G.)
| | - Kate Wheeler
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.-L.W., K.W., R.S., F.L., C.T.G.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.-L.W., K.W., R.S., F.L., C.T.G.)
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.-L.W., K.W., R.S., F.L., C.T.G.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City (M.-L.W., K.W., R.S., F.L., C.T.G.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City (C.T.G.)
| |
Collapse
|
4
|
Kang M, Nirwane A, Ruan J, Adithan A, Gray M, Xu L, Yao Y. A dispensable role of oligodendrocyte-derived laminin-α5 in brain homeostasis and intracerebral hemorrhage. J Cereb Blood Flow Metab 2024; 44:611-623. [PMID: 38241459 PMCID: PMC10981398 DOI: 10.1177/0271678x241228058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Laminin, a major component of the basal lamina in the CNS, is also expressed in oligodendrocytes (OLs). However, the function of OL-derived laminin remains largely unknown. Here, we performed loss-of-function studies using two OL-specific laminin-α5 conditional knockout mouse lines. Both mutants were grossly normal and displayed intact blood-brain barrier (BBB) integrity. In a mouse model of intracerebral hemorrhage (ICH), control mice and both mutants exhibited comparable hematoma size and neurological dysfunction. In addition, similar levels of hemoglobin and IgG leakage were detected in the mutant brains compared to the controls, indicating comparable BBB damage. Consistent with this finding, subsequent studies revealed no differences in tight junction protein (TJP) and caveolin-1 expression among control and knockout mice, suggesting that neither paracellular nor transcellular mechanism was affected in the mutants. Furthermore, compared to the controls, both mutant lines showed comparable oligodendrocyte number, oligodendrocyte proliferation rate, MBP/MAG levels, and SMI-32 expression, highlighting a minimal role of OL-derived laminin-α5 in OL biology. Together, these findings highlight a dispensable role of OL-derived laminin-α5 in both brain homeostasis and ICH pathogenesis.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jingsong Ruan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Aravinthan Adithan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marsilla Gray
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lingling Xu
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Current Address: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Fu Z, Qi Y, Xue LF, Xu YX, Yue J, Zhao JZ, Li C, Xiao W. LAMA5: A new pathogenic gene for non-syndromic cleft lip with or without cleft palate. Biomed J 2024; 47:100627. [PMID: 37390938 PMCID: PMC10957387 DOI: 10.1016/j.bj.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effect of LAMA5 on palatal development in mice. METHODS The palatine process of C57BL/6 J fetal mice on the embryonic day 13.5 (E13.5) was cultured in vitro via the rotating culture method. The LAMA5-shRNA adenovirus vector was constructed, then transfected into the palatal process of E13.5 for 48 h in vitro. A fluorescence microscope was used to visualize the fusion of palates. The expression of LAMA5 was also detected. The expression of ki67, cyclin D1, caspase 3, E-cadherin, vimentin and SHH signaling pathway-related signaling factors in the blank control group, the negative control group, and the LAMA5 interference group were detected after virus transfection. RESULTS The bilateral palates in the LAMA5 interference group were not fused after virus transfection. PCR and WB showed that the mRNA and protein expressions of LAMA5 were decreased in the LAMA5 interference group. Furthermore, the mRNA and protein expressions of ki67, cyclin D1 and gli1 were decreased in the LAMA5 interference group, while the mRNA and protein expressions of caspase 3 were increased. However, the mRNA and protein expression of E-cadherin, vimentin, Shh and ptch1 did not significantly change in the LAMA5 interference group. CONCLUSIONS LAMA5 silencing causes cleft palate by inhibiting the proliferation of mouse palatal cells and promoting apoptosis, which may not be involved in EMT. LAMA5 silencing can also cause cleft palate by interfering with the SHH signaling pathway.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yan Qi
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Wenlin Xiao
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Department of Stomatology, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Nirwane A, Kang M, Adithan A, Maharaj V, Nguyen F, Santaella Aguilar E, Nasrollahi A, Yao Y. Endothelial and mural laminin-α5 contributes to neurovascular integrity maintenance. Fluids Barriers CNS 2024; 21:18. [PMID: 38383451 PMCID: PMC10882802 DOI: 10.1186/s12987-024-00521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Laminin-α5, a major component of the basal lamina, is predominantly synthesized by endothelial and mural cells (pericytes and vascular smooth muscle cells) in the CNS. Loss of laminin-α5 in either population fails to induce any abnormalities due to functional redundancy. Thus, the functional significance of laminin-α5 in neurovascular integrity remains unknown. Here, we hypothesize that ablation of laminin-α5 in both endothelial and mural cells increases neurovascular permeability. METHODS The compound knockout mice were generated by crossing laminin-α5 floxed mice with Tie2-Cre and PDGFRβ-Cre, which target endothelial cells and mural cells, respectively. Neurovascular permeability in these mutants was determined with both exogenous and endogenous tracers. Endothelial paracellular and transcellular permeability was assessed by examining the expression of tight junction proteins and transcytosis-associated proteins. In addition, transmission electron microscopy (TEM) was used to visualize tight junction ultrastructure and endothelial caveolae vesicles. Defects in pericytes and astrocytes were investigated by examining pericyte coverage/contact and astrocyte polarity. RESULTS Elevated neurovascular permeability was observed in the mutants. Subsequent studies found increased Caveolin-1 and decreased major facilitator superfamily domain-containing protein 2a (MFSD2A) expression, but unaltered Claudin-5 or zonula occludens-1 (ZO-1) expression. Consistent with these results, mutant mice exhibited increased endothelial caveolae vesicle number with intact tight junction structure under TEM. Additionally, pericyte coverage and contact were also decreased in the mutant mice, while astrocyte polarity was unaffected. CONCLUSIONS These results strongly indicate that endothelial and mural cell-derived laminin-α5 actively maintains neurovascular integrity via the transcellular rather than paracellular mechanism.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Aravinthan Adithan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Vrishni Maharaj
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Felicia Nguyen
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Elliot Santaella Aguilar
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Ava Nasrollahi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, 33612, Tampa, FL, USA.
