1
|
Sigurðardóttir H, Ablondi M, Kristjansson T, Lindgren G, Eriksson S. Genetic diversity and signatures of selection in Icelandic horses and Exmoor ponies. BMC Genomics 2024; 25:772. [PMID: 39118059 PMCID: PMC11308356 DOI: 10.1186/s12864-024-10682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.
Collapse
Affiliation(s)
- Heiðrún Sigurðardóttir
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden.
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland.
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - Thorvaldur Kristjansson
- Faculty of Agricultural Sciences, Agricultural University of Iceland, Hvanneyri, Borgarbyggð, 311, Iceland
| | - Gabriella Lindgren
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, Leuven, 3001, Belgium
| | - Susanne Eriksson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, Uppsala, 75007, Sweden
| |
Collapse
|
2
|
Dershowitz LB, Kaltschmidt JA. Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology. Cell Mol Gastroenterol Hepatol 2024; 18:101332. [PMID: 38479486 PMCID: PMC11176954 DOI: 10.1016/j.jcmgh.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|
3
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
4
|
Ganz J, Ratcliffe EM. Who's talking to whom: microbiome-enteric nervous system interactions in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G196-G206. [PMID: 36625480 PMCID: PMC9988524 DOI: 10.1152/ajpgi.00166.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States
| | | |
Collapse
|
5
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
6
|
Boesmans W, Nash A, Tasnády KR, Yang W, Stamp LA, Hao MM. Development, Diversity, and Neurogenic Capacity of Enteric Glia. Front Cell Dev Biol 2022; 9:775102. [PMID: 35111752 PMCID: PMC8801887 DOI: 10.3389/fcell.2021.775102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Enteric glia are a fascinating population of cells. Initially identified in the gut wall as the "support" cells of the enteric nervous system, studies over the past 20 years have unveiled a vast array of functions carried out by enteric glia. They mediate enteric nervous system signalling and play a vital role in the local regulation of gut functions. Enteric glial cells interact with other gastrointestinal cell types such as those of the epithelium and immune system to preserve homeostasis, and are perceptive to luminal content. Their functional versatility and phenotypic heterogeneity are mirrored by an extensive level of plasticity, illustrated by their reactivity in conditions associated with enteric nervous system dysfunction and disease. As one of the hallmarks of their plasticity and extending their operative relationship with enteric neurons, enteric glia also display neurogenic potential. In this review, we focus on the development of enteric glial cells, and the mechanisms behind their heterogeneity in the adult gut. In addition, we discuss what is currently known about the role of enteric glia as neural precursors in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Amelia Nash
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kinga R. Tasnády
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taiwan, Taiwan
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Clinical significance and biological effect of ZFAS1 in Hirschsprung's disease and preliminary exploration of its underlying mechanisms using integrated bioinformatics analysis. Ir J Med Sci 2022; 191:2669-2675. [PMID: 34993837 DOI: 10.1007/s11845-021-02906-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pathogenesis of Hirschprung's disease (HSCR) remains largely unknown. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) has been found to have vital regulatory roles in a number of diseases. However, the association between ZFAS1 and HSCR has not been reported. AIMS The present study was aimed at investigating the expression pattern and biological function and underlying mechanisms of ZFAS1 in HSCR. METHODS The expression of ZFAS1 was detected in surgical excision samples of 30 children diagnosed with HSCR and 30 control cases. Functional experiments were conducted after over-expression or knockdown of ZFAS1 in human neuronal cell line SH-SY-5Y. Multiple bioinformatics databases and tools were used to explore the potential regulatory mechanisms of ZFAS1 in HSCR. RESULTS Compared with the control group, the HSCR group has a significantly higher level of ZFAS1(P = 0.0012). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.7133 (P = 0.0045), which indicated good biomarker potency of ZFAS1 in HSCR. Functionally, over-expression of ZFAS1 significantly inhibited cell proliferation, whereas knockdown of ZFAS1 promoted cell proliferation and colony formation of SH-SY-5Y cells. Using multiple databases, a competing endogenous RNA (ceRNA) network, containing ZFAS1,13 candidate miRNAs, and 110 potential gene targets, was established. Further enrichment analysis suggested that ZFAS1 may regulate a number of genes and signaling pathways that were crucial for neuron development. CONCLUSIONS Our findings revealed that ZFAS1 may participate in the pathogenesis of HSCR through regulating neuron functions. Bioinformatics analysis highlighted an important perspective for the following mechanical researches.
Collapse
|
8
|
Taukulis IA, Olszewski RT, Korrapati S, Fernandez KA, Boger ET, Fitzgerald TS, Morell RJ, Cunningham LL, Hoa M. Single-Cell RNA-Seq of Cisplatin-Treated Adult Stria Vascularis Identifies Cell Type-Specific Regulatory Networks and Novel Therapeutic Gene Targets. Front Mol Neurosci 2021; 14:718241. [PMID: 34566577 PMCID: PMC8458580 DOI: 10.3389/fnmol.2021.718241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
The endocochlear potential (EP) generated by the stria vascularis (SV) is necessary for hair cell mechanotransduction in the mammalian cochlea. We sought to create a model of EP dysfunction for the purposes of transcriptional analysis and treatment testing. By administering a single dose of cisplatin, a commonly prescribed cancer treatment drug with ototoxic side effects, to the adult mouse, we acutely disrupt EP generation. By combining these data with single cell RNA-sequencing findings, we identify transcriptional changes induced by cisplatin exposure, and by extension transcriptional changes accompanying EP reduction, in the major cell types of the SV. We use these data to identify gene regulatory networks unique to cisplatin treated SV, as well as the differentially expressed and druggable gene targets within those networks. Our results reconstruct transcriptional responses that occur in gene expression on the cellular level while identifying possible targets for interventions not only in cisplatin ototoxicity but also in EP dysfunction.
Collapse
Affiliation(s)
- Ian A. Taukulis
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Rafal T. Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Soumya Korrapati
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Katharine A. Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Erich T. Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Tracy S. Fitzgerald
- Mouse Auditory Testing Core Facility, National Institutes of Health, Bethesda, MD, United States
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Birkhoff JC, Brouwer RWW, Kolovos P, Korporaal AL, Bermejo-Santos A, Boltsis I, Nowosad K, van den Hout MCGN, Grosveld FG, van IJcken WFJ, Huylebroeck D, Conidi A. Targeted chromatin conformation analysis identifies novel distal neural enhancers of ZEB2 in pluripotent stem cell differentiation. Hum Mol Genet 2021; 29:2535-2550. [PMID: 32628253 PMCID: PMC7471508 DOI: 10.1093/hmg/ddaa141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The transcription factor zinc finger E-box binding protein 2 (ZEB2) controls embryonic and adult cell fate decisions and cellular maturation in many stem/progenitor cell types. Defects in these processes in specific cell types underlie several aspects of Mowat–Wilson syndrome (MOWS), which is caused by ZEB2 haplo-insufficiency. Human ZEB2, like mouse Zeb2, is located on chromosome 2 downstream of a ±3.5 Mb-long gene-desert, lacking any protein-coding gene. Using temporal targeted chromatin capture (T2C), we show major chromatin structural changes based on mapping in-cis proximities between the ZEB2 promoter and this gene desert during neural differentiation of human-induced pluripotent stem cells, including at early neuroprogenitor cell (NPC)/rosette state, where ZEB2 mRNA levels increase significantly. Combining T2C with histone-3 acetylation mapping, we identified three novel candidate enhancers about 500 kb upstream of the ZEB2 transcription start site. Functional luciferase-based assays in heterologous cells and NPCs reveal co-operation between these three enhancers. This study is the first to document in-cis Regulatory Elements located in ZEB2’s gene desert. The results further show the usability of T2C for future studies of ZEB2 REs in differentiation and maturation of multiple cell types and the molecular characterization of newly identified MOWS patients that lack mutations in ZEB2 protein-coding exons.
