1
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
2
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA signaling stimulate actin polymerization and flow in protrusions to drive collective cell migration. Curr Biol 2024; 34:245-259.e8. [PMID: 38096821 PMCID: PMC10872453 DOI: 10.1016/j.cub.2023.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network. Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin-II-dependent actin flow and protrusion retraction at the base of the protrusions and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA Signaling Stimulate Actin Polymerization and Flow in Protrusions to Drive Collective Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560679. [PMID: 37873192 PMCID: PMC10592895 DOI: 10.1101/2023.10.03.560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network (Yamada and Sixt, 2019). Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin II-dependent actin flow and protrusion retraction at the base of the protrusions, and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other-but not all (Bastock and Strutt, 2007; Lebreton and Casanova, 2013; Matthews et al., 2008)-contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Michael Cammer
- Microscopy laboratory, New York University Grossman School of Medicine, New York, United States
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
4
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
5
|
Chong-Morrison V, Mayes S, Simões FC, Senanayake U, Carroll DS, Riley PR, Wilson SW, Sauka-Spengler T. Ac/Ds transposition for CRISPR/dCas9-SID4x epigenome modulation in zebrafish. Biol Open 2023; 12:bio059995. [PMID: 37367831 PMCID: PMC10320716 DOI: 10.1242/bio.059995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.
Collapse
Affiliation(s)
- Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Sarah Mayes
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Filipa C. Simões
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Upeka Senanayake
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Dervla S. Carroll
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Paul R. Riley
- University of Oxford, Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, Oxford OX3 7DQ, UK
| | - Stephen W. Wilson
- University College London, Department of Cell & Developmental Biology, London WC1E 6BT, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| |
Collapse
|
6
|
Onistschenko J, Kaminsky S, Vazquez-Marín J, Gross K, Wang T, Seleit A, Dörr M, Centanin L. Temporal and clonal characterization of neural stem cell niche recruitment in the medaka neuromast. Cells Dev 2023; 174:203837. [PMID: 37116316 DOI: 10.1016/j.cdev.2023.203837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Stem cell populations are defined by their capacity to self-renew and to generate differentiated progeny. These unique characteristics largely depend on the stem cell micro-environment, the so-called stem cell niche. Niches were identified for most adult stem cells studied so far, but we know surprisingly little about how somatic stem cells and their niche come together during organ formation. Using the neuromasts of teleost fish, we have previously reported that neural stem cells recruit their niche from neighboring epithelial cells, which go through a morphological and molecular transformation. Here, we tackle quantitative, temporal, and clonal aspects of niche formation in neuromasts by using 4D imaging in transgenic lines, and lineage analysis in mosaic fish. We show that niche recruitment happens in a defined temporal window during the formation of neuromasts in medaka, and after that, the niche is enlarged mainly by the proliferation of niche cells. Niche recruitment is a non-clonal process that feeds from diverse epithelial cells that do not display a preferential position along the circumference of the forming neuromast. Additionally, we cover niche formation and expansion in zebrafish to show that distant species show common features during organogenesis in the lateral line system. Overall, our findings shed light on the process of niche formation, fundamental for the maintenance of stem cells not only in medaka but also in many other multicellular organisms.
Collapse
Affiliation(s)
- Jasmin Onistschenko
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Sabrina Kaminsky
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Javier Vazquez-Marín
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Karen Gross
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Tianyu Wang
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Ali Seleit
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Melanie Dörr
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, COS Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Kemmler CL, Moran HR, Murray BF, Scoresby A, Klem JR, Eckert RL, Lepovsky E, Bertho S, Nieuwenhuize S, Burger S, D'Agati G, Betz C, Puller AC, Felker A, Ditrychova K, Bötschi S, Affolter M, Rohner N, Lovely CB, Kwan KM, Burger A, Mosimann C. Next-generation plasmids for transgenesis in zebrafish and beyond. Development 2023; 150:dev201531. [PMID: 36975217 PMCID: PMC10263156 DOI: 10.1242/dev.201531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Collapse
Affiliation(s)
- Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Hannah R. Moran
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Brooke F. Murray
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Aaron Scoresby
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - John R. Klem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rachel L. Eckert
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Elizabeth Lepovsky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Sibylle Burger
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Gianluca D'Agati
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Charles Betz
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Ann-Christin Puller
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Anastasia Felker
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Karolina Ditrychova
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Seraina Bötschi
- Department of Molecular Life Sciences, University of Zurich, 8057 Zürich, Switzerland
| | - Markus Affolter
- Growth & Development, Biozentrum, Spitalstrasse 41, University of Basel, 4056 Basel, Switzerland
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - C. Ben Lovely
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
9
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
10
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Weiss JM, Lumaquin-Yin D, Montal E, Suresh S, Leonhardt CS, White RM. Shifting the focus of zebrafish toward a model of the tumor microenvironment. eLife 2022; 11:69703. [PMID: 36538362 PMCID: PMC9767465 DOI: 10.7554/elife.69703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells exist in a complex ecosystem with numerous other cell types in the tumor microenvironment (TME). The composition of this tumor/TME ecosystem will vary at each anatomic site and affects phenotypes such as initiation, metastasis, and drug resistance. A mechanistic understanding of the large number of cell-cell interactions between tumor and TME requires models that allow us to both characterize as well as genetically perturb this complexity. Zebrafish are a model system optimized for this problem, because of the large number of existing cell-type-specific drivers that can label nearly any cell in the TME. These include stromal cells, immune cells, and tissue resident normal cells. These cell-type-specific promoters/enhancers can be used to drive fluorophores to facilitate imaging and also CRISPR cassettes to facilitate perturbations. A major advantage of the zebrafish is the ease by which large numbers of TME cell types can be studied at once, within the same animal. While these features make the zebrafish well suited to investigate the TME, the model has important limitations, which we also discuss. In this review, we describe the existing toolset for studying the TME using zebrafish models of cancer and highlight unique biological insights that can be gained by leveraging this powerful resource.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Dianne Lumaquin-Yin
- Weill-Cornel Medical College, Tri-Institutional M.D./Ph.D. ProgramNew YorkUnited States
| | - Emily Montal
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Shruthy Suresh
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Carl S Leonhardt
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Department of Cancer Biology & GeneticsNew YorkUnited States,Department of Medicine, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
12
|
Kavaliauskaitė J, Kazlauskaitė A, Lazutka JR, Mozolevskis G, Stirkė A. Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene. Int J Mol Sci 2021; 23:ijms23010451. [PMID: 35008875 PMCID: PMC8745616 DOI: 10.3390/ijms23010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.