| |
Collapse
|
7
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
8
|
Kaimori JY, Kikkawa Y, Motooka D, Namba-Hamano T, Takuwa A, Okazaki A, Kobayashi K, Tanigawa A, Kotani Y, Uno Y, Yoshimi K, Hattori K, Asahina Y, Kajimoto S, Doi Y, Oka T, Sakaguchi Y, Mashimo T, Sekiguchi K, Nakaya A, Nomizu M, Isaka Y. A heterozygous LAMA5 variant may contribute to slowly progressive, vinculin-enhanced familial FSGS and pulmonary defects. JCI Insight 2022; 7:158378. [PMID: 36173685 PMCID: PMC9746903 DOI: 10.1172/jci.insight.158378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023] Open
Abstract
The LAMA5 gene encodes laminin α5, an indispensable component of glomerular basement membrane and other types of basement membrane. A homozygous pathological variant in LAMA5 is known to cause a systemic developmental syndrome including glomerulopathy. However, the roles of heterozygous LAMA5 gene variants in human renal and systemic diseases have remained unclear. We performed whole-exome sequencing analyses of a family with slowly progressive nephropathy associated with hereditary focal segmental glomerulosclerosis, and we identified what we believe to be a novel probable pathogenic variant of LAMA5, NP_005551.3:p.Val3687Met. In vitro analyses revealed cell type-dependent changes in secretion of variant laminin α5 laminin globular 4-5 (LG4-5) domain. Heterozygous and homozygous knockin mice with a corresponding variant of human LAMA5, p.Val3687Met, developed focal segmental glomerulosclerosis-like pathology with reduced laminin α5 and increased glomerular vinculin levels, which suggested that impaired cell adhesion may underlie this glomerulopathy. We also identified pulmonary defects such as bronchial deformity and alveolar dilation. Reexaminations of the family revealed phenotypes compatible with reduced laminin α5 and increased vinculin levels in affected tissues. Thus, the heterozygous p.Val3687Met variant may cause a new syndromic nephropathy with focal segmental glomerulosclerosis through possibly defective secretion of laminin α5. Enhanced vinculin may be a useful disease marker.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, and,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayako Takuwa
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Atsuko Okazaki
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Medical Solutions Division, NEC Corporation, Tokyo, Japan
| | | | - Yuko Kotani
- Institute of Experimental Animal Sciences and
| | | | - Kazuto Yoshimi
- Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science
| | - Koki Hattori
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Asahina
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sachio Kajimoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohei Doi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsufumi Oka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Diseases and,Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences and,Genome Editing Research and Development (R&D) Center, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science;,Division of Genome Engineering, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research; and
| | - Akihiro Nakaya
- Department of Genome Informatics, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, Munne P, Klefström J, Peuhu E, Katajisto P. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci 2022; 135:285829. [DOI: 10.1242/jcs.260232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
ABSTRACT
Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through β4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.
Collapse
Affiliation(s)
- Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Defne D. Dinç
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Tomás McKenna
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
| | - Suvi Laitinen
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
- University of Helsinki 6 Faculty of Biological and Environmental Sciences , , Helsinki FI-00014 , Finland
| |
Collapse
|
10
|
Santarella F, do Amaral RJFC, Lemoine M, Kelly D, Cavanagh B, Marinkovic M, Smith A, Garlick J, O'Brien FJ, Kearney CJ. Personalized Scaffolds for Diabetic Foot Ulcer Healing Using Extracellular Matrix from Induced Pluripotent Stem-Reprogrammed Patient Cells. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200052. [PMID: 36532145 PMCID: PMC9757804 DOI: 10.1002/anbr.202200052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Diabetic foot ulcers (DFU) are chronic wounds sustained by pathological fibroblasts and aberrant extracellular matrix (ECM). Porous collagen-based scaffolds (CS) have shown clinical promise for treating DFUs but may benefit from functional enhancements. Our previous work showed fibroblasts differentiated from induced pluripotent stem cells are an effective source of new ECM mimicking fetal matrix, which notably promotes scar-free healing. Likewise, functionalizing CS with this rejuvenated ECM showed potential for DFU healing. Here, we demonstrate for the first time an approach to DFU healing using biopsied cells from DFU patients, reprogramming those cells, and functionalizing CS with patient-specific ECM as a personalized acellular tissue engineered scaffold. We took a two-pronged approach: 1) direct ECM blending into scaffold fabrication; and 2) seeding scaffolds with reprogrammed fibroblasts for ECM deposition followed by decellularization. The decellularization approach reduced cell number requirements and maintained naturally deposited ECM proteins. Both approaches showed enhanced ECM deposition from DFU fibroblasts. Decellularized scaffolds additionally enhanced glycosaminoglycan deposition and subsequent vascularization. Finally, reprogrammed ECM scaffolds from patient-matched DFU fibroblasts outperformed those from healthy fibroblasts in several metrics, suggesting ECM is in fact able to redirect resident pathological fibroblasts in DFUs towards healing, and a patient-specific ECM signature may be beneficial.
Collapse
Affiliation(s)
- Francesco Santarella
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ronaldo Jose Farias Correa do Amaral
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Mark Lemoine
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Domhnall Kelly
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Brenton Cavanagh
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Milica Marinkovic
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Avi Smith
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA 02111 USA
| | - Jonathan Garlick
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA 02111 USA
| | - Fergal J O'Brien
- 123 Stephens Green, Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Cathal J Kearney
- Department of Biomedical Engineering, University of Massachusetts Amherst, USA
- 123 Stephens Green, Kearney Lab/Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
11
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Negretti NM, Plosa EJ, Benjamin JT, Schuler BA, Habermann AC, Jetter CS, Gulleman P, Bunn C, Hackett AN, Ransom M, Taylor CJ, Nichols D, Matlock BK, Guttentag SH, Blackwell TS, Banovich NE, Kropski JA, Sucre JMS. A single-cell atlas of mouse lung development. Development 2021; 148:dev199512. [PMID: 34927678 PMCID: PMC8722390 DOI: 10.1242/dev.199512] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
Collapse
Affiliation(s)
- Nicholas M. Negretti
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J. Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T. Benjamin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bryce A. Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Christopher S. Jetter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter Gulleman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Claire Bunn
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice N. Hackett
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meaghan Ransom
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chase J. Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Nichols
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brittany K. Matlock
- Vanderbilt Ingram Cancer Center and Vanderbilt Digestive Disease Research Center, Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Susan H. Guttentag
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Nicholas E. Banovich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Jonathan A. Kropski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Jennifer M. S. Sucre
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
14
|
Englund JI, Ritchie A, Blaas L, Cojoc H, Pentinmikko N, Döhla J, Iqbal S, Patarroyo M, Katajisto P. Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk. Development 2021; 148:269157. [PMID: 34128985 PMCID: PMC8254867 DOI: 10.1242/dev.199281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation. Summary: Luminal mammary epithelial cells produce basement membrane laminin α5 necessary for mammary epithelial growth and differentiation. Laminin α5 loss compromises hormone receptor-positive luminal cell function and Wnt4-mediated crosstalk between epithelial cells.
Collapse
Affiliation(s)
- Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Alexandra Ritchie
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Hanne Cojoc
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Julia Döhla
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Sharif Iqbal
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Manuel Patarroyo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 11 Solna, Sweden
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.,Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Helsinki, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
15
|
Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun 2021; 12:2577. [PMID: 33972551 PMCID: PMC8110968 DOI: 10.1038/s41467-021-22881-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inter-tissue interaction is fundamental to multicellularity. Although the basement membrane (BM) is located at tissue interfaces, its mode of action in inter-tissue interactions remains poorly understood, mainly because the molecular and structural details of the BM at distinct inter-tissue interfaces remain unclear. By combining quantitative transcriptomics and immunohistochemistry, we systematically identify the cellular origin, molecular identity and tissue distribution of extracellular matrix molecules in mouse hair follicles, and reveal that BM composition and architecture are exquisitely specialized for distinct inter-tissue interactions, including epithelial–fibroblast, epithelial–muscle and epithelial–nerve interactions. The epithelial–fibroblast interface, namely, hair germ–dermal papilla interface, makes asymmetrically organized side-specific heterogeneity in the BM, defined by the newly characterized interface, hook and mesh BMs. One component of these BMs, laminin α5, is required for hair cycle regulation and hair germ–dermal papilla anchoring. Our study highlights the significance of BM heterogeneity in distinct inter-tissue interactions. The basement membrane is located at tissue interfaces, but how it mediates distinct inter-tissue interactions is unclear. Here, the authors systematically define the spatial heterogeneity of skin basement membrane composition and show its functional importance in inter-tissue interactions.