Collapse
Affiliation(s)
- Judith C Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Rutger W W Brouwer
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Anne L Korporaal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ana Bermejo-Santos
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Center for Biomics, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven B-3000, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, CN 3015, The Netherlands
| |
Collapse
|
10
|
Kuil LE, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo MM, Tam PKH, Alves MM, Brooks AS, Hofstra RMW, Brosens E. Size matters: Large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet 2021; 17:e1009698. [PMID: 34358225 PMCID: PMC8372947 DOI: 10.1371/journal.pgen.1009698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/18/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses—often de novo—contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease. Hirschsprung disease is a congenital disorder characterized by the absence of intestinal neurons in the distal part of the intestine. It is a complex genetic disorder in which multiple variations in our genome combined, result in disease. One of these variations are Copy Number Variations (CNVs): large segments of our genome that are duplicated or deleted. Patients often have Hirschsprung disease without other symptoms. However, a proportion of patients has additional associated anatomical malformations and neurological symptoms. We found that CNVs, present in patients with associated anomalies, are more often larger compared to unaffected controls or Hirschsprung patients without other symptoms. Furthermore, Copy Number (CN) losses are enriched for constrained coding regions (CCR; genes usually not impacted by genomic alterations in unaffected controls) of which the expression is higher in the developing intestinal neurons compared to the intestine. We modelled loss of these candidate genes in zebrafish by disrupting the zebrafish orthologues by genome editing. For several genes this resulted in changes in intestinal neuron development, reminiscent of HSCR observed in patients. The results presented here highlight the importance of Copy Number profiling, zebrafish validation and evaluating all CCR expressed in developing intestinal neurons during diagnostic evaluation.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katherine C. MacKenzie
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clara S. Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thuy Linh Le
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelius E. J. Sloots
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Conny Meeussen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | | | - Paul K. H. Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
12
|
Chatterjee S, Chakravarti A. A gene regulatory network explains RET-EDNRB epistasis in Hirschsprung disease. Hum Mol Genet 2019; 28:3137-3147. [PMID: 31313802 PMCID: PMC7275776 DOI: 10.1093/hmg/ddz149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Disruptions in gene regulatory networks (GRNs), driven by multiple deleterious variants, potentially underlie complex traits and diseases. Hirschsprung disease (HSCR), a multifactorial disorder of enteric nervous system (ENS) development, is associated with at least 24 genes and seven chromosomal loci, with RET and EDNRB as its major genes. We previously demonstrated that RET transcription in the ENS is controlled by an extensive GRN involving the transcription factors (TFs) RARB, GATA2 and SOX10 and other HSCR genes. We now demonstrate, using human and mouse cellular and animal models, that EDNRB is transcriptionally regulated in the ENS by GATA2, SOX10 and NKX2.5 TFs. Significantly, RET and EDNRB expression is regulated by their shared use of GATA2 and SOX10, and in turn, these TFs are controlled by EDNRB and RET in a dose-dependent manner. This study expands the ENS development GRN to include both RET and EDNRB, uncovers the mechanistic basis for RET-EDNRB epistasis and emphasizes how functionally different genes associated with a complex disorder can be united through a common GRN.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, Kapoor A, Coe BP, Nguyen KDH, Gupta N, Gabriel S, Eichler EE, Berrios C, Chakravarti A. Molecular Genetic Anatomy and Risk Profile of Hirschsprung's Disease. N Engl J Med 2019; 380:1421-1432. [PMID: 30970187 PMCID: PMC6596298 DOI: 10.1056/nejmoa1706594] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hirschsprung's disease, or congenital aganglionosis, is a developmental disorder of the enteric nervous system and is the most common cause of intestinal obstruction in neonates and infants. The disease has more than 80% heritability, including significant associations with rare and common sequence variants in genes related to the enteric nervous system, as well as with monogenic and chromosomal syndromes. METHODS We genotyped and exome-sequenced samples from 190 patients with Hirschsprung's disease to quantify the genetic burden in patients with this condition. DNA sequence variants, large copy-number variants, and karyotype variants in probands were considered to be pathogenic when they were significantly associated with Hirschsprung's disease or another neurodevelopmental disorder. Novel genes were confirmed by functional studies in the mouse and human embryonic gut and in zebrafish embryos. RESULTS The presence of five or more variants in four noncoding elements defined a widespread risk of Hirschsprung's disease (48.4% of patients and 17.1% of controls; odds ratio, 4.54; 95% confidence interval [CI], 3.19 to 6.46). Rare coding variants in 24 genes that play roles in enteric neural-crest cell fate, 7 of which were novel, were also common (34.7% of patients and 5.0% of controls) and conferred a much greater risk than noncoding variants (odds ratio, 10.02; 95% CI, 6.45 to 15.58). Large copy-number variants, which were present in fewer patients (11.4%, as compared with 0.2% of controls), conferred the highest risk (odds ratio, 63.07; 95% CI, 36.75 to 108.25). At least one identifiable genetic risk factor was found in 72.1% of the patients, and at least 48.4% of patients had a structural or regulatory deficiency in the gene encoding receptor tyrosine kinase (RET). For individual patients, the estimated risk of Hirschsprung's disease ranged from 5.33 cases per 100,000 live births (approximately 1 per 18,800) to 8.38 per 1000 live births (approximately 1 per 120). CONCLUSIONS Among the patients in our study, Hirschsprung's disease arose from common noncoding variants, rare coding variants, and copy-number variants affecting genes involved in enteric neural-crest cell fate that exacerbate the widespread genetic susceptibility associated with RET. For individual patients, the genotype-specific odds ratios varied by a factor of approximately 67, which provides a basis for risk stratification and genetic counseling. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Joseph M Tilghman
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Albee Y Ling
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Tychele N Turner
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Maria X Sosa
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Niklas Krumm
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Sumantra Chatterjee
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Ashish Kapoor
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Bradley P Coe
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Khanh-Dung H Nguyen
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Namrata Gupta
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Stacey Gabriel
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Evan E Eichler
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Courtney Berrios
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Aravinda Chakravarti
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| |
Collapse
|
14
|
Morales-Miranda A. Congenital intestinal stenosis and Hirschsprung's disease: two extremely rare pathologies in a newborn puppy. BMC Vet Res 2019; 15:92. [PMID: 30866930 PMCID: PMC6416937 DOI: 10.1186/s12917-019-1806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/08/2019] [Indexed: 11/30/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is a common congenital malformation of the enteric nervous system (ENS). During fetal development, ganglion cells of the ENS are derived from neural crest cells that migrate to the bowel. These cells reside principally in two ganglionated plexus: 1) The myenteric plexus, extending from the esophagus to the anus, and 2) submucous plexus, extending from the duodenum to the anus. In large animal species, there is a third plexus called Henle’s or Schabadasch’s plexus. ENS ganglion cells play a key role in normal gastrointestinal motility, respond to sensory stimuli and regulate blood flow. Both plexus show a high degree of independence from the central nervous system. Alterations in the embryonic development of the ENS can induce multiple pathologies in animal models and humans. Case presentation The present case was a female the fifth born in a litter of 5 puppies. At about 2–3 weeks of age, she suffered from abdominal distension, pain, and constipation. At approximately 8–10 weeks of age, the puppy started to vomit abundantly, and the regurgitated food appeared undigested. Progressive abdominal distention was observed, with quite visible peristaltic movements and more frequent vomiting episodes. The abdominal radiographs, based on AP and side projections, revealed an enlargement of the abdominal diameter and an increased width in the epigastric region. At 12 weeks of age, exploratory surgery revealed a stenotic segment in the jejunum, followed by a small transition zone and then a significantly reduced diameter. Immunohistochemical examinations were performed using antibodies against calretinin, S-100 protein, CD56, neuron specific enolase (NSE) and synaptophysin, which are the biological markers for diagnosing HSCR. Conclusion A reduced number of ganglion cells (1–3 cells per ganglion) were found. There was no specific staining pattern for many of these; while for others, the pattern was compatible with HSCR. Surgical intervention to remove the stenotic section prolonged the life of the puppy for 13 years. Extremely rare pathologies such as that discussed herein should be studied to understand the pathophysiology and be able to diagnose small species in veterinary medicine in a timely fashion. To our knowledge, this is the first report of congenital intestinal stenosis and Hirschprung’s disease in a newborn puppy. Electronic supplementary material The online version of this article (10.1186/s12917-019-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica Morales-Miranda
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Avenue. Vasco de Quiroga 15 Col. Belisario Domínguez, Section XVI, Tlalpan, 14080, México City, Mexico.
| |
Collapse
|
15
|
Li S, Yin Y, Yu H. Genetic expression profile-based screening of genes and pathways associated with papillary thyroid carcinoma. Oncol Lett 2018; 16:5723-5732. [PMID: 30344727 PMCID: PMC6176351 DOI: 10.3892/ol.2018.9342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancer; however, the specific genes and signaling pathways involved in this cancer remain largely unclear. The present study analyzed three profile datasets, GSE6004, GSE29265 and GSE60542, which were comprised of 47 PTC and 41 normal thyroid tissue samples, to identify key genes and pathways associated with PTC. Initially, differentially-expressed genes (DEGs) between PTC and normal thyroid tissue were screened using R 3.4.0 (2017-04-21, R Foundation, Vienna, Austria, http://www.R-project.org/). These DEGs were then clustered by gene ontology functional terms and representative signaling pathways. Additionally, specific key gene nodes were filtered out from a constructed protein-protein interaction (PPI) network. The results identified a total of 423 shared DEGs associated with PTC, including 211 upregulated and 212 downregulated genes. These 423 genes were primarily enriched in glycosaminoglycan binding, sulfur compound binding, heparin binding, enzyme activator activity, peptidase activator activity and hsa04512: Extracellular matrix (ECM)-receptor interaction. A total of 21 central node genes were identified as key genes in the PTC disease process including complement factor D (CFD), Collagen Type I α 1 Chain (COL1A1), Extracellular Matrix Protein 1 (ECM1) and Fibronectin 1 (FN1). These genes are involved in protease binding, G-protein coupled receptor binding, extracellular matrix structural constituent and peptidase regulator activity. To conclude, using bioinformatics analysis, the present study identified candidate DEGs and critical pathways in PTC that may improve the current understanding regarding the underlying mechanisms of PTC. These genes and pathways may be used as potential therapeutic targets of PTC in the future.