Collapse
Affiliation(s)
- Justina Kavaliauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Auksė Kazlauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Juozas Rimantas Lazutka
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Gatis Mozolevskis
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
| | - Arūnas Stirkė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
- Correspondence:
| |
Collapse
|
13
|
IQ-Switch is a QF-based innocuous, silencing-free, and inducible gene switch system in zebrafish. Commun Biol 2021; 4:1405. [PMID: 34916605 PMCID: PMC8677817 DOI: 10.1038/s42003-021-02923-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.
Collapse
|
14
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
15
|
Studying the Tumor Microenvironment in Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:69-92. [PMID: 34664234 DOI: 10.1007/978-3-030-73119-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment significantly contributes to tumor initiation, progression, neo-angiogenesis, and metastasis, and a better understanding of the role of the different cellular players would facilitate the development of novel therapeutic strategies for cancer treatment. Towards this goal, intravital imaging is a powerful method to unravel interaction partners of tumor cells. Among vertebrate model organisms, zebrafish is uniquely suited for in vivo imaging studies. In recent years zebrafish has also become a valuable model in cancer research. In this chapter, we will summarize, how zebrafish has been used to characterize cells of the tumor microenvironment. We will cover both genetically engineered cancer models and xenograft models in zebrafish. The majority of work has been done on the role of innate immune cells and their role during tumor initiation and metastasis, but we will also cover studies focusing on adipocytes, fibroblasts, and endothelial cells. Taken together, we will highlight the versatile use of the zebrafish model for in vivo tumor microenvironment studies.
Collapse
|
16
|
Burgess J, Burrows JT, Sadhak R, Chiang S, Weiss A, D'Amata C, Molinaro AM, Zhu S, Long M, Hu C, Krause HM, Pearson BJ. An optimized QF-binary expression system for use in zebrafish. Dev Biol 2020; 465:144-156. [PMID: 32697972 DOI: 10.1016/j.ydbio.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 11/15/2022]
Abstract
The zebrafish model organism has been of exceptional utility for the study of vertebrate development and disease through the application of tissue-specific labelling and overexpression of genes carrying patient-derived mutations. However, there remains a need for a binary expression system that is both non-toxic and not silenced over animal generations by DNA methylation. The Q binary expression system derived from the fungus Neurospora crassa is ideal, because the consensus binding site for the QF transcription factor lacks CpG dinucleotides, precluding silencing by CpG-meditated methylation. To optimize this system for zebrafish, we systematically tested several variants of the QF transcription factor: QF full length; QF2, which lacks the middle domain; QF2w, which is an attenuated version of QF2; and chimeric QFGal4. We found that full length QF and QF2 were strongly toxic to zebrafish embryos, QF2w was mildly toxic, and QFGal4 was well tolerated, when injected as RNA or expressed ubiquitously from stable transgenes. In addition, QFGal4 robustly activated a Tg(QUAS:GFPNLS) reporter transgene. To increase the utility of this system, we also modified the QF effector sequence termed QUAS, which consists of five copies of the QF binding site. Specifically, we decreased both the CpG dinucleotide content, as well as the repetitiveness of QUAS, to reduce the risk of transgene silencing via CpG methylation. Moreover, these modifications to QUAS removed leaky QF-independent neural expression that we detected in the original QUAS sequence. To demonstrate the utility of our QF optimizations, we show how the Q-system can be used for lineage tracing using a Cre-dependent Tg(ubi:QFGal4-switch) transgene. We also demonstrate that QFGal4 can be used in transient injections to tag and label endogenous genes by knocking in QFGal4 into sox2 and ubiquitin C genes.