Collapse
|
16
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
17
|
Malijauskaite S, Connolly S, Newport D, McGourty K. Gradients in the in vivo intestinal stem cell compartment and their in vitro recapitulation in mimetic platforms. Cytokine Growth Factor Rev 2021; 60:76-88. [PMID: 33858768 DOI: 10.1016/j.cytogfr.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Intestinal tissue, and specifically its mucosal layer, is a complex and gradient-rich environment. Gradients of soluble factor (BMP, Noggin, Notch, Hedgehog, and Wnt), insoluble extracellular matrix proteins (laminins, collagens, fibronectin, and their cognate receptors), stromal stiffness, oxygenation, and sheer stress induced by luminal fluid flow at the crypt-villus axis controls and supports healthy intestinal tissue homeostasis. However, due to current technological challenges, very few of these features have so far been included in in vitro intestinal tissue mimetic platforms. In this review, the tightly defined and dynamic microenvironment of the intestinal tissue is presented in detail. Additionally, the authors introduce the current state-of-the-art intestinal tissue mimetic platforms, as well as the design drawbacks and challenges they face while attempting to capture the complexity of the intestinal tissue's physiology. Finally, the compositions of an "idealized" mimetic system is presented to guide future developmental efforts.
Collapse
Affiliation(s)
- Sigita Malijauskaite
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Sinead Connolly
- Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - David Newport
- Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; School of Engineering, University of Limerick, Limerick, Ireland.
| | - Kieran McGourty
- Dept. of Chemical Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
18
|
Gouveia L, Kraut S, Hadzic S, Vazquéz-Liébanas E, Kojonazarov B, Wu CY, Veith C, He L, Mermelekas G, Schermuly RT, Weissmann N, Betsholtz C, Andrae J. Lung developmental arrest caused by PDGF-A deletion: consequences for the adult mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L831-L843. [PMID: 32186397 DOI: 10.1152/ajplung.00295.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PDGF-A is a key contributor to lung development in mice. Its expression is needed for secondary septation of the alveoli and deletion of the gene leads to abnormally enlarged alveolar air spaces in mice. In humans, the same phenotype is the hallmark of bronchopulmonary dysplasia (BPD), a disease that affects premature babies and may have long lasting consequences in adulthood. So far, the knowledge regarding adult effects of developmental arrest in the lung is limited. This is attributable to few follow-up studies of BPD survivors and lack of good experimental models that could help predict the outcomes of this early age disease for the adult individual. In this study, we used the constitutive lung-specific Pdgfa deletion mouse model to analyze the consequences of developmental lung defects in adult mice. We assessed lung morphology, physiology, cellular content, ECM composition and proteomics data in mature mice, that perinatally exhibited lungs with a BPD-like morphology. Histological and physiological analyses both revealed that enlarged alveolar air spaces remained until adulthood, resulting in higher lung compliance and higher respiratory volume in knockout mice. Still, no or only small differences were seen in cellular, ECM and protein content when comparing knockout and control mice. Taken together, our results indicate that Pdgfa deletion-induced lung developmental arrest has consequences for the adult lung at the morphological and functional level. In addition, these mice can reach adulthood with a BPD-like phenotype, which makes them a robust model to further investigate the pathophysiological progression of the disease and test putative regenerative therapies.
Collapse
Affiliation(s)
- Leonor Gouveia
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Simone Kraut
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Elisa Vazquéz-Liébanas
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Baktybek Kojonazarov
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Cheng-Yu Wu
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christine Veith
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Georgios Mermelekas
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ralph Theo Schermuly
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Kuhn TC, Knobel J, Burkert-Rettenmaier S, Li X, Meyer IS, Jungmann A, Sicklinger F, Backs J, Lasitschka F, Müller OJ, Katus HA, Krijgsveld J, Leuschner F. Secretome Analysis of Cardiomyocytes Identifies PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6) as a Novel Player in Cardiac Remodeling After Myocardial Infarction. Circulation 2020; 141:1628-1644. [PMID: 32100557 DOI: 10.1161/circulationaha.119.044914] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-β activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.
Collapse
Affiliation(s)
- Tim Christian Kuhn
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Johannes Knobel
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Sonja Burkert-Rettenmaier
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Xue Li
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Ingmar Sören Meyer
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Andreas Jungmann
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Florian Sicklinger
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Johannes Backs
- DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.).,Department of Molecular Cardiology and Epigenetics, Heidelberg, Germany (J.B.)
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, Germany (Fe.L.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| | - Jeroen Krijgsveld
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany (Je.K.).,Heidelberg University, Medical Faculty, Germany (Je.K.)
| | - Florian Leuschner
- Department of Cardiology, Medical University Hospital, Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., H.A.K., F.L.).,DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany (T.C.K., J.K., S.B-R., X.L., I.S.M., A.J., F.S., J.B., H.A.K., F.L.)
| |
Collapse
|
20
|
Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. eLife 2020; 9:e53072. [PMID: 32091393 PMCID: PMC7176435 DOI: 10.7554/elife.53072] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary endothelial cells (ECs) are an essential component of the gas exchange machinery of the lung alveolus. Despite this, the extent and function of lung EC heterogeneity remains incompletely understood. Using single-cell analytics, we identify multiple EC populations in the mouse lung, including macrovascular endothelium (maEC), microvascular endothelium (miECs), and a new population we have termed Car4-high ECs. Car4-high ECs express a unique gene signature, and ligand-receptor analysis indicates they are primed to receive reparative signals from alveolar type I cells. After acute lung injury, they are preferentially localized in regenerating regions of the alveolus. Influenza infection reveals the emergence of a population of highly proliferative ECs that likely arise from multiple miEC populations and contribute to alveolar revascularization after injury. These studies map EC heterogeneity in the adult lung and characterize the response of novel EC subpopulations required for tissue regeneration after acute lung injury.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Collin T Stabler
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - John P Leach
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Jarod A Zepp
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
21
|
Mereness JA, Bhattacharya S, Ren Y, Wang Q, Anderson CS, Donlon K, Dylag AM, Haak J, Angelin A, Bonaldo P, Mariani TJ. Collagen VI Deficiency Results in Structural Abnormalities in the Mouse Lung. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:426-441. [PMID: 31837950 DOI: 10.1016/j.ajpath.2019.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 01/14/2023]
Abstract
Collagen VI (COL6) is known for its role in a spectrum of congenital muscular dystrophies, which are often accompanied by respiratory dysfunction. However, little is known regarding the function of COL6 in the lung. We confirmed the presence of COL6 throughout the basement membrane region of mouse lung tissue. Lung structure and organization were studied in a previously described Col6a1-/- mouse, which does not produce detectable COL6 in the lung. The Col6a1-/- mouse displayed histopathologic alveolar and airway abnormalities. The airspaces of Col6a1-/- lungs appeared simplified, with larger (29%; P < 0.01) and fewer (31%; P < 0.001) alveoli. These airspace abnormalities included reduced isolectin B4+ alveolar capillaries and surfactant protein C-positive alveolar epithelial type-II cells. Alterations in lung function consistent with these histopathologic changes were evident. Col6a1-/- mice also displayed multiple airway changes, including increased branching (59%; P < 0.001), increased mucosal thickness (34%; P < 0.001), and increased epithelial cell density (13%; P < 0.001). Comprehensive transcriptome analysis revealed that the loss of COL6 is associated with reductions in integrin-paxillin-phosphatidylinositol 3-kinase signaling in vivo. In vitro, COL6 promoted steady-state phosphorylated paxillin levels and reduced cell density (16% to 28%; P < 0.05) at confluence. Inhibition of phosphatidylinositol 3-kinase, or its downstream effectors, resulted in increased cell density to a level similar to that seen on matrices lacking COL6.