Collapse
Affiliation(s)
- Shubin Li
- Department of Internal Medicine, Southern Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 102600, P.R. China
| | - Yihang Yin
- School of Computer Science and Engineering, Beihang University, Beijing 100191, P.R. China
| | - Hong Yu
- Cell Biology Laboratory, Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
16
|
Ke J, Zhu Y, Miao X. The advances of genetics research on Hirschsprung's disease. Pediatr Investig 2018; 2:189-195. [PMID: 32851260 PMCID: PMC7391411 DOI: 10.1002/ped4.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a rare and complex congenital disorder characterized by the absence of the enteric neurons in lower digestive tract with an incidence of 1/5 000. Affected infant usually suffer from severe constipation with megacolon and distended abdomen, and face long-term complications even after surgery. In the last 2 decades, great efforts and progresses have been made in understanding the genetics and molecular biological mechanisms that underlie HSCR. However, only a small fraction of the genetic risk can be explained by the identified mutations in the previously established genes. To search novel genetic alterations, new study designs with advanced technologies such as genome/exome-wide association studies (GWASs/EWASs) and next generation sequencing (NGS) on target genes or whole genome/exome, were applied to HSCR. In this review, we summaries the current development of the genetics researches on HSCR based on GWASs/EWASs and NGS, focusing on the newly discovered variants and genes, and their potential roles in HSCR pathogenesis.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation)Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan)WuhanChina
- Department of Epidemiology and BiostatisticsSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Bondurand N, Dufour S, Pingault V. News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Dev Biol 2018; 444 Suppl 1:S156-S169. [PMID: 30171849 DOI: 10.1016/j.ydbio.2018.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
Abstract
The endothelin system is a vertebrate-specific innovation with important roles in regulating the cardiovascular system and renal and pulmonary processes, as well as the development of the vertebrate-specific neural crest cell population and its derivatives. This system is comprised of three structurally similar 21-amino acid peptides that bind and activate two G-protein coupled receptors. In 1994, knockouts of the Edn3 and Ednrb genes revealed their crucial function during development of the enteric nervous system and melanocytes, two neural-crest derivatives. Since then, human and mouse genetics, combined with cellular and developmental studies, have helped to unravel the role of this signaling pathway during development and adulthood. In this review, we will summarize the known functions of the EDN3/EDNRB pathway during neural crest development, with a specific focus on recent scientific advances, and the enteric nervous system in normal and pathological conditions.
Collapse
Affiliation(s)
- Nadege Bondurand
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.
| | - Sylvie Dufour
- INSERM, U955, Equipe 06, Créteil 94000, France; Université Paris Est, Faculté de Médecine, Créteil 94000, France
| | - Veronique Pingault
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM U1163, Institut Imagine, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France; Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
18
|
Jäderkvist Fegraeus K, Velie BD, Axelsson J, Ang R, Hamilton NA, Andersson L, Meadows JRS, Lindgren G. A potential regulatory region near the EDN3 gene may control both harness racing performance and coat color variation in horses. Physiol Rep 2018; 6:e13700. [PMID: 29845762 PMCID: PMC5974718 DOI: 10.14814/phy2.13700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/06/2018] [Accepted: 04/14/2018] [Indexed: 01/11/2023] Open
Abstract
The Swedish-Norwegian Coldblooded trotter and the heavier North-Swedish draught horse both descend from the North-Swedish horse, but the Coldblooded trotters have been selected for racing performance while the North-Swedish draught horse is mainly used for agricultural and forestry work. By comparing the genomes of Coldblooded trotters, North-Swedish draught horses and Standardbreds for a large number of single-nucleotide polymorphisms (SNPs), the aim of the study was to identify genetic regions that may be under selection for racing performance. We hypothesized that the selection for racing performance, in combination with unauthorized crossbreeding of Coldblooded trotters and Standardbreds, has created regions in the genome where the Coldblooded trotters and Standardbreds are similar, but differ from the North-Swedish draught horse. A fixation index (Fst) analysis was performed and sliding window Delta Fst values were calculated across the three breeds. Five windows, where the average Fst between Coldblooded trotters and Standardbreds was low and the average Fst between Coldblooded trotters and North-Swedish draught horses was high, were selected for further investigation. Associations between the most highly ranked SNPs and harness racing performance were analyzed in 400 raced Coldblooded trotters with race records. One SNP showed a significant association with racing performance, with the CC genotype appearing to be negatively associated. The SNP identified was genotyped in 1915 horses of 18 different breeds. The frequency of the TT genotype was high in breeds typically used for racing and show jumping while the frequency of the CC genotype was high in most pony breeds and draught horses. The closest gene in this region was the Endothelin3 gene (EDN3), a gene mainly involved in melanocyte and enteric neuron development. Both functional genetic and physiological studies are needed to fully understand the possible impacts of the gene on racing performance.
Collapse
Affiliation(s)
- Kim Jäderkvist Fegraeus
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Brandon D. Velie
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Jeanette Axelsson
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| | - Rachel Ang
- Faculty of ScienceUniversity of SydneySydneyAustralia
| | | | - Leif Andersson
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexas
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Gabriella Lindgren
- Department of Animal Breeding & GeneticsSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
19
|
Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 2018; 15:152-167. [PMID: 29300049 DOI: 10.1038/nrgastro.2017.149] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hirschsprung disease is defined by the absence of enteric neurons at the end of the bowel. The enteric nervous system (ENS) is the intrinsic nervous system of the bowel and regulates most aspects of bowel function. When the ENS is missing, there are no neurally mediated propulsive motility patterns, and the bowel remains contracted, causing functional obstruction. Symptoms of Hirschsprung disease include constipation, vomiting, abdominal distension and growth failure. Untreated disease usually causes death in childhood because bloodstream bacterial infections occur in the context of bowel inflammation (enterocolitis) or bowel perforation. Current treatment is surgical resection of the bowel to remove or bypass regions where the ENS is missing, but many children have problems after surgery. Although the anatomy of Hirschsprung disease is simple, many clinical features remain enigmatic, and diagnosis and management remain challenging. For example, the age of presentation and the type of symptoms that occur vary dramatically among patients, even though every affected child has missing neurons in the distal bowel at birth. In this Review, basic science discoveries are linked to clinical manifestations of Hirschsprung disease, including partial penetrance, enterocolitis and genetics. Insights into disease mechanisms that might lead to new prevention, diagnostic and treatment strategies are described.
Collapse
|
20
|
Pan W, Yu H, Zheng B, Gao Y, Li P, Huang Q, Xie C, Ge X. Upregulation of MiR-369-3p suppresses cell migration and proliferation by targeting SOX4 in Hirschsprung's disease. J Pediatr Surg 2017; 52:1363-1370. [PMID: 28412032 DOI: 10.1016/j.jpedsurg.2017.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital digestive disease in the new born. miR-369-3p has been reported to be involved in many human diseases. However, the relationship between miR-369-3p and HSCR remains largely unknown. METHODS In this study, qRT-PCR was used to detect the relative expression of miR-369-3p in 60 HSCR bowel tissue samples and 47 matched controls. Bioinformatic analysis and dual-luciferase reporter assay were performed to evaluate the target for miR-369-3p. Cell Counting Kit-8 (CCK-8) assay, Transwell assay, wound healing assay and flow cytometry were employed to investigate the biological function of miR-369-3p in human SH-SY5Y and 293T cell lines. RESULTS We found that ganglion cell numbers were remarkably reduced while miR-369-3p was significantly upregulated in HSCR tissues compared to that in adjacent normal tissues (P<0.01). Dual-luciferase reporter assay showed that the 3'-UTR of SOX4 was a direct target to miR-369-3p. Moreover, an increased level of miR-369-3p was inversely correlated with decreased levels of SOX4 mRNA and protein (P<0.05, respectively). Dysregulation of miR-369-3p and SOX4 significantly suppressed cell proliferation and migration in SH-SY5Y and 293T cell lines in vitro (P<0.05, respectively). CONCLUSION Our study demonstrates that aberrant expression of miR-369-3p might play a crucial role in the development HSCR by regulating SOX4 expression, which may infer that it is an effective diagnostic target in the pathogenesis of HSCR, but investigation is still needed to explore the underlying mechanism.