Collapse
Affiliation(s)
- Jason Burgess
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada
| | - Jeffrey T Burrows
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada
| | - Roshan Sadhak
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sharon Chiang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alex Weiss
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada
| | - Cassandra D'Amata
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada
| | - Alyssa M Molinaro
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shujun Zhu
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada
| | - Michael Long
- The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Chun Hu
- The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry M Krause
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
17
|
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (Beijing) 2020; 1:140-156. [PMID: 34766114 PMCID: PMC8491243 DOI: 10.1002/mco2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the third leading cause of cancer‐related deaths throughout the world, and more than 0.6 million people die from liver cancer annually. Therefore, novel therapeutic strategies to eliminate malignant cells from liver cancer patients are urgently needed. Recent advances in high‐throughput genomic technologies have identified de novo candidates for oncogenes and pharmacological targets. However, testing and understanding the mechanism of oncogenic transformation as well as probing the kinetics and therapeutic responses of spontaneous tumors in an intact microenvironment require in vivo examination using genetically modified animal models. The zebrafish (Danio rerio) has attracted increasing attention as a new model for studying cancer biology since the organs in the model are strikingly similar to human organs and the model can be genetically modified in a short time and at a low cost. This review summarizes the current knowledge of epidemiological data and genetic alterations in hepatocellular carcinoma (HCC), zebrafish models of HCC, and potential therapeutic strategies for targeting HCC based on knowledge from the models.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
18
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
19
|
Abstract
Metastasis, the dispersal of cancer cells from a primary tumor to secondary sites within the body, is the leading cause of cancer-related death. Animal models have been an indispensable tool to investigate the complex interactions between the cancer cells and the tumor microenvironment during the metastatic cascade. The zebrafish (Danio rerio) has emerged as a powerful vertebrate model for studying metastatic events in vivo. The zebrafish has many attributes including ex-utero development, which facilitates embryonic manipulation, as well as optically transparent tissues, which enables in vivo imaging of fluorescently labeled cells in real time. Here, we summarize the techniques which have been used to study cancer biology and metastasis in the zebrafish model organism, including genetic manipulation and transgenesis, cell transplantation, live imaging, and high-throughput compound screening. Finally, we discuss studies using the zebrafish, which have complemented and benefited metastasis research.
Collapse
Affiliation(s)
- Katy R Astell
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
20
|
Wong M, Gilmour D. Getting back on track: exploiting canalization to uncover the mechanisms of developmental robustness. Curr Opin Genet Dev 2020; 63:53-60. [DOI: 10.1016/j.gde.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023]
|
21
|
Hartmann J, Wong M, Gallo E, Gilmour D. An image-based data-driven analysis of cellular architecture in a developing tissue. eLife 2020; 9:e55913. [PMID: 32501214 PMCID: PMC7274788 DOI: 10.7554/elife.55913] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Quantitative microscopy is becoming increasingly crucial in efforts to disentangle the complexity of organogenesis, yet adoption of the potent new toolbox provided by modern data science has been slow, primarily because it is often not directly applicable to developmental imaging data. We tackle this issue with a newly developed algorithm that uses point cloud-based morphometry to unpack the rich information encoded in 3D image data into a straightforward numerical representation. This enabled us to employ data science tools, including machine learning, to analyze and integrate cell morphology, intracellular organization, gene expression and annotated contextual knowledge. We apply these techniques to construct and explore a quantitative atlas of cellular architecture for the zebrafish posterior lateral line primordium, an experimentally tractable model of complex self-organized organogenesis. In doing so, we are able to retrieve both previously established and novel biologically relevant patterns, demonstrating the potential of our data-driven approach.
Collapse
Affiliation(s)
- Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mie Wong
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| | - Elisa Gallo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Darren Gilmour
- Institute of Molecular Life Sciences, University of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
22
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
23
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
24
|
Cheresiz SV, Volgin AD, Kokorina Evsyukova A, Bashirzade AAO, Demin KA, de Abreu MS, Amstislavskaya TG, Kalueff AV. Understanding neurobehavioral genetics of zebrafish. J Neurogenet 2020; 34:203-215. [PMID: 31902276 DOI: 10.1080/01677063.2019.1698565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to its fully sequenced genome, high genetic homology to humans, external fertilization, fast development, transparency of embryos, low cost and active reproduction, the zebrafish (Danio rerio) has become a novel promising model organism in biomedicine. Zebrafish are a useful tool in genetic and neuroscience research, including linking various genetic mutations to brain mechanisms using forward and reverse genetics. These approaches have produced novel models of rare genetic CNS disorders and common brain illnesses, such as addiction, aggression, anxiety and depression. Genetically modified zebrafish also foster neuroanatomical studies, manipulating neural circuits and linking them to different behaviors. Here, we discuss recent advances in neurogenetics of zebrafish, and evaluate their unique strengths, inherent limitations and the rapidly growing potential for elucidating the conserved roles of genes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sergey V Cheresiz
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra Kokorina Evsyukova
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Alim A O Bashirzade
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| |
Collapse
|
25
|
Hockman D, Chong-Morrison V, Green SA, Gavriouchkina D, Candido-Ferreira I, Ling ITC, Williams RM, Amemiya CT, Smith JJ, Bronner ME, Sauka-Spengler T. A genome-wide assessment of the ancestral neural crest gene regulatory network. Nat Commun 2019; 10:4689. [PMID: 31619682 PMCID: PMC6795873 DOI: 10.1038/s41467-019-12687-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is an embryonic cell population that contributes to key vertebrate-specific features including the craniofacial skeleton and peripheral nervous system. Here we examine the transcriptional and epigenomic profiles of NC cells in the sea lamprey, in order to gain insight into the ancestral state of the NC gene regulatory network (GRN). Transcriptome analyses identify clusters of co-regulated genes during NC specification and migration that show high conservation across vertebrates but also identify transcription factors (TFs) and cell-adhesion molecules not previously implicated in NC migration. ATAC-seq analysis uncovers an ensemble of cis-regulatory elements, including enhancers of Tfap2B, SoxE1 and Hox-α2 validated in the embryo. Cross-species deployment of lamprey elements identifies the deep conservation of lamprey SoxE1 enhancer activity, mediating homologous expression in jawed vertebrates. Our data provide insight into the core GRN elements conserved to the base of the vertebrates and expose others that are unique to lampreys.