Collapse
Affiliation(s)
- Jared A Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York
| | - Soumyaroop Bhattacharya
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Yue Ren
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Qian Wang
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Christopher S Anderson
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Kathy Donlon
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Jeannie Haak
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York.
| |
Collapse
|
22
|
Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res 2019; 10:705-718. [PMID: 30693425 PMCID: PMC6663661 DOI: 10.1007/s12975-019-0688-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
Endothelial cells make laminin-411 and laminin-511. Although laminin-411 is well studied, the role of laminin-511 remains largely unknown due to the embryonic lethality of lama5-/- mutants. In this study, we generated endothelium-specific lama5 conditional knockout (α5-TKO) mice and investigated the biological functions of endothelial lama5 in blood-brain barrier (BBB) maintenance under homeostatic conditions and the pathogenesis of intracerebral hemorrhage (ICH). First, the BBB integrity of α5-TKO mice was measured under homeostatic conditions. Next, ICH was induced in α5-TKO mice and their littermate controls using the collagenase model. Various parameters, including injury volume, neuronal death, neurological score, brain edema, BBB integrity, inflammatory cell infiltration, and gliosis, were examined at various time points after injury. Under homeostatic conditions, comparable levels of IgG or exogenous tracers were detected in α5-TKO and control mice. Additionally, no differences in tight junction expression, pericyte coverage, and astrocyte polarity were found in these mice. After ICH, α5-TKO mice displayed enlarged injury volume, increased neuronal death, elevated BBB permeability, exacerbated infiltration of inflammatory cells (leukocytes, neutrophils, and mononuclear cells), aggravated gliosis, unchanged brain edema, and worse neurological function, compared to the controls. These findings suggest that endothelial lama5 is dispensable for BBB maintenance under homeostatic conditions but plays a beneficial role in ICH.
Collapse
Affiliation(s)
- Jyoti Gautam
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Newberry EP, Xie Y, Lodeiro C, Solis R, Moritz W, Kennedy S, Barron L, Onufer E, Alpini G, Zhou T, Blaner WS, Chen A, Davidson NO. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB J 2019; 33:4610-4625. [PMID: 30576225 PMCID: PMC6404585 DOI: 10.1096/fj.201801976r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Liver fatty acid binding protein (L-Fabp) modulates lipid trafficking in enterocytes, hepatocytes, and hepatic stellate cells (HSCs). We examined hepatocyte vs. HSC L-Fabp deletion in hepatic metabolic adaptation and fibrotic injury. Floxed L-Fabp mice were bred to different transgenic Cre mice or injected with adeno-associated virus type 8 (AAV8) Cre and fed diets to promote steatosis and fibrosis or were subjected to either bile duct ligation or CCl4 injury. Albumin-Cre-mediated L-Fabp deletion revealed recombination in hepatocytes and HSCs; these findings were confirmed with 2 other floxed alleles. Glial fibrillary acid protein-Cre and platelet-derived growth factor receptor β-Cre-mediated L-Fabp deletion demonstrated recombination only in HSCs. Mice with albumin promoter-driven Cre recombinase (Alb-Cre)-mediated or AAV8-mediated L-Fabp deletion were protected against food withdrawal-induced steatosis. Mice with Alb-Cre-mediated L-Fabp deletion were protected against high saturated fat-induced steatosis and fibrosis, phenocopying germline L-Fabp-/- mice. Mice with HSC-specific L-Fabp deletion exhibited retinyl ester depletion yet demonstrated no alterations in fibrosis. On the other hand, fibrogenic resolution after CCl4 administration was impaired in mice with Alb-Cre-mediated L-Fabp deletion. These findings suggest cell type-specific roles for L-Fabp in mitigating hepatic steatosis and in modulating fibrogenic injury and reversal.-Newberry, E. P., Xie, Y., Lodeiro, C., Solis, R., Moritz, W., Kennedy, S., Barron, L., Onufer, E., Alpini, G., Zhou, T., Blaner, W. S., Chen, A., Davidson, N. O. Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveal distinct roles in fibrogenic injury.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yan Xie
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Lodeiro
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roberto Solis
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William Moritz
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan Kennedy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren Barron
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily Onufer
- Pediatric Surgery Division, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gianfranco Alpini
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - Tianhao Zhou
- Department of Medical Physiology and Internal Medicine, Texas A&M University, Temple, Texas, USA
- Department of Internal Medicine, Texas A&M University, Temple, Texas, USA
| | - William S. Blaner
- Department of Medicine, Columbia University, New York, New York, USA; and
| | - Anping Chen
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas O. Davidson
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Nirwane A, Johnson J, Nguyen B, Miner JH, Yao Y. Mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke. Acta Neuropathol Commun 2019; 7:23. [PMID: 30777135 PMCID: PMC6378751 DOI: 10.1186/s40478-019-0676-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
At the blood-brain barrier (BBB), laminin-α5 is predominantly synthesized by endothelial cells and mural cells. Endothelial laminin-α5 is dispensable for BBB maintenance under homeostatic conditions but inhibits inflammatory cell extravasation in pathological conditions. Whether mural cell-derived laminin-α5 is involved in vascular integrity regulation, however, remains unknown. To answer this question, we generated transgenic mice with laminin-α5 deficiency in mural cells (α5-PKO). Under homeostatic conditions, no defects in BBB integrity and cerebral blood flow (CBF) were observed in α5-PKO mice, suggesting that mural cell-derived laminin-α5 is dispensable for BBB maintenance and CBF regulation under homeostatic conditions. After ischemia-reperfusion (MCAO) injury, however, α5-PKO mice displayed less severe neuronal injury, including reduced infarct volume, decreased neuronal death, and improved neurological function. In addition, α5-PKO mice also showed attenuated vascular damage (milder BBB disruption, reduced inflammatory cell infiltration, decreased brain edema, and diminished hemorrhagic transformation). Mechanistic studies revealed less severe tight junction protein (TJP) loss and pericyte coverage reduction in α5-PKO mice after ischemia-reperfusion injury, indicating that the attenuated ischemic injury in α5-PKO mice is possibly due to less severe vascular damage. These findings suggest that mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke and that inhibiting its signaling may have a neuroprotective effect.