Collapse
Affiliation(s)
- Weikang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Peng Li
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiang Huang
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chong Xie
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xin Ge
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
21
|
Watanabe Y, Stanchina L, Lecerf L, Gacem N, Conidi A, Baral V, Pingault V, Huylebroeck D, Bondurand N. Differentiation of Mouse Enteric Nervous System Progenitor Cells Is Controlled by Endothelin 3 and Requires Regulation of Ednrb by SOX10 and ZEB2. Gastroenterology 2017; 152:1139-1150.e4. [PMID: 28063956 DOI: 10.1053/j.gastro.2016.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Maintenance and differentiation of progenitor cells in the developing enteric nervous system are controlled by molecules such as the signaling protein endothelin 3 (EDN3), its receptor (the endothelin receptor type B [EDNRB]), and the transcription factors SRY-box 10 (SOX10) and zinc finger E-box binding homeobox 2 (ZEB2). We used enteric progenitor cell (EPC) cultures and mice to study the roles of these proteins in enteric neurogenesis and their cross regulation. METHODS We performed studies in mice with a Zeb2 loss-of-function mutation (Zeb2Δ) and mice carrying a spontaneous recessive mutation that prevents conversion of EDN3 to its active form (Edn3ls). EPC cultures issued from embryos that expressed only wild-type Zeb2 (Zeb2+/+ EPCs) or were heterozygous for the mutation (Zeb2Δ/+ EPCs) were exposed to EDN3; we analyzed the effects on cell differentiation using immunocytochemistry. In parallel, Edn3ls mice were crossed with Zeb2Δ/+mice; intestinal tissues were collected from embryos for immunohistochemical analyses. We investigated regulation of the EDNRB gene in transactivation and chromatin immunoprecipitation assays; results were validated in functional rescue experiments using transgenes expression in EPCs from retroviral vectors. RESULTS Zeb2Δ/+ EPCs had increased neuronal differentiation compared to Zeb2+/+ cells. When exposed to EDN3, Zeb2+/+ EPCs continued expression of ZEB2 but did not undergo any neuronal differentiation. Incubation of Zeb2Δ/+ EPCs with EDN3, on the other hand, resulted in only partial inhibition of neuronal differentiation. This indicated that 2 copies of Zeb2 are required for EDN3 to prevent neuronal differentiation. Mice with combined mutations in Zeb2 and Edn3 (double mutants) had more severe enteric anomalies and increased neuronal differentiation compared to mice with mutations in either gene alone. The transcription factors SOX10 and ZEB2 directly activated the EDNRB promoter. Overexpression of EDNRB in Zeb2Δ/+ EPCs restored inhibition of neuronal differentiation, similar to incubation of Zeb2+/+ EPCs with EDN3. CONCLUSIONS In studies of cultured EPCs and mice, we found that control of differentiation of mouse enteric nervous system progenitor cells by EDN3 requires regulation of Ednrb expression by SOX10 and ZEB2.
Collapse
Affiliation(s)
- Yuli Watanabe
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Laure Stanchina
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Laure Lecerf
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Nadjet Gacem
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Viviane Baral
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Veronique Pingault
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands; Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, Belgium
| | - Nadege Bondurand
- Institut National de la Santé et de la Recherche Médicale, Créteil, France; Université Paris-Est, Faculté de Médecine, Créteil, France.
| |
Collapse
|
22
|
Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Sci Rep 2016; 6:37877. [PMID: 27905407 PMCID: PMC5131347 DOI: 10.1038/srep37877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-3 (EDN3) and β1-integrins are required for the colonization of the embryonic gut by enteric neural crest cells (ENCCs) to form the enteric nervous system (ENS). β1-integrin-null ENCCs exhibit migratory defects in a region of the gut enriched in EDN3 and in specific extracellular matrix (ECM) proteins. We investigated the putative role of EDN3 on ENCC adhesion properties and its functional interaction with β1-integrins during ENS development. We show that EDN3 stimulates ENCC adhesion to various ECM components in vitro. It induces rapid changes in ENCC shape and protrusion dynamics favouring sustained growth and stabilization of lamellipodia, a process coincident with the increase in the number of focal adhesions and activated β1-integrins. In vivo studies and ex-vivo live imaging revealed that double mutants for Itgb1 and Edn3 displayed a more severe enteric phenotype than either of the single mutants demonstrated by alteration of the ENS network due to severe migratory defects of mutant ENCCs taking place early during the ENS development. Altogether, our results highlight the interplay between the EDN3 and β1-integrin signalling pathways during ENS ontogenesis and the role of EDN3 in ENCC adhesion.
Collapse
|
23
|
Molecular bases of K + secretory cells in the inner ear: shared and distinct features between birds and mammals. Sci Rep 2016; 6:34203. [PMID: 27680950 PMCID: PMC5041087 DOI: 10.1038/srep34203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/08/2016] [Indexed: 11/08/2022] Open
Abstract
In the cochlea, mammals maintain a uniquely high endolymphatic potential (EP), which is not observed in other vertebrate groups. However, a high [K+] is always present in the inner ear endolymph. Here, we show that Kir4.1, which is required in the mammalian stria vascularis to generate the highly positive EP, is absent in the functionally equivalent avian tegmentum vasculosum. In contrast, the molecular repertoire required for K+ secretion, specifically NKCC1, KCNQ1, KCNE1, BSND and CLC-K, is shared between the tegmentum vasculosum, the vestibular dark cells and the marginal cells of the stria vascularis. We further show that in barn owls, the tegmentum vasculosum is enlarged and a higher EP (~+34 mV) maintained, compared to other birds. Our data suggest that both the tegmentum vasculosum and the stratified stria vascularis evolved from an ancestral vestibular epithelium that already featured the major cell types of the auditory epithelia. Genetic recruitment of Kir4.1 specifically to strial melanocytes was then a crucial step in mammalian evolution enabling an increase in the cochlear EP. An increased EP may be related to high-frequency hearing, as this is a hallmark of barn owls among birds and mammals among amniotes.
Collapse
|
24
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin. Dev Biol 2016; 414:85-99. [PMID: 27041467 PMCID: PMC4937886 DOI: 10.1016/j.ydbio.2016.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.
Collapse
|
26
|
Xie D, Croaker GDH, Li J, Song ZM. Reduced cell proliferation and increased apoptosis in the hippocampal formation in a rat model of Hirschsprung's disease. Brain Res 2016; 1642:79-86. [PMID: 27017960 DOI: 10.1016/j.brainres.2016.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Hirschsprung's disease (HSCR) is a congenital malformation characterized by the absence of enteric ganglia in the distal intestine and gut obstruction. Some HSCR patients also have associated neurological symptoms. We studied a rat model of HSCR, also known as spotting lethal (sl/sl) rat, which carries a spontaneous deletion in the gene of endothelin receptor B (EDNRB) and a similar phenotype as humans with HSCR. We focused on the changes in cell proliferation and apoptosis in the hippocampal formation of the sl/sl rat. Proliferating cells in wildtype (+/+), heterozygous (+/sl) and homozygous (sl/sl) rats were labelled by intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU) at postnatal day 2. The density of proliferating cells in the CA1 and CA3 regions of the hippocampus and dentate gyrus of sl/sl rats was significantly reduced compared to +/+ rats. The effect of EDNRB mutation on cell apoptosis was examined by using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling assay. This showed that the density of apoptotic cells in the hippocampal formation, particularly in the CA1 region of sl/sl rats, was significantly increased compared to +/+ rats. The expression of brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) was measured with ELISA in the hippocampal formation, but no difference was revealed between genotypes. These results suggest that EDNRB mutation reduces cell proliferation and increases apoptosis in the hippocampal formation of the sl/sl rat, but does not alter the levels of BDNF and GDNF. Our findings provide an insight into the cellular changes in the brains of HSCR patients caused by EDNRB mutation.
Collapse
Affiliation(s)
- Dan Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Eccles Institute of Neuroscience, John Curtin School of Medical Research, the Australian National University, Canberra, ACT, Australia
| | - G David H Croaker
- Department of Paediatric Surgery, The Canberra Hospital, Canberra, ACT, Australia
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zan-Min Song
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, the Australian National University, Canberra, ACT, Australia; Medical School, the Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
27
|
Chevalier N, Gazguez E, Bidault L, Guilbert T, Vias C, Vian E, Watanabe Y, Muller L, Germain S, Bondurand N, Dufour S, Fleury V. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration. Sci Rep 2016; 6:20927. [PMID: 26887292 PMCID: PMC4757826 DOI: 10.1038/srep20927] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.