Collapse
Affiliation(s)
- Dorit Hockman
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vanessa Chong-Morrison
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Okinawa Institute of Science and Technology, Molecular Genetics Unit, Onna, Japan
| | - Ivan Candido-Ferreira
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Irving T C Ling
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chris T Amemiya
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Deodato D, Asad N, Dore TM. Photorearrangement of Quinoline-Protected Dialkylanilines and the Photorelease of Aniline-Containing Biological Effectors. J Org Chem 2019; 84:7342-7353. [PMID: 31095378 DOI: 10.1021/acs.joc.9b01031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct release of dialkylanilines was achieved by controlling the outcome of a photorearrangement reaction promoted by the (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ) photoremovable protecting group. The substrate scope was investigated to obtain structure-activity relationships and to propose a reaction mechanism. Introducing a methyl substituent at the 2-methyl position of the CyHQ core enabled the bypass of the photorearrangement and significantly improved the aniline release efficiency. We successfully applied the strategy to the photoactivation of mifepristone (RU-486), an antiprogestin drug that is also used to induce the LexPR gene expression system in zebrafish and the gene-switch regulatory system based on the pGL-VP chimeric regulator in mammals.
Collapse
Affiliation(s)
- Davide Deodato
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Naeem Asad
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates
| | - Timothy M Dore
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi , United Arab Emirates.,Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
27
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
28
|
Wu X, Shen W, Zhang B, Meng A. The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol 2018; 10:479-493. [PMID: 30060229 DOI: 10.1093/jmcb/mjy044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oocytes, the irreplaceable gametes for generating a new organism, are matured in the ovary of living female animals. It is unknown whether any genetic manipulations can be applied to immature oocytes inside the living ovaries. As a proof-of-concept, we here demonstrate genetic amendments of zebrafish immature oocytes within the ovary. Oocyte microinjection in situ (OMIS) stimulates tissue repair responses, but some of the microinjected immature oocytes are matured, ovulated and fertilizable. By OMIS-mediated Cas9 approach, ntla and gata5 loci of oocytes arrested at prophase I of meiosis are successfully edited before fertilization. Through OMIS, high efficiency of biallelic mutations in single or multiple loci using Cas9/gRNAs allows immediate manifestation of mutant phenotypes in F0 embryos and multiple transgenes can co-express the reporters in F0 embryos with patterns similar to germline transgenic embryos. Furthermore, maternal knockdown of dnmt1 by antisense morpholino via OMIS results in a dramatic decrease of global DNA methylation level at the dome stage and causes embryonic lethality prior to segmentation period. Therefore, OMIS opens a door to efficiently modify the genome and provides a possibility to repair genetically abnormal oocytes in situ.
Collapse
Affiliation(s)
- Xiaotong Wu
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bingjie Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Lu JW, Raghuram D, Fong PSA, Gong Z. Inducible Intestine-Specific Expression of kras V12 Triggers Intestinal Tumorigenesis In Transgenic Zebrafish. Neoplasia 2018; 20:1187-1197. [PMID: 30390498 PMCID: PMC6215966 DOI: 10.1016/j.neo.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are a major risk factor in colorectal cancers. In particular, a point mutation of KRAS of amino acid 12, such as KRASV12, renders it stable activity in oncogenesis. We found that krasV12 promotes intestinal carcinogenesis by generating a transgenic zebrafish line with inducible krasV12 expression in the intestine, Tg(ifabp:EGFP-krasV12). The transgenic fish generated exhibited significant increases in the rates of intestinal epithelial outgrowth, proliferation, and cross talk in the active Ras signaling pathway involving in epithelial-mesenchymal transition (EMT). These results provide in vivo evidence of Ras pathway activation via krasV12 overexpression. Long-term transgenic expression of krasV12 resulted in enteritis, epithelial hyperplasia, and tubular adenoma in adult fish. This was accompanied by increased levels of the signaling proteins p-Erk and p-Akt and by downregulation of the EMT marker E-cadherin. Furthermore, we also observed a synergistic effect of krasV12 expression and dextran sodium sulfate treatment to enhance intestinal tumor in zebrafish. Our results demonstrate that krasV12 overexpression induces intestinal tumorigenesis in zebrafish, which mimics intestinal tumor formation in humans. Thus, our transgenic zebrafish may provide a valuable in vivo platform that can be used to investigate tumor initiation and anticancer drugs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Divya Raghuram
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Hinfray N, Sohm F, Caulier M, Chadili E, Piccini B, Torchy C, Porcher JM, Guiguen Y, Brion F. Dynamic and differential expression of the gonadal aromatase during the process of sexual differentiation in a novel transgenic cyp19a1a-eGFP zebrafish line. Gen Comp Endocrinol 2018. [PMID: 28648994 DOI: 10.1016/j.ygcen.2017.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.