Collapse
|
25
|
Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc 2019; 94:283-306. [PMID: 30073746 DOI: 10.1111/brv.12454] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023]
Abstract
Laminin, an extracellular matrix protein, is widely expressed in the central nervous system (CNS). By interacting with integrin and non-integrin receptors, laminin exerts a large variety of important functions in the CNS in both physiological and pathological conditions. Due to the existence of many laminin isoforms and their differential expression in various cell types in the CNS, the exact functions of each individual laminin molecule in CNS development and homeostasis remain largely unclear. In this review, we first briefly introduce the structure and biochemistry of laminins and their receptors. Next, the dynamic expression of laminins and their receptors in the CNS during both development and in adulthood is summarized in a cell-type-specific manner, which allows appreciation of their functional redundancy/compensation. Furthermore, we discuss the biological functions of laminins and their receptors in CNS development, blood-brain barrier (BBB) maintenance, neurodegeneration, stroke, and neuroinflammation. Last, key challenges and potential future research directions are summarized and discussed. Our goals are to provide a synthetic review to stimulate future studies and promote the formation of new ideas/hypotheses and new lines of research in this field.
Collapse
Affiliation(s)
- Abhijit Nirwane
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| | - Yao Yao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W Green Street, Athens, GA 30602, U.S.A
| |
Collapse
|
26
|
Zhang X, Li Q, Jiang W, Xiong X, Li H, Zhao J, Qi H. LAMA5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia. J Matern Fetal Neonatal Med 2018; 33:1114-1124. [PMID: 30200802 DOI: 10.1080/14767058.2018.1514597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: Preeclampsia (PE) is currently thought to associated with oxidative stress and vascular endothelial dysfunction. LAMA5 is associated with the cell migration, proliferation, and vascular endothelial function. The aims of this study are to investigate the expression patterns of LAMA5 in normal and PE pregnancies, as well as evaluating the effects of LAMA5 on human umbilical vein endothelial cells (HUVECs) function.Methods: LAMA5 expression levels were examined by reverse-transcriptase polymerase chain reaction (RT-PCR) and further confirmed by western blot and immunofluorescence. Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry respectively. Cell migration was assessed by transwell migration assay.Results: LAMA5 expression levels of vascular endothelial cells in PE placentas was significantly decreased than that in normal placentas. LAMA5 small-interfering RNA (siRNA) transfection and hypoxia/reoxygenation (H/R) treatments resulted in decreased proliferation, migration, and vascular formation ability of HUVECs but increased HUVECs apoptosis. Down-regulated LAMA5 could inhibit the protein expression of the PI3K downstream p-AKT and p-MTOR.Conclusions: Down-regulated LAMA5 is associated with PE placenta and restrained HUVECs proliferation, migration, and angiogenesis through PI3K-AKT-MTOR signaling pathways.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Qin Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Wei Jiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Xiong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Haiying Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Jianlin Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| |
Collapse
|
27
|
Moghieb A, Clair G, Mitchell HD, Kitzmiller J, Zink EM, Kim YM, Petyuk V, Shukla A, Moore RJ, Metz TO, Carson J, McDermott JE, Corley RA, Whitsett JA, Ansong C. Time-resolved proteome profiling of normal lung development. Am J Physiol Lung Cell Mol Physiol 2018; 315:L11-L24. [PMID: 29516783 PMCID: PMC6087896 DOI: 10.1152/ajplung.00316.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Biochemical networks mediating normal lung morphogenesis and function have important implications for ameliorating morbidity and mortality in premature infants. Although several transcript-level studies have examined normal lung development, corresponding protein-level analyses are lacking. Here we performed proteomics analysis of murine lungs from embryonic to early adult ages to identify the molecular networks mediating normal lung development. We identified 8,932 proteins, providing a deep and comprehensive view of the lung proteome. Analysis of the proteomics data revealed discrete modules and the underlying regulatory and signaling network modulating their expression during development. Our data support the cell proliferation that characterizes early lung development and highlight responses of the lung to exposure to a nonsterile oxygen-rich ambient environment and the important role of lipid (surfactant) metabolism in lung development. Comparison of dynamic regulation of proteomic and recent transcriptomic analyses identified biological processes under posttranscriptional control. Our study provides a unique proteomic resource for understanding normal lung formation and function and can be freely accessed at Lungmap.net.
Collapse
Affiliation(s)
- Ahmed Moghieb
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Hugh D Mitchell
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Young-Mo Kim
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Vladislav Petyuk
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Anil Shukla
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Thomas O Metz
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - James Carson
- Texas Advanced Computing Center, University of Texas at Austin , Austin, Texas
| | - Jason E McDermott
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| |
Collapse
|
28
|
Omar MH, Kerrisk Campbell M, Xiao X, Zhong Q, Brunken WJ, Miner JH, Greer CA, Koleske AJ. CNS Neurons Deposit Laminin α5 to Stabilize Synapses. Cell Rep 2018; 21:1281-1292. [PMID: 29091766 PMCID: PMC5776391 DOI: 10.1016/j.celrep.2017.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 11/28/2022] Open
Abstract
Synapses in the developing brain are structurally dynamic but become stable by early adulthood. We demonstrate here that an α5-subunit-containing laminin stabilizes synapses during this developmental transition. Hippocampal neurons deposit laminin α5 at synapses during adolescence as connections stabilize. Disruption of laminin α5 in neurons causes dramatic fluctuations in dendritic spine head size that can be rescued by exogenous α5-containing laminin. Conditional deletion of laminin α5 in vivo increases dendritic spine size and leads to an age-dependent loss of synapses accompanied by behavioral defects. Remaining synapses have larger postsynaptic densities and enhanced neurotransmission. Finally, we provide evidence that laminin α5 acts through an integrin α3β1-Abl2 kinase-p190RhoGAP signaling cascade and partners with laminin β2 to regulate dendritic spine density and behavior. Together, our results identify laminin α5 as a stabilizer of dendritic spines and synapses in the brain and elucidate key cellular and molecular mechanisms by which it acts.