Collapse
Affiliation(s)
- N.R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - E. Gazguez
- UMR144, CNRS-Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - L. Bidault
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - T. Guilbert
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C. Vias
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - E. Vian
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Y. Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France
| | - L. Muller
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - S. Germain
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | | | - S. Dufour
- UMR144, CNRS-Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - V. Fleury
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
28
|
Saldana-Caboverde A, Perera EM, Watkins-Chow DE, Hansen NF, Vemulapalli M, Mullikin JC, Pavan WJ, Kos L. The transcription factors Ets1 and Sox10 interact during murine melanocyte development. Dev Biol 2015; 407:300-12. [PMID: 25912689 PMCID: PMC4618791 DOI: 10.1016/j.ydbio.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory. We identified a G-to-A nucleotide transition in exon 3 of the Ets1 gene in variable spotting, which results in a missense G102E mutation. Homozygous variable spotting mice exhibit sporadic white spotting. Similarly, mice carrying a targeted deletion of Ets1 exhibit hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The transcription factor Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of various NC derivatives, including melanocytes. We show that Ets1 is required early for murine NC cell and melanocyte precursor survival in vivo. Given the importance of Ets1 for Sox10 expression in the chick, we investigated a potential genetic interaction between these genes by comparing the hypopigmentation phenotypes of single and double heterozygous mice. The incidence of hypopigmentation in double heterozygotes was significantly greater than in single heterozygotes. The area of hypopigmentation in double heterozygotes was significantly larger than would be expected from the addition of the areas of hypopigmentation of single heterozygotes, suggesting that Ets1 and Sox10 interact synergistically in melanocyte development. Since Sox10 is also essential for enteric ganglia development, we examined the distal colons of Ets1 null mutants and found a significant decrease in enteric innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate an enhancer critical for Sox10 expression in NC-derived structures. Furthermore, enhancer activation was significantly inhibited by the variable spotting mutation. Together, these results suggest that Ets1 and Sox10 interact to promote proper melanocyte and enteric ganglia development from the NC.
Collapse
Affiliation(s)
| | - Erasmo M Perera
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy F Hansen
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - James C Mullikin
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA; NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lidia Kos
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL.
| |
Collapse
|
29
|
Gasc JM, Clemessy M, Corvol P, Kempf H. A chicken model of pharmacologically-induced Hirschsprung disease reveals an unexpected role of glucocorticoids in enteric aganglionosis. Biol Open 2015; 4:666-71. [PMID: 25836673 PMCID: PMC4434818 DOI: 10.1242/bio.201410454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The enteric nervous system originates from neural crest cells that migrate in chains as they colonize the embryonic gut, eventually forming the myenteric and submucosal plexus. Failure of the neural crest cells to colonize the gut leads to aganglionosis in the terminal gut, a pathological condition called Hirschsprung disease (HSCR) in humans, also known as congenital megacolon or intestinal aganglionosis. One of the characteristics of the human HSCR is its variable penetrance, which may be attributable to the interaction between genetic factors, such as the endothelin-3/endothelin receptor B pathway, and non-genetic modulators, although the role of the latter has not well been established. We have created a novel HSCR model in the chick embryo allowing to test the ability of non-genetic modifiers to alter the HSCR phenotype. Chick embryos treated by phosphoramidon, which blocks the generation of endothelin-3, failed to develop enteric ganglia in the very distal bowel, characteristic of an HSCR-like phenotype. Administration of dexamethasone influenced the phenotype, suggesting that glucocorticoids may be environmental modulators of the penetrance of the aganglionosis in HSCR disease.
Collapse
Affiliation(s)
- Jean-Marie Gasc
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France
| | - Maud Clemessy
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France Centre de Recherche St-Antoine UMRS-938, INSERM-Université Pierre et Marie Curie, Paris 6, 75012 Paris, France
| | - Pierre Corvol
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France
| | - Hervé Kempf
- Centre Interdisciplinaire de Recherche Biomédicale (CIRB), Collège de France, 75005 Paris, France Chaire de Médecine Expérimentale, Collège de France, 75005 Paris, France UMR 7365 CNRS-Université de Lorraine, IMoPA, Faculté de Médecine, 54500 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
31
|
Huang J, Dang R, Torigoe D, Lei C, Lan X, Chen H, Sasaki N, Wang J, Agui T. Identification of genetic loci affecting the severity of symptoms of Hirschsprung disease in rats carrying Ednrbsl mutations by quantitative trait locus analysis. PLoS One 2015; 10:e0122068. [PMID: 25790447 PMCID: PMC4366197 DOI: 10.1371/journal.pone.0122068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/12/2015] [Indexed: 01/17/2023] Open
Abstract
Hirschsprung’s disease (HSCR) is a congenital disease in neonates characterized by the absence of the enteric ganglia in a variable length of the distal colon. This disease results from multiple genetic interactions that modulate the ability of enteric neural crest cells to populate developing gut. We previously reported that three rat strains with different backgrounds (susceptible AGH-Ednrbsl/sl, resistant F344-Ednrbsl/sl, and LEH-Ednrbsl/sl) but the same null mutation of Ednrb show varying severity degrees of aganglionosis. This finding suggests that strain-specific genetic factors affect the severity of HSCR. Consistent with this finding, a quantitative trait locus (QTL) for the severity of HSCR on chromosome (Chr) 2 was identified using an F2 intercross between AGH and F344 strains. In the present study, we performed QTL analysis using an F2 intercross between the susceptible AGH and resistant LEH strains to identify the modifier/resistant loci for HSCR in Ednrb-deficient rats. A significant locus affecting the severity of HSCR was also detected within the Chr 2 region. These findings strongly suggest that a modifier gene of aganglionosis exists on Chr 2. In addition, two potentially causative SNPs (or mutations) were detected upstream of a known HSCR susceptibility gene, Gdnf. These SNPs were possibly responsible for the varied length of gut affected by aganglionosis.
Collapse
Affiliation(s)
- Jieping Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (RD); (CL)
| | - Daisuke Torigoe
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (RD); (CL)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Jinxi Wang
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
32
|
Abstract
Total colonic aganglionosis is a relatively uncommon form of Hirschsprung's disease (HSCR). It occurs in approximately 2-13 % of HSCR cases and involves the entire colon which is aganglionic but may extend proximally into varying lengths of small bowel. As a result, it should be separated into Total colonic aganglionosis (TCA) [defined as aganglionosis extending from the anus to at least the ileocaecal valve but no more than 50 cm small bowel proximal to the ileocaecal valve] and total colonic and small bowel aganglionosis (TCSA) which may involve very long segments of small bowel aganglionosis. Clinically, TCA appears to represent a different spectrum of disease in terms of presentation and difficulties which may be experienced in diagnosis suggesting a different pathophysiology from the more common forms of HSCR. It is therefore not yet clear whether TCA merely represents a long form of HSCR or a different expression of the disease. A number of differences exist between TCA and other forms of HSCR which require explanation if its ubiquitous clinical features are to be understood. In addition to the usual explanations for the aganglionosis of HSCR, there is some evidence suggesting that in place of being purely congenital, it may represent certain different pathophysiologic mechanisms, some of which may continue to be active after birth. This study reviews what is known about the clinical, radiological and histopathologic differences between TCA and the more frequently encountered recto-sigmoid (or short-segment; S-HSCR) and correlates them with what is currently known about the genetic and molecular biologic background to find possible pathogenetic mechanisms.
Collapse
Affiliation(s)
- S W Moore
- Department of Paediatric Surgery, Faculty of Medicine, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa,
| |
Collapse
|
33
|
Wei R, Qiu X, Wang S, Li Y, Wang Y, Lu K, Fu Y, Xing G, He F, Zhang L. NEDL2 is an essential regulator of enteric neural development and GDNF/Ret signaling. Cell Signal 2014; 27:578-86. [PMID: 25555806 DOI: 10.1016/j.cellsig.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022]
Abstract
Although glial cell line-derived neurotrophic factor (GDNF)/Ret signaling is essential for enteric nervous system (ENS) development, the positive regulators regulating GDNF/Ret signaling and controlling ENS development are poorly understood. Here, we show that Nedd4-related E3 ubiquitin ligase-2 (NEDL2) plays an essential and positive physiological role in regulating ENS development and GDNF/Ret signaling. All of the NEDL2-deficient mice die within 2weeks after birth, showing low body weight. These mice showed a progressive bowel motility defect resulting from intestinal aganglionosis. We show that NEDL2 positively regulates enteric neural precursor proliferation through the GDNF/Akt signaling pathway. Together, these findings unveil the physiological function of NEDL2 in vivo.