Collapse
Affiliation(s)
- Nathalie Hinfray
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| | - Frédéric Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgane Caulier
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Camille Torchy
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Yann Guiguen
- INRA, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), IFR140, Ouest-Genopole, F-35000 Rennes, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
31
|
Kenyon A, Gavriouchkina D, Zorman J, Chong-Morrison V, Napolitani G, Cerundolo V, Sauka-Spengler T. Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes. Dis Model Mech 2018; 11:dmm030056. [PMID: 29666124 PMCID: PMC5963855 DOI: 10.1242/dmm.030056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
A complex network of inflammatory genes is closely linked to somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. Here, we describe the development of a double binary zebrafish model that enables regulatory programming of the myeloid cells as they respond to oncogene-activated melanocytes to be explored, focussing on the initial phase when cells become the precursors of cancer. A hormone-inducible binary system allows for temporal control of expression of different Ras oncogenes (NRasQ61K, HRasG12V and KRasG12V) in melanocytes, leading to proliferation and changes in morphology of the melanocytes. This model was coupled to binary cell-specific biotagging models allowing in vivo biotinylation and subsequent isolation of macrophage or neutrophil nuclei for regulatory profiling of their active transcriptomes. Nuclear transcriptional profiling of neutrophils, performed as they respond to the earliest precursors of melanoma in vivo, revealed an intricate landscape of regulatory factors that may promote progression to melanoma, including Serpinb1l4, Fgf1, Fgf6, Cathepsin H, Galectin 1 and Galectin 3. The model presented here provides a powerful platform to study the myeloid response to the earliest precursors of melanoma.
Collapse
Affiliation(s)
- Amy Kenyon
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Daria Gavriouchkina
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Jernej Zorman
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vanessa Chong-Morrison
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Giorgio Napolitani
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Vincenzo Cerundolo
- University of Oxford, Weatherall Institute of Molecular Medicine, MRC Human Immunology Unit, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- University of Oxford, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
32
|
Chia K, Mazzolini J, Mione M, Sieger D. Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain. eLife 2018; 7:e31918. [PMID: 29465400 PMCID: PMC5821457 DOI: 10.7554/elife.31918] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
It is now clear that microglia and macrophages are present in brain tumors, but whether or how they affect initiation and development of tumors is not known. Exploiting the advantages of the zebrafish (Danio rerio) model, we showed that macrophages and microglia respond immediately upon oncogene activation in the brain. Overexpression of human AKT1 within neural cells of larval zebrafish led to a significant increase in the macrophage and microglia populations. By using a combination of transgenic and mutant zebrafish lines, we showed that this increase was caused by the infiltration of peripheral macrophages into the brain mediated via Sdf1b-Cxcr4b signaling. Intriguingly, confocal live imaging reveals highly dynamic interactions between macrophages/microglia and pre-neoplastic cells, which do not result in phagocytosis of pre-neoplastic cells. Finally, depletion of macrophages and microglia resulted in a significant reduction of oncogenic cell proliferation. Thus, macrophages and microglia show tumor promoting functions already during the earliest stages of the developing tumor microenvironment.
Collapse
Affiliation(s)
- Kelda Chia
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Marina Mione
- Centre for Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
33
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
34
|
Lust K, Wittbrodt J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. eLife 2018; 7:32319. [PMID: 29376827 PMCID: PMC5815849 DOI: 10.7554/elife.32319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/22/2022] Open
Abstract
Regeneration responses in animals are widespread across phyla. To identify molecular players that confer regenerative capacities to non-regenerative species is of key relevance for basic research and translational approaches. Here, we report a differential response in retinal regeneration between medaka (Oryzias latipes) and zebrafish (Danio rerio). In contrast to zebrafish, medaka Müller glia (olMG) cells behave like progenitors and exhibit a restricted capacity to regenerate the retina. After injury, olMG cells proliferate but fail to self-renew and ultimately only restore photoreceptors. In our injury paradigm, we observed that in contrast to zebrafish, proliferating olMG cells do not maintain sox2 expression. Sustained sox2 expression in olMG cells confers regenerative responses similar to those of zebrafish MG (drMG) cells. We show that a single, cell-autonomous factor reprograms olMG cells and establishes a regeneration-like mode. Our results position medaka as an attractive model to delineate key regeneration factors with translational potential. All animals have at least some ability to repair their bodies after injury. But certain species can regenerate entire body parts and even internal organs. Salamanders, for example, can regrow their tail and limbs, as well as their eyes and heart. Many species of fish can also regenerate organs and tissues. In comparison, mammals have only limited regenerative capacity. Why does regeneration vary between species, and is it possible to convert a non-regenerating system into a regenerating one? Laboratory studies of regeneration often use the model organism, zebrafish. Zebrafish can restore their sight after an eye injury by regenerating the retina, the light-sensitive tissue at the back of the eye. They are able to do this thanks to cells in the retina called Müller glial cells. These behave like stem cells. They divide to produce identical copies of themselves, which then transform into all of the different cell types necessary to produce a new retina. Lust and Wittbrodt now show that a distant relative of the zebrafish, the Japanese ricefish ‘medaka’, lacks these regenerative skills. Although Müller glial cells in medaka also divide after injury, they give rise to only a single type of retinal cell. This means that these fish cannot regenerate an entire retina. Lust and Wittbrodt demonstrate that in medaka, but not zebrafish, levels of a protein called Sox2 fall after eye injury. As Sox2 has been shown to be important for regeneration in zebrafish Müller glial cells, the loss of Sox2 may be preventing regeneration in medaka. Consistent with this, restoring Sox2 levels in medaka Müller glial cells enabled them to turn into several different types of retinal cell. Sox2 is also present in the Müller glial cells of other species with backbones, including chickens, mice, and humans. Future experiments should test whether loss of Sox2 after injury contributes to the lack of regeneration in these species. If it does, the next question will be whether restoring Sox2 can drive a regenerative response.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Seleit A, Krämer I, Riebesehl BF, Ambrosio EM, Stolper JS, Lischik CQ, Dross N, Centanin L. Neural stem cells induce the formation of their physical niche during organogenesis. eLife 2017; 6. [PMID: 28950935 PMCID: PMC5617629 DOI: 10.7554/elife.29173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Most organs rely on stem cells to maintain homeostasis during post-embryonic life. Typically, stem cells of independent lineages work coordinately within mature organs to ensure proper ratios of cell types. Little is known, however, on how these different stem cells locate to forming organs during development. Here we show that neuromasts of the posterior lateral line in medaka are composed of two independent life-long lineages with different embryonic origins. Clonal analysis and 4D imaging revealed a hierarchical organisation with instructing and responding roles: an inner, neural lineage induces the formation of an outer, border cell lineage (nBC) from the skin epithelium. Our results demonstrate that the neural lineage is necessary and sufficient to generate nBCs highlighting self-organisation principles at the level of the entire embryo. We hypothesise that induction of surrounding tissues plays a major role during the establishment of vertebrate stem cell niches.