Collapse
Affiliation(s)
- Mitchell H Omar
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Meghan Kerrisk Campbell
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Xiao Xiao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Qiaonan Zhong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - William J Brunken
- Department of Ophthalmology, Upstate Medical University, Syracuse, NY 13202, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 2018; 8:8334. [PMID: 29844468 PMCID: PMC5974327 DOI: 10.1038/s41598-018-26673-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Lung alveolarization requires precise coordination of cell growth with extracellular matrix (ECM) synthesis and deposition. The role of extracellular matrices in alveogenesis is not fully understood, because prior knowledge is largely extrapolated from two-dimensional structural analysis. Herein, we studied temporospatial changes of two important ECM proteins, laminin and elastin that are tightly associated with alveolar capillary growth and lung elastic recoil respectively, during both mouse and human lung alveolarization. By combining protein immunofluorescence staining with two- and three-dimensional imaging, we found that the laminin network was simplified along with the thinning of septal walls during alveogenesis, and more tightly associated with alveolar endothelial cells in matured lung. In contrast, elastin fibers were initially localized to the saccular openings of nascent alveoli, forming a ring-like structure. Then, throughout alveolar growth, the number of such alveolar mouth ring-like structures increased, while the relative ring size decreased. These rings were interconnected via additional elastin fibers. The apparent patches and dots of elastin at the tips of alveolar septae found in two-dimensional images were cross sections of elastin ring fibers in the three-dimension. Thus, the previous concept that deposition of elastin at alveolar tips drives septal inward growth may potentially be conceptually challenged by our data.
Collapse
|
30
|
Zhang X, Biagini Myers JM, Burleson JD, Ulm A, Bryan KS, Chen X, Weirauch MT, Baker TA, Butsch Kovacic MS, Ji H. Nasal DNA methylation is associated with childhood asthma. Epigenomics 2018; 10:629-641. [PMID: 29692198 DOI: 10.2217/epi-2017-0127] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM We aim to study DNA methylation (DNAm) variations associated with childhood asthma. METHODS Nasal DNAm was compared between sibling pairs discordant for asthma, 29 sib pairs for genome-wide association studies and 54 sib pairs for verification by pyrosequencing. Associations of methylation with asthma symptoms, allergy and environmental exposures were evaluated. In vitro experiments and functional genomic analyses were performed to explore biologic relevance. RESULTS Three CpGs were associated with asthma. cg14830002 was associated with allergies in nonasthmatics. cg23602092 was associated with asthma symptoms. cg14830002 and cg23602092 were associated with traffic-related air pollution exposure. Nearby genes were transcriptionally regulated by diesel exhaust, house dust mite and 5-aza-2'-deoxycytidine. Active chromatin marks and transcription factor binding were found around these sites. CONCLUSION We identified novel DNAm variations associated with childhood asthma and suggested new disease-contributing epigenetic mechanisms.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Ulm
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kelly S Bryan
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Center for Autoimmune Genomics & Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Biomedical Informatics & Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Theresa A Baker
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda S Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong Ji
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
31
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
32
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
33
|
Makanya AN. Membrane mediated development of the vertebrate blood-gas-barrier. ACTA ACUST UNITED AC 2016; 108:85-97. [PMID: 26991887 DOI: 10.1002/bdrc.21120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/24/2023]
Abstract
During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.
Collapse
Affiliation(s)
- Andrew N Makanya
- Department of Vet Anatomy and Physiology, Riverside Drive, Chiromo Campus, University of , Box 30197-00100, Nairobi
| |
Collapse
|
34
|
Patel TR, Nikodemus D, Besong TM, Reuten R, Meier M, Harding SE, Winzor DJ, Koch M, Stetefeld J. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction. Matrix Biol 2016. [DOI: 10.1016/j.matbio.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 2014; 141:4751-62. [PMID: 25395457 PMCID: PMC4299273 DOI: 10.1242/dev.117200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
Abstract
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Collapse
Affiliation(s)
- Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA 92103, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Roy Zent
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Extracellular matrix as a driver for lung regeneration. Ann Biomed Eng 2014; 43:568-76. [PMID: 25344351 DOI: 10.1007/s10439-014-1167-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.
Collapse
|
37
|
Pais RS, Moreno-Barriuso N, Hernández-Porras I, López IP, De Las Rivas J, Pichel JG. Transcriptome analysis in prenatal IGF1-deficient mice identifies molecular pathways and target genes involved in distal lung differentiation. PLoS One 2013; 8:e83028. [PMID: 24391734 PMCID: PMC3877002 DOI: 10.1371/journal.pone.0083028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/31/2023] Open
Abstract
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development.
Collapse
Affiliation(s)
- Rosete Sofía Pais
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Nuria Moreno-Barriuso
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Isabel Hernández-Porras
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - Icíar Paula López
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
| | - Javier De Las Rivas
- Instituto de Biología Molecular y Celular del Cáncer - Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas – University of Salamanca, Salamanca, Spain
| | - José García Pichel
- Centro de Investigación Biomédica de la Rioja, Fundación Rioja Salud, Logroño, Spain
- * E-mail:
| |
Collapse
|
38
|
Mahdi Shariati K, Mohammad Reza N, Mehdi J, Alireza F, Mojtaba S, Bideskan AE. Effects of maternal nicotine exposure on expression of laminin alpha 5 in lung tissue of newborn. Pak J Biol Sci 2013; 15:1168-75. [PMID: 23755407 DOI: 10.3923/pjbs.2012.1168.1175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Maternal smoking has been clearly demonstrated to be associated with increased health problems in infants and children. Nicotine is the chemical substance with high level of toxicity. It crosses through the placenta and accumulates in the developing organs of fetus. Previous investigation indicated that maternal nicotine exposures induce decreased fibronectin expression in lung parenchyma. In this study, the effect of maternal nicotine exposure on laminin expression of the newborn mice lungs has been evaluated. Female pregnant Balb/C mice were divided randomly in to four groups as fallow: Experimental group 1 (Exp D1); was received 3 mg kg(-1) nicotine intra peritoneal injection (IP) from gestational day 7 (GD7) to the last day of pregnancy, Experimental group 2 (Exp D14); was received 3 mg kg(-1) nicotine from GD7 to postnatal day 14, Groups 3 and 4; as sham control groups (Sha-Con) were received the same volume (3 mg kg(-1)) of normal saline parallel to experimental groups. At the end of exposure times, all of newborns were anesthetized; their lungs were removed and prepared for immunohistochemical method and real-time polymerase chain reaction. The finding indicated that laminin alpha 5 (Lama5) mRNA expressions in the lung of newborn in the nicotine treated Exp D1 decreased by 0.63 fold but increased in Exp D14 by 1.57 fold comparing to Sh-Con groups. Lama5 immunoreactivity was not similar in different parts of the lungs including alveoli and bronchiole, having a significant increase in the experimental groups in contrast to the Sh-Con groups. However, increase in immunoreactivity observed more in Exp D14. Immunoreactivity intensity in small vessels of all experimental groups was not significantly different. These data also indicate that maternal nicotine exposure may induce abnormal laminin expression which may cause defects in lung function during life time.