Collapse
Affiliation(s)
- Rongfei Wei
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiao Qiu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Shaoxia Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiwu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Kefeng Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| |
Collapse
|
34
|
Wilkins AS, Wrangham RW, Fitch WT. The "domestication syndrome" in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 2014; 197:795-808. [PMID: 25024034 PMCID: PMC4096361 DOI: 10.1534/genetics.114.165423] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Charles Darwin, while trying to devise a general theory of heredity from the observations of animal and plant breeders, discovered that domesticated mammals possess a distinctive and unusual suite of heritable traits not seen in their wild progenitors. Some of these traits also appear in domesticated birds and fish. The origin of Darwin's "domestication syndrome" has remained a conundrum for more than 140 years. Most explanations focus on particular traits, while neglecting others, or on the possible selective factors involved in domestication rather than the underlying developmental and genetic causes of these traits. Here, we propose that the domestication syndrome results predominantly from mild neural crest cell deficits during embryonic development. Most of the modified traits, both morphological and physiological, can be readily explained as direct consequences of such deficiencies, while other traits are explicable as indirect consequences. We first show how the hypothesis can account for the multiple, apparently unrelated traits of the syndrome and then explore its genetic dimensions and predictions, reviewing the available genetic evidence. The article concludes with a brief discussion of some genetic and developmental questions raised by the idea, along with specific predictions and experimental tests.
Collapse
Affiliation(s)
- Adam S Wilkins
- Stellenbosch Institute of Advanced Study, Stellenbosch 7600, South Africa Institute of Theoretical Biology, Humboldt University zu Berlin, Berlin 10115, Germany
| | - Richard W Wrangham
- Stellenbosch Institute of Advanced Study, Stellenbosch 7600, South Africa Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - W Tecumseh Fitch
- Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
35
|
Sharma H, Mavuduru RS, Singh SK, Prasad R. Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers. Mol Hum Reprod 2014; 20:827-35. [PMID: 24958810 DOI: 10.1093/molehr/gau047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is usually considered a rare disease in the Indian population. Two studies have reported on the frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Indian males with congenital absence of the vas deferens (CAVD), however, data on the spectrum of CFTR gene mutations are still lacking. Therefore, the present study was designed to identify the spectrum of CFTR gene mutations as well as to investigate an association of CF genetic modifiers in the penetrance of CAVD in infertile Indian men. A total of 60 consecutive infertile males with a diagnosis of CAVD were subjected to CFTR gene analysis which revealed 13 different CFTR gene mutations and 1 intronic variant that led to aberrant splicing. p.Phe508del (n = 16) and p.Arg117His (n = 4) were among the most common severe forms of CFTR mutations identified. The IVS8-T5 allele, which is considered as a mild form of CFTR mutation, was found with an allelic frequency of 28.3%. Eight novel mutations were also identified in the CFTR gene from our patient cohort. It is noteworthy that the spectrum of CFTR gene mutation is heterogeneous, with exon 4 and exon 11 as hot spot regions. Moreover, we also found an association of the CF genetic modifiers, viz., transforming growth factor (TGF)-β1 and endothelial receptor type-A (EDNRA) genes with the CAVD phenotype. The findings are of considerable clinical significance because men suffering from infertility due to CAVD can decide to use artificial reproduction technology. The children of men with CAVD are at risk of carrying CFTR mutations; therefore, genetic counseling is a crucial step for such patients. With special reference to developing countries, such as India, where whole gene sequencing is not feasible, the outcome of our study will make the screening procedure for CFTR gene simpler and more cost-effective as we have identified hot spot regions of the CFTR gene which are more prone to mutation in Indian males with CAVD. Moreover, this is the first study from the Indian population to investigate the association of CF genetic modifiers with penetrance of the CAVD phenotype. The observed association of the genetic modifiers TGF-β1 and EDNRA in the penetrance of CAVD further supports their involvement in genesis of the vas deferens.
Collapse
Affiliation(s)
- H Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - R S Mavuduru
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - S K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - R Prasad
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
36
|
Takahashi M, Suzawa T, Yamada A, Yamaguchi T, Mishima K, Osumi N, Maki K, Kamijo R. Identification of gene expression profile of neural crest-derived cells isolated from submandibular glands of adult mice. Biochem Biophys Res Commun 2014; 446:481-6. [PMID: 24613842 DOI: 10.1016/j.bbrc.2014.02.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Neural crest cells in the embryo migrate to reach target sites as neural crest-derived cells (NCDCs) where they differentiate into a variety of derivatives. Some NCDCs are maintained in an undifferentiated state throughout the life of the animal and are considered to be a useful cell source for regenerative medicine. However, no established method to obtain NCDCs sufficient for regenerative medicine from adults with high purity has been presented, since their distribution in adult tissues is not fully understood. It is critical to identify reliable markers for NCDCs in adults, as the expressions of P0 and Wnt1, the most reliable NCDC markers, are shut off in the embryonic stage. To analyze the characteristics of NCDCs in adult tissues, we utilized a double transgenic mouse strain, P0-Cre/CAG-CAT-EGFP transgenic mice (P0 mice), in which NCDCs were shown to express EGFP and we were able to recognize GFP-positive cells in those. We focused on the submandibular glands (SMGs), which are known to be derived from the neural crest. GFP-positive cells were shown to be scattered like islands in the SMGs of adult P0 mice. We surgically removed SMGs from adult mice and digested samples into single cell suspensions. GFP-positive cells separated using flow cytometry expressed a high level of Sox10, a marker of embryonic neural crest cells, suggesting successful isolation of NCDCs. To identify candidate marker genes in isolated NCDCs, we performed DNA microarray analyses and real-time PCR analysis of GFP-positive and -negative cells isolated from P0 mice, then selected genes showing differential gene expression patterns. As compared to GFP-negative cells, GFP-positive cells expressed Gpr4 and Ednrb at higher levels, whereas Pdgfra and Pdgfrb were expressed at lower levels. Furthermore, DNA microarray analysis showed that GFP-positive cells were positive for aquaporin 5, a marker for acinar cells. Together, our results indicate that NCDCs in adult SMGs have characteristic gene expression profiles specially their cell surface molecules. Cell sorting using a combination of these specific cell surface proteins would be a useful strategy for isolation of NCDCs from SMGs with high purity.
Collapse
Affiliation(s)
- Masahiro Takahashi
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Atsushi Yamada
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tetsutaro Yamaguchi
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, United Core Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
37
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
38
|
Mayanil CS. Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci 2013; 35:361-72. [PMID: 24051984 DOI: 10.1159/000354749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Neurulation is one of the many important events in mammalian development. It is the stage of organogenesis in vertebrate embryos during which the neural tube is transformed into the primitive structures that will later develop into the central nervous system. Recent transcriptome analysis during neurulation and early organogenesis in humans and mice has identified the global dynamics of gene expression changes across developmental time. This has revealed a richer understanding of gene regulation and provides hints at the transcriptional regulatory networks that underlie these processes. Similarly, epigenome analysis, which collectively constitutes histone modifications, transcription factor binding, and other structural features associated with gene regulation, has given a renewed appreciation to the subtle mechanisms involving the process of neurulation. More specifically, the histone demethylases KDM4A and KDM6B have recently been shown to be key histone H3K4 and H3K27 modifiers that regulate neural crest specification and neural tube closure. Additionally, miRNAs have recently been shown to influence transcription of genes directly or by altering the levels of epigenetic modifiers and thus regulate gene expression. This mini review briefly summarizes the literature, highlighting the transcriptional and epigenetic regulation of key genes involved in neural crest induction and neural crest specification by transcription factors and miRNAs. Understanding how these mechanisms work individually and in clusters will shed light on pathways in the context of diseases associated with neural crest cell derivatives such as melanoma, cardiovascular defects and neuronal craniofacial defects.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Lurie Children's Hospital of Chicago Research Center, Division of Pediatric Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, Ill., USA
| |
Collapse
|
39
|
Gisser JM, Cohen AR, Yin H, Gariepy CE. A novel bidirectional interaction between endothelin-3 and retinoic acid in rat enteric nervous system precursors. PLoS One 2013; 8:e74311. [PMID: 24040226 PMCID: PMC3767828 DOI: 10.1371/journal.pone.0074311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/02/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung's aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. METHODS Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. RESULTS Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. CONCLUSIONS A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations.
Collapse
Affiliation(s)
- Jonathan M. Gisser
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| | - Ariella R. Cohen
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Han Yin
- The Biostatistics Shared Resources, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Cheryl E. Gariepy
- The Center for Molecular and Human Genetics, the Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, the Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
40
|
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24. [PMID: 23639815 PMCID: PMC3725693 DOI: 10.1152/ajpgi.00452.2012] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.