Collapse
Affiliation(s)
- Ali Seleit
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany
| | - Isabel Krämer
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany
| | - Bea F Riebesehl
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Elizabeth M Ambrosio
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| | - Julian S Stolper
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany.,Murdoch Childrens Research Institute, University of Melbourne, Melbourne, Australia
| | - Colin Q Lischik
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany.,The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg, Heidelberg, Germany
| | - Nicolas Dross
- Nikon Imaging Center at the University of Heidelberg, Heidelberg, Germany
| | - Lazaro Centanin
- Animal Physiology and Development, Centre for Organismal Studies Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
Kuri P, Schieber NL, Thumberger T, Wittbrodt J, Schwab Y, Leptin M. Dynamics of in vivo ASC speck formation. J Cell Biol 2017; 216:2891-2909. [PMID: 28701426 PMCID: PMC5584180 DOI: 10.1083/jcb.201703103] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022] Open
Abstract
The inflammasome adaptor ASC forms enormous intracellular complexes called specks. Live imaging of endogenous ASC in keratinocytes reveals speck formation dynamics and their lethal effects, as well as macrophages’ engulfment and digestion of the specks left behind by dead cells. Activated danger or pathogen sensors trigger assembly of the inflammasome adaptor ASC into specks, large signaling platforms considered hallmarks of inflammasome activation. Because a lack of in vivo tools has prevented the study of endogenous ASC dynamics, we generated a live ASC reporter through CRISPR/Cas9 tagging of the endogenous gene in zebrafish. We see strong ASC expression in the skin and other epithelia that act as barriers to insult. A toxic stimulus triggered speck formation and rapid pyroptosis in keratinocytes in vivo. Macrophages engulfed and digested that speck-containing, pyroptotic debris. A three-dimensional, ultrastructural reconstruction, based on correlative light and electron microscopy of the in vivo assembled specks revealed a compact network of highly intercrossed filaments, whereas pyrin domain (PYD) or caspase activation and recruitment domain alone formed filamentous aggregates. The effector caspase is recruited through PYD, whose overexpression induced pyroptosis but only after substantial delay. Therefore, formation of a single, compact speck and rapid cell-death induction in vivo requires a full-length ASC.
Collapse
Affiliation(s)
- Paola Kuri
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nicole L Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany .,Institute of Genetics, University of Cologne, Cologne, Germany.,European Molecular Biology Organization, Heidelberg, Germany
| |
Collapse
|
37
|
Expressing acetylcholine receptors after innervation suppresses spontaneous vesicle release and causes muscle fatigue. Sci Rep 2017; 7:1674. [PMID: 28490756 PMCID: PMC5431962 DOI: 10.1038/s41598-017-01900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
The formation and function of synapses are tightly orchestrated by the precise timing of expression of specific molecules during development. In this study, we determined how manipulating the timing of expression of postsynaptic acetylcholine receptors (AChRs) impacts presynaptic release by establishing a genetically engineered zebrafish line in which we can freely control the timing of AChR expression in an AChR-less fish background. With the delayed induction of AChR expression after an extensive period of AChR-less development, paralyzed fish displayed a remarkable level of recovery, exhibiting a robust escape response following developmental delay. Despite their apparent behavioral rescue, synapse formation in these fish was significantly altered as a result of delayed AChR expression. Motor neuron innervation determined the sites for AChR clustering, a complete reversal of normal neuromuscular junction (NMJ) development where AChR clustering precedes innervation. Most importantly, among the three modes of presynaptic vesicle release, only the spontaneous release machinery was strongly suppressed in these fish, while evoked vesicle release remained relatively unaffected. Such a specific presynaptic change, which may constitute a part of the compensatory mechanism in response to the absence of postsynaptic AChRs, may underlie symptoms of neuromuscular diseases characterized by reduced AChRs, such as myasthenia gravis.
