1
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
2
|
Omble A, Mahajan S, Bhoite A, Kulkarni K. Dishevelled2 activates WGEF via its interaction with a unique internal peptide motif of the GEF. Commun Biol 2024; 7:543. [PMID: 38714795 PMCID: PMC11076555 DOI: 10.1038/s42003-024-06194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.
Collapse
Affiliation(s)
- Aishwarya Omble
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrutika Mahajan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ashwini Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
5
|
Van Itallie ES, Field CM, Mitchison TJ, Kirschner MW. Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands. Dev Biol 2023; 493:67-79. [PMID: 36334838 PMCID: PMC10194025 DOI: 10.1016/j.ydbio.2022.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Wnt11 family proteins are ligands that activate a type of Dishevelled-mediated, non-canonical Wnt signaling pathway. Loss of function causes defects in gastrulation and/or anterior-posterior axis extension in all vertebrates. Non-mammalian vertebrate genomes encode two Wnt11 family proteins whose distinct functions have been unclear. We knocked down Wnt11b and Wnt11, separately and together, in Xenopus laevis. Single morphants exhibited very similar phenotypes of delayed blastopore closure, but they had different phenotypes during the tailbud period. In response to their very similar gastrulation phenotypes, we chose to characterize dual morphants. Using dark field illuminated time-lapse imaging and kymograph analysis, we identified a failure of dorsal blastopore lip maturation that correlated with slower blastopore closure and failure to internalize the endoderm at the dorsal blastopore lip. We connected these externally visible phenotypes to cellular events in the internal tissues by imaging intact fixed embryos stained for anillin and microtubules. We found that the initial extension of the archenteron is correlated with blastopore lip maturation, and archenteron extension is dramatically disrupted by decreased Wnt11 family signaling. We were aided in our interpretation of the immunofluorescence by the novel, membrane proximal location of the cleavage furrow protein anillin in the epithelium of the blastopore lip and early archenteron.
Collapse
Affiliation(s)
| | - Christine M Field
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China. .,Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
7
|
Tamai K, Sakai K, Yamaki H, Moriguchi K, Igura K, Maehana S, Suezawa T, Takehara K, Hagiwara M, Hirai T, Gotoh S. iPSC-derived mesenchymal cells that support alveolar organoid development. CELL REPORTS METHODS 2022; 2:100314. [PMID: 36313800 PMCID: PMC9606132 DOI: 10.1016/j.crmeth.2022.100314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
Mesenchymal cells are necessary for organ development. In the lung, distal tip fibroblasts contribute to alveolar and airway epithelial cell differentiation and homeostasis. Here, we report a method for generating human induced pluripotent stem cell (iPSC)-derived mesenchymal cells (iMESs) that can induce human iPSC-derived alveolar and airway epithelial lineages in organoids via epithelial-mesenchymal interaction, without the use of allogenic fetal lung fibroblasts. Through a transcriptome comparison of dermal and lung fibroblasts with their corresponding reprogrammed iPSC-derived iMESs, we found that iMESs had features of lung mesenchyme with the potential to induce alveolar type 2 (AT2) cells. Particularly, RSPO2 and RSPO3 expressed in iMESs directly contributed to AT2 cell induction during organoid formation. We demonstrated that the total iPSC-derived alveolar organoids were useful for characterizing responses to the influenza A (H1N1) virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, demonstrating their utility for disease modeling.