Collapse
Affiliation(s)
- Jonathan I. Lake
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and ,2Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
41
|
Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 2013; 162:1-15. [PMID: 23528997 PMCID: PMC3691347 DOI: 10.1016/j.trsl.2013.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/08/2023]
Abstract
The enteric nervous system is the part of the autonomic nervous system that directly controls the gastrointestinal tract. Derived from a multipotent, migratory cell population called the neural crest, a complete enteric nervous system is necessary for proper gut function. Disorders that arise as a consequence of defective neural crest cell development are termed neurocristopathies. One such disorder is Hirschsprung disease (HSCR), also known as congenital megacolon or intestinal aganglionosis. HSCR occurs in 1/5000 live births and typically presents with the inability to pass meconium, along with abdominal distension and discomfort that usually requires surgical resection of the aganglionic bowel. This disorder is characterized by a congenital absence of neurons in a portion of the intestinal tract, usually the distal colon, because of a disruption of normal neural crest cell migration, proliferation, differentiation, survival, and/or apoptosis. The inheritance of HSCR disease is complex, often non-Mendelian, and characterized by variable penetrance. Extensive research has identified a number of key genes that regulate neural crest cell development in the pathogenesis of HSCR including RET, GDNF, GFRα1, NRTN, EDNRB, ET3, ZFHX1B, PHOX2b, SOX10, and SHH. However, mutations in these genes account for only ∼50% of the known cases of HSCR. Thus, other genetic mutations and combinations of genetic mutations and modifiers likely contribute to the etiology and pathogenesis of HSCR. The aims of this review are to summarize the HSCR phenotype, diagnosis, and treatment options; to discuss the major genetic causes and the mechanisms by which they disrupt normal enteric neural crest cell development; and to explore new pathways that may contribute to HSCR pathogenesis.
Collapse
|
42
|
Cui L, Wong EHM, Cheng G, Firmato de Almeida M, So MT, Sham PC, Cherny SS, Tam PKH, Garcia-Barceló MM. Genetic Analyses of a Three Generation Family Segregating Hirschsprung Disease and Iris Heterochromia. PLoS One 2013; 8:e66631. [PMID: 23840513 PMCID: PMC3694150 DOI: 10.1371/journal.pone.0066631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
We present the genetic analyses conducted on a three-generation family (14 individuals) with three members affected with isolated-Hirschsprung disease (HSCR) and one with HSCR and heterochromia iridum (syndromic-HSCR), a phenotype reminiscent of Waardenburg-Shah syndrome (WS4). WS4 is characterized by pigmentary abnormalities of the skin, eyes and/or hair, sensorineural deafness and HSCR. None of the members had sensorineural deafness. The family was screened for copy number variations (CNVs) using Illumina-HumanOmni2.5-Beadchip and for coding sequence mutations in WS4 genes (EDN3, EDNRB, or SOX10) and in the main HSCR gene (RET). Confocal microscopy and immunoblotting were used to assess the functional impact of the mutations. A heterozygous A/G transition in EDNRB was identified in 4 affected and 3 unaffected individuals. While in EDNRB isoforms 1 and 2 (cellular receptor) the transition results in the abolishment of translation initiation (M1V), in isoform 3 (only in the cytosol) the replacement occurs at Met91 (M91V) and is predicted benign. Another heterozygous transition (c.-248G/A; -predicted to affect translation efficiency-) in the 5'-untranslated region of EDN3 (EDNRB ligand) was detected in all affected individuals but not in healthy carriers of the EDNRB mutation. Also, a de novo CNVs encompassing DACH1 was identified in the patient with heterochromia iridum and HSCR Since the EDNRB and EDN3 variants only coexist in affected individuals, HSCR could be due to the joint effect of mutations in genes of the same pathway. Iris heterochromia could be due to an independent genetic event and would account for the additional phenotype within the family.
Collapse
Affiliation(s)
- Long Cui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Emily Hoi-Man Wong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guo Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Man-Ting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Stacey S. Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
43
|
Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 2013; 379:92-106. [PMID: 23608456 DOI: 10.1016/j.ydbio.2013.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/11/2023]
Abstract
SOX10 involvement in syndromic form of Hirschsprung disease (intestinal aganglionosis, HSCR) in humans as well as developmental defects in animal models highlight the importance of this transcription factor in control of the pool of enteric progenitors and their differentiation. Here, we characterized the role of SOX10 in cell migration and its interactions with β1-integrins. To this end, we crossed the Sox10(lacZ/+) mice with the conditional Ht-PA::Cre; beta1(neo/+) and beta1(fl/fl) mice and compared the phenotype of embryos of different genotypes during enteric nervous system (ENS) development. The Sox10(lacZ/+); Ht-PA::Cre; beta1(neo/fl) double mutant embryos presented with increased intestinal aganglionosis length and more severe neuronal network disorganization compared to single mutants. These defects, detected by E11.5, are not compensated after birth, showing that a coordinated and balanced interaction between these two genes is required for normal ENS development. Use of video-microscopy revealed that defects observed result from reduced migration speed and altered directionality of enteric neural crest cells. Expression of β1-integrins upon SOX10 overexpression or in Sox10(lacZ/+) mice was also analyzed. The modulation of SOX10 expression altered β1-integrins, suggesting that SOX10 levels are critical for proper expression and function of this adhesion molecule. Together with previous studies, our results strongly indicate that SOX10 mediates ENCC adhesion and migration, and contribute to the understanding of the molecular and cellular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 mutations.
Collapse
Affiliation(s)
- Yuli Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France; Université Paris-Est, UMR_S955, UPEC, F-94000 Créteil, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang M, Song F, Liang L, Nan H, Zhang J, Liu H, Wang LE, Wei Q, Lee JE, Amos CI, Kraft P, Qureshi AA, Han J. Genome-wide association studies identify several new loci associated with pigmentation traits and skin cancer risk in European Americans. Hum Mol Genet 2013; 22:2948-59. [PMID: 23548203 DOI: 10.1093/hmg/ddt142] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aiming to identify novel genetic loci for pigmentation and skin cancer, we conducted a series of genome-wide association studies on hair color, eye color, number of sunburns, tanning ability and number of non-melanoma skin cancers (NMSCs) among 10 183 European Americans in the discovery stage and 4504 European Americans in the replication stage (for eye color, 3871 males in the discovery stage and 2496 males in the replication stage). We targeted novel chromosome regions besides the known ones for replication. As a result, we identified a new region downstream of the EDNRB gene on 13q22 associated with hair color and the strongest association was the single-nucleotide polymorphism (SNP) rs975739 (P = 2.4 × 10(-14); P = 5.4 × 10(-9) in the discovery set and P = 1.2 × 10(-6) in the replication set). Using blue, intermediate (including green) and brown eye colors as co-dominant outcomes, we identified the SNP rs3002288 in VASH2 on 1q32.3 associated with brown eye (P = 7.0 × 10(-8); P = 5.3 × 10(-5) in the discovery set and P = 0.02 in the replication set). Additionally, we identified a significant interaction between the SNPs rs7173419 and rs12913832 in the OCA2 gene region on brown eye color (P-value for interaction = 3.8 × 10(-3)). As for the number of NMSCs, we identified two independent SNPs on chr6 and one SNP on chromosome 14: rs12203592 in IRF4 (P = 7.2 × 10(-14); P = 1.8 × 10(-8) in the discovery set and P = 6.7 × 10(-7) in the replication set), rs12202284 between IRF4 and EXOC2 (P = 5.0 × 10(-8); P = 6.6 × 10(-7) in the discovery set and P = 3.0 × 10(-3) in the replication set) and rs8015138 upstream of GNG2 (P = 6.6 × 10(-8); P = 5.3 × 10(-7) in the discovery set and P = 0.01 in the replication set).
Collapse
Affiliation(s)
- Mingfeng Zhang
- Clinical Research Program, Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sun NF, Zhong WY, Lu SA, Tian YL, Chen JB, Hu SY, Tian AL. Coexpression of recombinant adenovirus carrying GDNF and EDNRB genes in neural stem cells in vitro. Cell Biol Int 2013; 37:458-63. [PMID: 23504906 DOI: 10.1002/cbin.10060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/20/2013] [Indexed: 12/13/2022]
Abstract
Gene therapy and nerve stem cells isolated from the developing human enteric nervous system (ENS) are significant. They may open the route for the cell therapy of Hirschsprung's disease (HD). We have constructed the recombinant adenovirus-carrying glial cell line-derived neurotrophic factor (GDNF) and endothelin receptor B (EDNRB) gene, and investigated the exosomatic coexpression in neural stem cells. The recombinant adenovirus Ad-GE coexpressing GDNF and EDNRB gene was constructed by the AdEasy system and confirmed by the reverse transcription polymerase chain reaction (RT-PCR) method. Expression of exogenous genes in neural stem cells after transfection was confirmed by the flow cytometry and real-time fluorescence quantitative PCR. Fragments of pAd Track-CMV-GE were consistent with GDNF and EDNRB. The green fluorescence of the positive cells was followed by fluorescence microscopy at 24 h after NSCs had been transfected, reaching a peak at 72 h after transfection. Flow cytometry showed that the efficiency of transfection was 15.0, 23.6, and 25.4% at 24, 48 and 72 h respectively. Real-time fluorescence quantitative PCR showed the expression levels of mRNA of GDNF and EDNRB in 48 and 72 h groups were obviously higher than that in 24 and 96 h groups. Recombinant adenovirus carrying GDNF and EDNRB genes are coexpressed in neural stem cells, which may offer the possibility of a novel approach to local combination gene therapy for Hirschsprung's disease.