Collapse
|
38
|
Chow RWY, Vermot J. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology. F1000Res 2017; 6. [PMID: 28413613 PMCID: PMC5389412 DOI: 10.12688/f1000research.10617.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The zebrafish ( Danio rerio) is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.
Collapse
Affiliation(s)
- Renee Wei-Yan Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique UMR8104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
39
|
Abstract
Myelination by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system is essential for nervous system function and health. Despite its importance, we have a relatively poor understanding of the molecular and cellular mechanisms that regulate myelination in the living animal, particularly in the CNS. This is partly due to the fact that myelination commences around birth in mammals, by which time the CNS is complex and largely inaccessible, and thus very difficult to image live in its intact form. As a consequence, in recent years much effort has been invested in the use of smaller, simpler, transparent model organisms to investigate mechanisms of myelination in vivo. Although the majority of such studies have employed zebrafish, the Xenopus tadpole also represents an important complementary system with advantages for investigating myelin biology in vivo. Here we review how the natural features of zebrafish embryos and larvae and Xenopus tadpoles make them ideal systems for experimentally interrogating myelination by live imaging. We outline common transgenic technologies used to generate zebrafish and Xenopus that express fluorescent reporters, which can be used to image myelination. We also provide an extensive overview of the imaging modalities most commonly employed to date to image the nervous system in these transparent systems, and also emerging technologies that we anticipate will become widely used in studies of zebrafish and Xenopus myelination in the near future.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, MS Society Centre for Translational Research, Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
40
|
Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development 2016; 143:1874-83. [PMID: 27068106 PMCID: PMC4920165 DOI: 10.1242/dev.135905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses. Highlighted article: Induced activation of atoh7 in Müller glia cells in vivo is sufficient to drive cell cycle re-entry and proliferation, followed by the formation of neurogenic clusters and de novo neurogenesis.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Rebecca Sinn
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Alicia Pérez Saturnino
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
41
|
Gebala V, Collins R, Geudens I, Phng LK, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 2016; 18:443-50. [PMID: 26928868 PMCID: PMC6485462 DOI: 10.1038/ncb3320] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/27/2016] [Indexed: 12/18/2022]
Abstract
How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks, and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. Here we report that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that we have termed inverse blebbing. We show that endothelial cells react to these membrane intrusions by local and transient recruitment and contraction of actomyosin, and that this mechanism is required for single, unidirectional lumen expansion in angiogenic sprouts. Our work identifies inverse membrane blebbing as a cellular response to high external pressure. We show that in the case of blood vessels such membrane dynamics can drive local cell shape changes required for global tissue morphogenesis, shedding light on a pressure-driven mechanism of lumen formation in vertebrates.
Collapse
Affiliation(s)
- Véronique Gebala
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.,Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Li-Kun Phng
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
42
|
Hjelm BE, Grunseich C, Gowing G, Avalos P, Tian J, Shelley BC, Mooney M, Narwani K, Shi Y, Svendsen CN, Wolfe JH, Fischbeck KH, Pierson TM. Mifepristone-inducible transgene expression in neural progenitor cells in vitro and in vivo. Gene Ther 2016; 23:424-37. [PMID: 26863047 DOI: 10.1038/gt.2016.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
Numerous gene and cell therapy strategies are being developed for the treatment of neurodegenerative disorders. Many of these strategies use constitutive expression of therapeutic transgenic proteins, and although functional in animal models of disease, this method is less likely to provide adequate flexibility for delivering therapy to humans. Ligand-inducible gene expression systems may be more appropriate for these conditions, especially within the central nervous system (CNS). Mifepristone's ability to cross the blood-brain barrier makes it an especially attractive ligand for this purpose. We describe the production of a mifepristone-inducible vector system for regulated expression of transgenes within the CNS. Our inducible system used a lentivirus-based vector platform for the ex vivo production of mifepristone-inducible murine neural progenitor cells that express our transgenes of interest. These cells were processed through a series of selection steps to ensure that the cells exhibited appropriate transgene expression in a dose-dependent and temporally controlled manner with minimal background activity. Inducible cells were then transplanted into the brains of rodents, where they exhibited appropriate mifepristone-inducible expression. These studies detail a strategy for regulated expression in the CNS for use in the development of safe and efficient gene therapy for neurological disorders.
Collapse
Affiliation(s)
- B E Hjelm
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - G Gowing
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - P Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J Tian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - B C Shelley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - M Mooney
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - K Narwani
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Y Shi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - C N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J H Wolfe
- Departments of Pediatrics and Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.,Stokes Research Institute, Children's Hospital of Philadelphia, PA, USA
| | - K H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - T M Pierson
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pediatrics and Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
43
|
Nguyen AT, Koh V, Spitsbergen JM, Gong Z. Development of a conditional liver tumor model by mifepristone-inducible Cre recombination to control oncogenic kras V12 expression in transgenic zebrafish. Sci Rep 2016; 6:19559. [PMID: 26790949 PMCID: PMC4726387 DOI: 10.1038/srep19559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Here we report a new transgenic expression system by combination of liver-specific expression, mifepristone induction and Cre-loxP recombination to conditionally control the expression of oncogenic krasV12. This transgenic system allowed expression of krasV12 specifically in the liver by a brief exposure of mifepristone to induce permanent genomic recombination mediated by the Cre-loxP system. We found that liver tumors were generally induced from multiple foci due to incomplete Cre-loxP recombination, thus mimicking naturally occurring human tumors resulting from one or a few mutated cells and clonal proliferation to form nodules. Similar to our earlier studies by both constitutive and inducible expression of the krasV12 oncogene, hepatocellular carcinoma (HCC) is the main type of liver tumor induced by krasV12 expression. Moreover, mixed tumors with hepatocellular adenoma and hepatoblastoma (HB) were also frequently observed. Molecular analyses also indicated similar increase of phosphorylated ERK1/2 in all types of liver tumors, but nuclear localization of β–catenin, a sign of malignant transformation, was found only in HCC and HB. Taken together, our new transgenic system reported in this study allows transgenic krasV12 expression specifically in the zebrafish liver only by a brief exposure of mifepristone to induce permanent genomic recombination mediated by the Cre-loxP system.