Collapse
Affiliation(s)
- Kohbanani Mahdi Shariati
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Kulig KM, Luo X, Finkelstein EB, Liu XH, Goldman SM, Sundback CA, Vacanti JP, Neville CM. Biologic properties of surgical scaffold materials derived from dermal ECM. Biomaterials 2013; 34:5776-84. [PMID: 23642537 DOI: 10.1016/j.biomaterials.2013.02.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/19/2013] [Indexed: 01/15/2023]
Abstract
Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue. Surgical scaffold materials are available from several companies and are unique products manufactured by proprietary methodology. A significant need exists for a more thorough understanding of scaffold properties that impact the early steps of host cell recruitment and infiltration. In this study, a panel of in vitro assays was used to make direct comparisons of several similar, commercially-available materials: Alloderm, Medeor Matrix, Permacol, and Strattice. Differences in the materials were detected for both cell signaling and scaffold architecture-dependent cell invasion. Material-conditioned media studies found Medeor Matrix to have the greatest positive effect upon cell proliferation and induction of migration. Strattice provided the greatest chemotaxis signaling and best suppressed apoptotic induction. Among assays measuring structure-dependent properties, Medeor Matrix was superior for cell attachment, followed by Permacol. Only Alloderm and Medeor Matrix supported chemotaxis-driven cell invasion beyond the most superficial zone. Medeor Matrix was the only material in the chorioallantoic membrane assay to support substantial cell invasion. These results indicate that both biologic and structural properties need to be carefully assessed in the considerable ongoing efforts to develop new uses and products in this important class of biomaterials.
Collapse
Affiliation(s)
- Katherine M Kulig
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nechiporuk T, Klezovitch O, Nguyen L, Vasioukhin V. Dlg5 maintains apical aPKC and regulates progenitor differentiation during lung morphogenesis. Dev Biol 2013; 377:375-84. [PMID: 23466739 DOI: 10.1016/j.ydbio.2013.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/18/2022]
Abstract
Cell polarity plays an important role in tissue morphogenesis; however, the mechanisms of polarity and their role in mammalian development are still poorly understood. We show here that membrane-associated guanylate kinase protein Dlg5 is required for proper branching morphogenesis and progenitor differentiation in mammalian lung. We found that during lung development Dlg5 functions as an apical-basal polarity protein, which is necessary for the apical maintenance of atypical protein kinase C (aPKC). These results identify Dlg5 as a regulator of apical polarity complexes and uncover the critical function of Dlg5 in branching morphogenesis and differentiation of lung progenitor cells.
Collapse
Affiliation(s)
- Tamilla Nechiporuk
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, C3-168, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
41
|
Pouliot N, Kusuma N. Laminin-511: a multi-functional adhesion protein regulating cell migration, tumor invasion and metastasis. Cell Adh Migr 2012; 7:142-9. [PMID: 23076212 PMCID: PMC3544778 DOI: 10.4161/cam.22125] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laminins are major constituents of basement membranes. At least 16 isoforms have now been described, each with distinct spatio-temporal expression patterns and functions. The laminin-511 heterotrimer (α5β1γ1) is one of the more recent isoforms to be identified and a potent adhesive and pro-migratory substrate for a variety of normal and tumor cell lines in vitro. As our understanding of its precise function in normal tissues and in pathologies is rapidly unraveling, current evidence suggests an important regulatory role in cancer. This review describes published data on laminin-511 expression in several malignancies and experimental evidence from both in vitro and in vivo studies supporting its functional role during tumor progression. A particular emphasis is put on more recent studies from our laboratory and that of others indicating that laminin-511 contributes to tumor dissemination and metastasis in advanced breast carcinomas and other tumor types. Collectively, the experimental evidence suggests that high expression of laminin-511 has prognostic significance and that targeting tumor-laminin-511 interactions may have therapeutic potential in advanced cancer patients.
Collapse
Affiliation(s)
- Normand Pouliot
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | | |
Collapse
|
42
|
Spenlé C, Simon-Assmann P, Orend G, Miner JH. Laminin α5 guides tissue patterning and organogenesis. Cell Adh Migr 2012; 7:90-100. [PMID: 23076210 PMCID: PMC3544791 DOI: 10.4161/cam.22236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Laminins (LM) are extracellular matrix molecules that contribute to and are required for the formation of basement membranes. They participate in the modulation of epithelial/mesenchymal interactions and are implicated in organogenesis and maintenance of organ homeostasis. Among the LM molecules, the LM α5 chain (LMα5) is one of the most widely distributed LM in the developing and mature organism. Its presence in some basement membranes during embryogenesis is absolutely required for maintenance of basement membrane integrity and thus for proper organogenesis. LMα5 also regulates the expression of genes important for major biological processes, in part by repressing or activating signaling pathways, depending upon the physiological context.
Collapse
|
43
|
Kim ST, Adair-Kirk TL, Senior RM, Miner JH. Functional consequences of cell type-restricted expression of laminin α5 in mouse placental labyrinth and kidney glomerular capillaries. PLoS One 2012; 7:e41348. [PMID: 22911783 PMCID: PMC3401121 DOI: 10.1371/journal.pone.0041348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/20/2012] [Indexed: 11/25/2022] Open
Abstract
The labyrinth is the highly vascularized part of the rodent placenta that allows efficient transfer of gases, nutrients, wastes, and other molecules between the maternal and embryonic circulations. These two blood compartments are separated by blastocyst-derived trophoblasts and endothelial cells with an intervening basement membrane that contains laminin and other typical basement membrane components. Previously we reported that the labyrinth of laminin α5 knockout (LMα5−/−) embryos exhibits reduced vascularization and detachment of endothelial cells from the basement membrane, which normally contains LMα5. As very little is known about the origin of this vascular basement membrane, we investigated the cellular requirements for LMα5 expression in the mouse placental labyrinth. By fluorescence-activated cell sorting and RT-PCR we confirmed that both endothelial cells and trophoblasts normally express LMα5. Using Cre-loxP technology and doxycycline-mediated gene expression, we generated genetically mosaic placentas in which either the trophoblasts or the endothelial cells, but not both, expressed LMα5. We found that the overall architecture of the labyrinth was normal as long as one of these two cell types expressed LMα5, even if it was transgene-derived human laminin α5. These results suggest that laminin trimers containing α5 that are synthesized and secreted by endothelium or by trophoblasts are capable of integrating into the basement membrane and promoting normal vascularization of the placenta. Additional studies showed that endothelium-expressed human LMα5 can support vascularization of the kidney glomerulus, consistent with previous studies using a tissue grafting approach.