Collapse
Affiliation(s)
- Nian-Feng Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Zaitoun I, Erickson CS, Barlow AJ, Klein TR, Heneghan AF, Pierre JF, Epstein ML, Gosain A. Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung's disease. Neurogastroenterol Motil 2013; 25:e233-44. [PMID: 23360229 PMCID: PMC3578114 DOI: 10.1111/nmo.12083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/22/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital condition in which enteric ganglia, formed from neural crest cells (NCC), are absent from the terminal bowel. Dysmotility and constipation are common features of HSCR that persist following surgical intervention. This persistence suggests that the portion of the colon that remains postoperatively is not able to support normal bowel function. To elucidate the defects that underlie this condition, we utilized a murine model of HSCR. METHODS Mice with NCC-specific deletion of Ednrb were used to measure the neuronal density and neurotransmitter expression in ganglia. KEY RESULTS At the site located proximal to the aganglionic region of P21 Ednrb null mice, the neuronal density is significantly decreased and the expression of neurotransmitters is altered compared with het animals. The ganglia in this colonic region are smaller and more isolated while the size of neuronal cell bodies is increased. The percentage of neurons expressing neuronal nNOS and VIP is significantly increased in Ednrb nulls. Conversely, the percentage of choline acetyltransferase (ChAT) expressing neurons is decreased, while Substance P is unchanged between the two genotypes. These changes are limited to the colon and are not detected in the ileum. CONCLUSIONS & INFERENCES We demonstrate changes in neuronal density and alterations in the balance of expression of neurotransmitters in the colon proximal to the aganglionic region in Ednrb null mice. The reduced neuronal density and complementary changes in nNOS and ChAT expression may account for the dysmotility seen in HSCR.
Collapse
Affiliation(s)
- Ismail Zaitoun
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Amanda J. Barlow
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Taylor R. Klein
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron F. Heneghan
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph F. Pierre
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Miles L. Epstein
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ankush Gosain
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
47
|
Barlow AJ, Dixon J, Dixon M, Trainor PA. Tcof1 acts as a modifier of Pax3 during enteric nervous system development and in the pathogenesis of colonic aganglionosis. Hum Mol Genet 2013; 22:1206-17. [PMID: 23283078 DOI: 10.1093/hmg/dds528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hirschsprung disease (HSCR) is a human congenital disorder, defined by the absence of ganglia from variable lengths of the colon. These ganglia comprise the enteric nervous system (ENS) and are derived from migratory neural crest cells (NCCs). The inheritance of HSCR is complex, often non-Mendelian and characterized by variable penetrance. Although extensive research has identified many key players in the pathogenesis of Hirschsprung disease, a large number of cases remain genetically undefined. Therefore, additional unidentified genes or modifiers must contribute to the etiology and pathogenesis of Hirschsprung disease. We have discovered that Tcof1 may be one such modifier. Haploinsufficiency of Tcof1 in mice results in a reduction of vagal NCCs and their delayed migration along the length of the gut during early development. This alone, however, is not sufficient to cause colonic aganglionosis as alterations in the balance of NCC proliferation and differentiation ensures NCC colonize the entire length of the gut of Tcof1(+/-) mice by E18.5. In contrast, Tcof1 haploinsufficiency is able to sensitize Pax3(+/-) mice to colonic aganglionosis. Although, Pax3 heterozygous mice do not show ENS defects, compound Pax3;Tcof1 heterozygous mice exhibit cumulative apoptosis which severely reduces the NCC population that migrates into the foregut. In addition, the proliferative capacity of these NCC is also diminished. Taken together with the opposing effects of Pax3 and Tcof1 on NCC differentiation, the synergistic haploinsufficiency of Tcof1 and Pax3 results in colonic aganglionosis in mice and may contribute to the pathogenesis of Hirschsprung disease.
Collapse
Affiliation(s)
- Amanda J Barlow
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
48
|
Pan ZW, Li JC. Advances in molecular genetics of Hirschsprung's disease. Anat Rec (Hoboken) 2012; 295:1628-38. [PMID: 22815266 DOI: 10.1002/ar.22538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 12/23/2022]
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cells to fully colonize the gut during embryonic development. It is characterized by the absence of the enteric ganglia in a variable length of the intestine. Substantial progress has been made in understanding the genetic basis of HSCR with the help of advanced genetic analysis techniques and animal models. More than 11 genes have been found to be involved in the pathogenesis of HSCR. The RET gene is the most important susceptibility gene involved in HSCR with both coding and non- coding sequence mutations. Due to phenotypic diversity and genetic complexity observed in HSCR, mutational analysis has limited practical value in genetic counseling and clinical practice. In this review, we discuss the progress that has been made in understanding the molecular genetics of HSCR and summarize the currently identified genes as well as interactions between pathways and gene-modifying loci in HSCR.
Collapse
Affiliation(s)
- Zhi-Wen Pan
- Institute of Cell Biology, Zhejiang University Medical School, 388 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | |
Collapse
|
49
|
McKeown SJ, Stamp L, Hao MM, Young HM. Hirschsprung disease: a developmental disorder of the enteric nervous system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:113-29. [PMID: 23799632 DOI: 10.1002/wdev.57] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hirschsprung disease (HSCR), which is also called congenital megacolon or intestinal aganglionosis, is characterized by an absence of enteric (intrinsic) neurons from variable lengths of the most distal bowel. Because enteric neurons are essential for propulsive intestinal motility, infants with HSCR suffer from severe constipation and have a distended abdomen. Currently the only treatment is surgical removal of the affected bowel. HSCR has an incidence of around 1:5,000 live births, with a 4:1 male:female gender bias. Most enteric neurons arise from neural crest cells that emigrate from the caudal hindbrain and then migrate caudally along the entire gut. The absence of enteric neurons from variable lengths of the bowel in HSCR results from a failure of neural crest-derived cells to colonize the affected gut regions. HSCR is therefore regarded as a neurocristopathy. HSCR is a multigenic disorder and has become a paradigm for understanding complex factorial disorders. The major HSCR susceptibility gene is RET. The penetrance of several mutations in HSCR susceptibility genes is sex-dependent. HSCR can occur as an isolated disorder or as part of syndromes; for example, Type IV Waardenburg syndrome is characterized by deafness and pigmentation defects as well as intestinal aganglionosis. Studies using animal models have shown that HSCR genes regulate multiple processes including survival, proliferation, differentiation, and migration. Research into HSCR and the development of enteric neurons is an excellent example of the cross fertilization of ideas that can occur between human molecular geneticists and researchers using animal models. WIREs Dev Biol 2013, 2:113-129. doi: 10.1002/wdev.57 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy & Cell Biology, University of Melbourne, Melbourne 3010, VIC, Australia
| | | | | | | |
Collapse
|
50
|
Broders-Bondon F, Paul-Gilloteaux P, Carlier C, Radice GL, Dufour S. N-cadherin and β1-integrins cooperate during the development of the enteric nervous system. Dev Biol 2012; 364:178-91. [PMID: 22342243 DOI: 10.1016/j.ydbio.2012.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
Abstract
Cell adhesion controls various embryonic morphogenetic processes, including the development of the enteric nervous system (ENS). Ablation of β1-integrin (β1-/-) expression in enteric neural crest cells (ENCC) in mice leads to major alterations in the ENS structure caused by reduced migration and increased aggregation properties of ENCC during gut colonization, which gives rise to a Hirschsprung's disease-like phenotype. In the present study, we examined the role of N-cadherin in ENS development and the interplay with β1 integrins during this process. The Ht-PA-Cre mouse model was used to target gene disruption of N-cadherin and β1 integrin in migratory NCC and to produce single- and double-conditional mutants for these two types of adhesion receptors. Double mutation of N-cadherin and β1 integrin led to embryonic lethality with severe defects in ENS development. N-cadherin-null (Ncad-/-) ENCC exhibited a delayed colonization in the developing gut at E12.5, although this was to a lesser extent than in β1-/- mutants. This delay of Ncad-/- ENCC migration was recovered at later stages of development. The double Ncad-/-; β1-/- mutant ENCC failed to colonize the distal part of the gut and there was more severe aganglionosis in the proximal hindgut than in the single mutants for N-cadherin or β1-integrin. This was due to an altered speed of locomotion and directionality in the gut wall. The abnormal aggregation defect of ENCC and the disorganized ganglia network in the β1-/- mutant was not observed in the double mutant. This indicates that N-cadherin enhances the effect of the β1-integrin mutation and demonstrates cooperation between these two adhesion receptors during ENS ontogenesis. In conclusion, our data reveal that N-cadherin is not essential for ENS development but it does modulate the modes of ENCC migration and acts in concert with β1-integrin to control the proper development of the ENS.
Collapse
|