Collapse
Affiliation(s)
- Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji Sakai
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Yamaki
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Moriguchi
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Igura
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shotaro Maehana
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Microbiology, School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
- Regenerative Medicine and Cell Design Research Facility, Kanagawa, Japan
| | - Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Animal Health, Cooperative Division of Veterinary Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Somorjai IML, Ehebauer MT, Escrivà H, Garcia-Fernàndez J. JNK Mediates Differentiation, Cell Polarity and Apoptosis During Amphioxus Development by Regulating Actin Cytoskeleton Dynamics and ERK Signalling. Front Cell Dev Biol 2021; 9:749806. [PMID: 34778260 PMCID: PMC8586503 DOI: 10.3389/fcell.2021.749806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a multi-functional protein involved in a diverse array of context-dependent processes, including apoptosis, cell cycle regulation, adhesion, and differentiation. It is integral to several signalling cascades, notably downstream of non-canonical Wnt and mitogen activated protein kinase (MAPK) signalling pathways. As such, it is a key regulator of cellular behaviour and patterning during embryonic development across the animal kingdom. The cephalochordate amphioxus is an invertebrate chordate model system straddling the invertebrate to vertebrate transition and is thus ideally suited for comparative studies of morphogenesis. However, next to nothing is known about JNK signalling or cellular processes in this lineage. Pharmacological inhibition of JNK signalling using SP600125 during embryonic development arrests gastrula invagination and causes convergence extension-like defects in axial elongation, particularly of the notochord. Pharynx formation and anterior oral mesoderm derivatives like the preoral pit are also affected. This is accompanied by tissue-specific transcriptional changes, including reduced expression of six3/6 and wnt2 in the notochord, and ectopic wnt11 in neurulating embryos treated at late gastrula stages. Cellular delamination results in accumulation of cells in the gut cavity and a dorsal fin-like protrusion, followed by secondary Caspase-3-mediated apoptosis of polarity-deficient cells, a phenotype only partly rescued by co-culture with the pan-Caspase inhibitor Z-VAD-fmk. Ectopic activation of extracellular signal regulated kinase (ERK) signalling in the neighbours of extruded notochord and neural cells, possibly due to altered adhesive and tensile properties, as well as defects in cellular migration, may explain some phenotypes caused by JNK inhibition. Overall, this study supports conserved functions of JNK signalling in mediating the complex balance between cell survival, apoptosis, differentiation, and cell fate specification during cephalochordate morphogenesis.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- School of Biology, University of St Andrews, St Andrews, United Kingdom.,Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France.,Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain
| | | | - Hector Escrivà
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, University of Barcelona, Barcelona, Spain.,Institut de Biomedicina, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Wang C, Chen Q, Xu H. Wnt/β-catenin signal transduction pathway in prostate cancer and associated drug resistance. Discov Oncol 2021; 12:40. [PMID: 35201496 PMCID: PMC8777554 DOI: 10.1007/s12672-021-00433-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Globally, prostate cancer ranks second in cancer burden of the men. It occurs more frequently in black men compared to white or Asian men. Usually, high rates exist for men aged 60 and above. In this review, we focus on the Wnt/β-catenin signal transduction pathway in prostate cancer since many studies have reported that β-catenin can function as an oncogene and is important in Wnt signaling. We also relate its expression to the androgen receptor and MMP-7 protein, both critical to prostate cancer pathogenesis. Some mutations in the androgen receptor also impact the androgen-β-catenin axis and hence, lead to the progression of prostate cancer. We have also reviewed MiRNAs that modulate this pathway in prostate cancer. Finally, we have summarized the impact of Wnt/β-catenin pathway proteins in the drug resistance of prostate cancer as it is a challenging facet of therapy development due to the complexity of signaling pathways interaction and cross-talk.
Collapse
Affiliation(s)
- Chunyang Wang
- Urology Department, PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Huachao Xu
- Department of Urologic Oncology Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
| |
Collapse
|
11
|
Ishishita S, Tatsumoto S, Kinoshita K, Nunome M, Suzuki T, Go Y, Matsuda Y. Transcriptome analysis revealed misregulated gene expression in blastoderms of interspecific chicken and Japanese quail F1 hybrids. PLoS One 2020; 15:e0240183. [PMID: 33044996 PMCID: PMC7549780 DOI: 10.1371/journal.pone.0240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Hybrid incompatibility, such as sterility and inviability, prevents gene flow between closely-related populations as a reproductive isolation barrier. F1 hybrids between chickens and Japanese quail (hereafter, referred to as quail), exhibit a high frequency of developmental arrest at the preprimitive streak stage. To investigate the molecular basis of the developmental arrest at the preprimitive streak stage in chicken–quail F1 hybrid embryos, we investigated chromosomal abnormalities in the hybrid embryos using molecular cytogenetic analysis. In addition, we quantified gene expression in parental species and chicken- and quail-derived allele-specific expression in the hybrids at the early blastoderm and preprimitive streak stages by mRNA sequencing. Subsequently, we compared the directions of change in gene expression, including upregulation, downregulation, or no change, from the early blastoderm stage to the preprimitive streak stage between parental species and their hybrids. Chromosome analysis revealed that the cells of the hybrid embryos contained a fifty-fifty mixture of parental chromosomes, and numerical chromosomal abnormalities were hardly observed in the hybrid cells. Gene expression analysis revealed that a part of the genes that were upregulated from the early blastoderm stage to the preprimitive streak stage in both parental species exhibited no upregulation of both chicken- and quail-derived alleles in the hybrids. GO term enrichment analysis revealed that these misregulated genes are involved in various biological processes, including ribosome-mediated protein synthesis and cell proliferation. Furthermore, the misregulated genes included genes involved in early embryonic development, such as primitive streak formation and gastrulation. These results suggest that numerical chromosomal abnormalities due to a segregation failure does not cause the lethality of chicken–quail hybrid embryos, and that the downregulated expression of the genes that are involved in various biological processes, including translation and primitive streak formation, mainly causes the developmental arrest at the preprimitive streak stage in the hybrids.