Collapse
Affiliation(s)
- Anh Tuan Nguyen
- Department of Biological Sciences, National University of Singapore, Singapore 117543.,Department of Microbiology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - Vivien Koh
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Jan M Spitsbergen
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA, 97331
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
44
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
45
|
Abstract
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Collapse
|
46
|
Yin L, Maddison LA, Li M, Kara N, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen W. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs. Genetics 2015; 200:431-41. [PMID: 25855067 PMCID: PMC4492370 DOI: 10.1534/genetics.115.176917] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward.
Collapse
Affiliation(s)
- Linlin Yin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lisette A Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Nergis Kara
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee 37240
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - James G Patton
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee 37240
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
47
|
Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: past, present and future. Eur J Neurosci 2015; 42:1746-63. [PMID: 25900095 DOI: 10.1111/ejn.12932] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.
Collapse
Affiliation(s)
- Cameron Wyatt
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium
| | - Ewelina M Bartoszek
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef, Leuven, Belgium.,VIB, Leuven, Belgium.,KU Leuven, Leuven, Belgium.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
48
|
Reinhardt R, Centanin L, Tavhelidse T, Inoue D, Wittbrodt B, Concordet JP, Martinez-Morales JR, Wittbrodt J. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo. EMBO J 2015; 34:1572-88. [PMID: 25908840 PMCID: PMC4474531 DOI: 10.15252/embj.201490706] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/01/2015] [Indexed: 12/21/2022] Open
Abstract
Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina.
Collapse
Affiliation(s)
- Robert Reinhardt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beate Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
49
|
Phng LK, Gebala V, Bentley K, Philippides A, Wacker A, Mathivet T, Sauteur L, Stanchi F, Belting HG, Affolter M, Gerhardt H. Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell 2015; 32:123-32. [PMID: 25584798 DOI: 10.1016/j.devcel.2014.11.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/31/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
During blood vessel formation, endothelial cells (ECs) establish cell-cell junctions and rearrange to form multicellular tubes. Here, we show that during lumen formation, the actin nucleator and elongation factor, formin-like 3 (fmnl3), localizes to EC junctions, where filamentous actin (F-actin) cables assemble. Fluorescent actin reporters and fluorescence recovery after photobleaching experiments in zebrafish embryos identified a pool of dynamic F-actin with high turnover at EC junctions in vessels. Knockdown of fmnl3 expression, chemical inhibition of formin function, and expression of dominant-negative fmnl3 revealed that formin activity maintains a stable F-actin content at EC junctions by continual polymerization of F-actin cables. Reduced actin polymerization leads to destabilized endothelial junctions and consequently to failure in blood vessel lumenization and lumen instability. Our findings highlight the importance of formin activity in blood vessel morphogenesis.
Collapse
Affiliation(s)
- Li-Kun Phng
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Véronique Gebala
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK
| | - Katie Bentley
- Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Andrin Wacker
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Loïc Sauteur
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Vascular Biology Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY, UK.
| |
Collapse
|
50
|
Myc-induced liver tumors in transgenic zebrafish can regress in tp53 null mutation. PLoS One 2015; 10:e0117249. [PMID: 25612309 PMCID: PMC4303426 DOI: 10.1371/journal.pone.0117249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/20/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is currently one of the top lethal cancers with an increasing trend. Deregulation of MYC in HCC is frequently detected and always correlated with poor prognosis. As the zebrafish genome contains two differentially expressed zebrafish myc orthologs, myca and mycb, it remains unclear about the oncogenicity of the two zebrafish myc genes. In the present study, we developed two transgenic zebrafish lines to over-express myca and mycb respectively in the liver using a mifepristone-inducible system and found that both myc genes were oncogenic. Moreover, the transgenic expression of myca in hepatocytes caused robust liver tumors with several distinct phenotypes of variable severity. ~5% of myca transgenic fish developing multinodular HCC with cirrhosis after 8 months of induced myca expression. Apoptosis was also observed with myca expression; introduction of homozygous tp53-/- mutation into the myca transgenic fish reduced apoptosis and accelerated tumor progression. The malignant status of hepatocytes was dependent on continued expression of myca; withdrawal of the mifepristone inducer resulted in a rapid regression of liver tumors, and the tumor regression occurred even in the tp53-/- mutation background. Thus, our data demonstrated the robust oncogenicity of zebrafish myca and the requirement of sustained Myc overexpression for maintenance of the liver tumor phenotype in this transgenic model. Furthermore, tumor regression is independent of the function of Tp53.
Collapse
|