Collapse
Affiliation(s)
- Sung Tae Kim
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tracy L. Adair-Kirk
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert M. Senior
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
44
|
Katagiri F, Sudo M, Hamakubo T, Hozumi K, Nomizu M, Kikkawa Y. Identification of active sequences in the L4a domain of laminin α5 promoting neurite elongation. Biochemistry 2012; 51:4950-8. [PMID: 22621685 DOI: 10.1021/bi300214g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Laminin α5 is an extracellular matrix protein containing multiple domains implicated in various biological processes, such as embryogenesis and renal function. In this study, we used recombinant proteins and synthetic peptides to identify amino acid residues within the short arm region of α5 that were critical for neurite outgrowth activity. The short arm of α5 contains three globular domains (LN, L4a, and L4b) and three rodlike elements (LEa, LEb, and LEc). Recombinant proteins comprised of the α5 short arm fused with a Fc tag produced in 293 cells were assayed for PC12 (pheochromocytoma) cell adhesion and neurite outgrowth activities. Although it did not have cell attachment activity, neurite outgrowth was promoted by the recombinant protein. To narrow the region involved in neurite outgrowth activity, two truncated recombinant proteins were produced in 293 cells. A recombinant protein lacking L4a and LEb lost activity. Furthermore, we synthesized 78 partially overlapping peptides representing most of the amino acid sequences of L4a and LEb. Of the peptides, A5-76 [mouse laminin α5 928-939 (TSPDLFRLVFRY) in L4a] exhibited neurite outgrowth activity. Mutagenesis studies showed that Phe(933) and Arg(934) were involved in neurite outgrowth activity. Moreover, inhibition assays using anti-integrin monoclonal antibodies showed that neurite outgrowth on the α5 short arm was partially mediated by integrin α1β1. However, the antibodies to integrin α1 and β1 did not inhibit neurite elongation on the A5-76 peptide. These results suggest that in addition to cellular interactions with the active site in the L4a domain, the binding of integrin α1β1 seems to modulate neurite elongation on the short arm of α5.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Urich D, Eisenberg JL, Hamill KJ, Takawira D, Chiarella SE, Soberanes S, Gonzalez A, Koentgen F, Manghi T, Hopkinson SB, Misharin AV, Perlman H, Mutlu GM, Budinger GRS, Jones JCR. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury. J Cell Sci 2012; 124:2927-37. [PMID: 21878500 DOI: 10.1242/jcs.080911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury.
Collapse
Affiliation(s)
- Daniela Urich
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 2011; 16:2581-91. [PMID: 20297903 DOI: 10.1089/ten.tea.2009.0659] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We developed a decellularized murine lung matrix bioreactor system that could be used to evaluate the potential of stem cells to regenerate lung tissue. Lungs from 2-3-month-old C57BL/6 female mice were excised en bloc with the trachea and heart, and decellularized with sequential solutions of distilled water, detergents, NaCl, and porcine pancreatic DNase. The remaining matrix was cannulated and suspended in small airway growth medium, attached to a ventilator to simulate normal, murine breathing-induced stretch. After 7 days in an incubator, lung matrices were analyzed histologically. Scanning electron microscopy and histochemical staining demonstrated that the pulmonary matrix was intact and that the geographic placement of the proximal and distal airways, alveoli and vessels, and the basement membrane of these structures all remained intact. Decellularization was confirmed by the absence of nuclear 4',6-diamidino-2-phenylindole staining and negative polymerase chain reaction for genomic DNA. Collagen content was maintained at normal levels. Elastin, laminin, and glycosaminglycans were also present, although at lower levels compared to nondecellularized lungs. The decellularized lung matrix bioreactor was capable of supporting growth of fetal alveolar type II cells. Analysis of day 7 cryosections of fetal-cell-injected lung matrices showed pro-Sp-C, cytokeratin 18, and 4',6-diamidino-2-phenylindole-positive cells lining alveolar areas that appeared to be attached to the matrix. These data illustrate the potential of using decellularized lungs as a natural three-dimensional bioengineering matrix as well as provide a model for the study of lung regeneration from pulmonary stem cells.
Collapse
Affiliation(s)
- Andrew P Price
- Blood and Marrow Transplant Program, Division of Hematology-Oncology, Department of Pediatrics, University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
During murine peri-implantation development, the egg cylinder forms from a solid cell mass by the apoptotic removal of inner cells that do not contact the basement membrane (BM) and the selective survival of the epiblast epithelium, which does. The signaling pathways that mediate this fundamental biological process are largely unknown. Here we demonstrate that Rac1 ablation in embryonic stem cell-derived embryoid bodies (EBs) leads to massive apoptosis of epiblast cells in contact with the BM. Expression of wild-type Rac1 in the mutant EBs rescues the BM-contacting epiblast, while expression of a constitutively active Rac1 additionally blocks the apoptosis of inner cells and cavitation, indicating that the spatially regulated activation of Rac1 is required for epithelial cyst formation. We further show that Rac1 is activated through integrin-mediated recruitment of the Crk-DOCK180 complex and mediates BM-dependent epiblast survival through activating the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. Our results reveal a signaling cascade triggered by cell-BM interactions essential for epithelial morphogenesis.
Collapse
|
48
|
Goldberg S, Adair-Kirk TL, Senior RM, Miner JH. Maintenance of glomerular filtration barrier integrity requires laminin alpha5. J Am Soc Nephrol 2010; 21:579-86. [PMID: 20150535 DOI: 10.1681/asn.2009091004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutation of the mouse laminin alpha5 gene results in a variety of developmental defects, including defects in kidney structure and function. Whereas the total absence of laminin alpha5 results in breakdown of the glomerular basement membrane (GBM) and failed glomerular vascularization, a hypomorphic Lama5 mutation (the Lama5(neo) allele) results in proteinuria, hematuria, polycystic kidney disease (PKD), and death 3 to 4 weeks after birth. Here, we examined the role of podocyte-derived laminin alpha5 via podocyte-specific inactivation of Lama5 and podocyte-specific rescue of the Lama5(neo) mutation. Podocyte-specific inactivation of Lama5 resulted in varying degrees of proteinuria and rates of progression to nephrotic syndrome. The GBM of proteinuric mice appeared thickened and "moth-eaten," and podocyte foot processes became effaced. Podocyte-specific restoration of laminin alpha5 production using two distinct strategies in Lama5(neo/neo) mice resulted in the resolution of proteinuria, hematuria, and PKD. These results suggest that the development of normal GBM structure and function requires podocyte-derived laminin alpha5 during and after glomerulogenesis and present a unique mechanism for the pathogenesis of PKD in these mice.
Collapse
Affiliation(s)
- Seth Goldberg
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
49
|
Shi W, Xu J, Warburton D. Development, repair and fibrosis: what is common and why it matters. Respirology 2010; 14:656-65. [PMID: 19659647 DOI: 10.1111/j.1440-1843.2009.01565.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complex structure of the lung is developed sequentially, initially by epithelial tube branching and later by septation of terminal air sacs with accompanying coordinated growth of a variety of lung epithelial and mesenchymal cells. Groups of transcriptional factors, peptide growth factors and their intracellular signaling regulators, as well as extracellular matrix proteins are programmed to be expressed at appropriate levels in the right place at the right time to control normal lung formation. Studies of lung development and lung repair/fibrosis to date have discovered that many of the same factors that control normal development are also key players in lung injury repair and fibrosis. Transforming growth factor-beta (TGF-beta) family peptide signaling is a prime example. Lack of TGF-beta signaling results in abnormal lung branching morphogenesis and alveolarization during development, whereas excessive amounts of TGF-beta signaling cause severe hypoplasia in the immature lung and fibrosis in mature lung. This leads us to propose the 'Goldilocks' hypothesis of regulatory signaling in lung development and injury repair that everything must be done just right!
Collapse
Affiliation(s)
- Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, 4650 Sunset Blvd., MS 35, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|
50
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009; 339:93-110. [PMID: 19885678 DOI: 10.1007/s00441-009-0893-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellular signaling.
Collapse
|