Collapse
Affiliation(s)
- Satoshi Ishishita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Keiji Kinoshita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yoichi Matsuda
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
12
|
Serrano Nájera G, Weijer CJ. Cellular processes driving gastrulation in the avian embryo. Mech Dev 2020; 163:103624. [PMID: 32562871 PMCID: PMC7511600 DOI: 10.1016/j.mod.2020.103624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak. There they acquire a mesenchymal phenotype, ingress into the embryo and migrate outward to populate the inner embryonic layers. This review covers what is currently understood about how cell behaviours ultimately cause these morphogenetic events and how they are regulated. We discuss 1) how the biochemical patterning of the embryo before gastrulation creates compartments of differential cell behaviours, 2) how the global epithelial flows arise from the coordinated actions of individual cells, 3) how the cells delaminate individually from the epiblast during the ingression, and 4) how cells move after the ingression following stereotypical migration routes. We conclude by exploring new technical advances that will facilitate future research in the chick model system.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
13
|
Abstract
In birds as in all amniotes, the site of gastrulation is a midline structure, the primitive streak. This appears as cells in the one cell-thick epiblast undergo epithelial-to-mesenchymal transition to ingress and form definitive mesoderm and endoderm. Global movements involving tens of thousands of cells in the embryonic epiblast precede gastrulation. They position the primitive streak precursors from a marginal position (equivalent to the situation in anamniotes) along the future antero-posterior axis (typical for amniotes). These epithelial movements continue in modified form during gastrulation, when they are accompanied by collective movements of different class in the forming mesoderm and endoderm. Here I discuss the nature of these collective cell movements shaping the embryo, their interplay with signaling events controlling fate specification and significance in an evolutionary perspective.
Collapse
|
14
|
Mongera A, Michaut A, Guillot C, Xiong F, Pourquié O. Mechanics of Anteroposterior Axis Formation in Vertebrates. Annu Rev Cell Dev Biol 2019; 35:259-283. [PMID: 31412208 PMCID: PMC7394480 DOI: 10.1146/annurev-cellbio-100818-125436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials-such as cells and extracellular matrix-and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis.
Collapse
Affiliation(s)
- Alessandro Mongera
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Charlène Guillot
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
15
|
Martyn I, Siggia ED, Brivanlou AH. Mapping cell migrations and fates in a gastruloid model to the human primitive streak. Development 2019; 146:dev.179564. [PMID: 31427289 DOI: 10.1242/dev.179564] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Although fate maps of early embryos exist for nearly all model organisms, a fate map of the gastrulating human embryo remains elusive. Here, we use human gastruloids to piece together a rudimentary fate map for the human primitive streak (PS). This is possible because differing levels of BMP, WNT and NODAL lead to self-organization of gastruloids into homogenous subpopulations of endoderm and mesoderm, and comparative analysis of these gastruloids, together with the fate map of the mouse embryo, allows the organization of these subpopulations along an anterior-posterior axis. We also developed a novel cell tracking technique that detected robust fate-dependent cell migrations in our gastruloids comparable with those found in the mouse embryo. Taken together, our fate map and recording of cell migrations provides a first coarse view of what the human PS may resemble in vivo.
Collapse
Affiliation(s)
- Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
16
|
Postlethwait JH, Navajas Acedo J, Piotrowski T. Evolutionary Origin and Nomenclature of Vertebrate Wnt11-Family Genes. Zebrafish 2019; 16:469-476. [PMID: 31295059 DOI: 10.1089/zeb.2019.1760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To adequately connect zebrafish medical models to human biology, it is essential that gene nomenclature reflects gene orthology. Analysis of gene phylogenies and conserved syntenies shows that the zebrafish gene currently called wnt11 (ENSDARG00000004256, ZFIN ID: ZDB-GENE-990603-12) is not the ortholog of the human gene called WNT11 (ENSG00000085741); instead, the gene currently called wnt11r (ENSDARG00000014796, ZFIN ID: ZDB-GENE-980526-249) is the zebrafish ortholog of human WNT11. Genomic analysis of Wnt11-family genes suggests a model for the birth of Wnt11-family gene ohnologs in genome duplication events, provides a mechanism for the death of a Wnt11-family ohnolog in mammals after they diverged from birds, and suggests revised nomenclature to better connect teleost disease models to human biology.
Collapse
|
17
|
Félix LM, Luzio A, Themudo M, Antunes L, Matos M, Coimbra AM, Valentim AM. MS-222 short exposure induces developmental and behavioural alterations in zebrafish embryos. Reprod Toxicol 2018; 81:122-131. [DOI: 10.1016/j.reprotox.2018.07.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
|
18
|
Li H, Zhang J, Chen S, Wang F, Zhang T, Niswander L. Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat 2018; 39:550-562. [PMID: 29297599 PMCID: PMC5839987 DOI: 10.1002/humu.23397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022]
Abstract
Rare variants are considered underlying causes of complex diseases. The complex and severe group of disorders called neural tube defects (NTDs) results from failure of the neural tube to close during early embryogenesis. Neural tube closure requires the coordination of numerous signaling pathways, including the precise regulation of retinoic acid (RA) concentration, which is controlled by enzymes involved in RA synthesis and degradation. Here, we used a case-control mutation screen study to reveal rare variants in retinoid-related genes in a Han Chinese NTD population by sequencing six genes in 355 NTD cases and 225 controls. More specific rare variants were found in exonic and upstream regions in NTD cases. The RA-responsive genes CYP26A1, CRABP1, and ALDH1A2 harbored NTD-specific rare variants in their upstream regions. Unexpectedly, the majority of missense variants in NTD cases were found in CYP26B1, which encodes a RA degradation enzyme, whereas no missense variants in this gene were found in controls. Functional analysis indicated that the CYP26B1 NTD variants were inefficient in the degradation of RA using assays of RA-induced transcription and RA-initiated neuronal differentiation. Our study supports the contribution of rare variants in RA-related genes to the etiology of human NTDs.
Collapse
Affiliation(s)
- Huili Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Zhang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| | - Shuyuan Chen
- Department of Pediatrics, XiangYa Hospital of Central South University, Changsha 410008, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
19
|
Williams ML, Solnica-Krezel L. Regulation of gastrulation movements by emergent cell and tissue interactions. Curr Opin Cell Biol 2017; 48:33-39. [PMID: 28586710 DOI: 10.1016/j.ceb.2017.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
It is during gastrulation that the primordial germ layers are specified, embryonic axes become morphologically manifest, and the embryonic body plan begins to take shape. As morphogenetic movements push and pull nascent tissues into position within the gastrula, new interactions are established between neighboring cells and tissues. These interactions represent an emergent property within gastrulating embryos, and serve to regulate and promote ensuing morphogenesis that establishes the next set of cell/tissue contacts, and so on. Several recent studies demonstrate the critical roles of such interactions during gastrulation, including those between germ layers, along embryonic axes, and at tissue boundaries. Emergent tissue interactions result from - and result in - morphogen signaling, cell contacts, and mechanical forces within the gastrula. Together, these comprise a dynamic and complex regulatory cascade that drives gastrulation morphogenesis.
Collapse
Affiliation(s)
- Margot Lk Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T. High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis. Dev Biol 2017; 426:270-290. [DOI: 10.1016/j.ydbio.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
|
21
|
Mazzotta S, Neves C, Bonner RJ, Bernardo AS, Docherty K, Hoppler S. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development. Stem Cell Reports 2016; 7:764-776. [PMID: 27641648 PMCID: PMC5063467 DOI: 10.1016/j.stemcr.2016.08.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022] Open
Abstract
Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs) to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development. hESCs were used to study Wnt signaling during human cardiomyocyte development Previously proposed roles for canonical Wnt signaling were confirmed in human Specific roles for noncanonical Wnt signaling were identified in cardiomyogenesis Individual Wnt signal and receptor genes were identified in human cardiomyogenesis
Collapse
Affiliation(s)
- Silvia Mazzotta
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Carlos Neves
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Rory J Bonner
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK; Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Robinson Way, Cambridge CB2 0SZ, UK
| | - Kevin Docherty
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
22
|
Moly PK, Cooley JR, Zeltzer SL, Yatskievych TA, Antin PB. Gastrulation EMT Is Independent of P-Cadherin Downregulation. PLoS One 2016; 11:e0153591. [PMID: 27097030 PMCID: PMC4838233 DOI: 10.1371/journal.pone.0153591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 03/31/2016] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved process during which cells lose epithelial characteristics and gain a migratory phenotype. Although downregulation of epithelial cadherins by Snail and other transcriptional repressors is generally considered a prerequisite for EMT, recent studies have challenged this view. Here we investigate the relationship between E-cadherin and P-cadherin expression and localization, Snail function and EMT during gastrulation in chicken embryos. Expression analyses show that while E-cadherin transcripts are detected in the epiblast but not in the primitive streak or mesoderm, P-cadherin mRNA and protein are present in the epiblast, primitive and mesoderm. Antibodies that specifically recognize E-cadherin are not presently available. During EMT, P-cadherin relocalizes from the lateral surfaces of epithelial epiblast cells to a circumferential distribution in emerging mesodermal cells. Cells electroporated with an E-cadherin expression construct undergo EMT and migrate into the mesoderm. An examination of Snail function showed that reduction of Slug (SNAI2) protein levels using a morpholino fails to inhibit EMT, and expression of human or chicken Snail in epiblast cells fails to induce EMT. In contrast, cells expressing the Rho inhibitor peptide C3 rapidly exit the epiblast without activating Slug or the mesoderm marker N-cadherin. Together, these experiments show that epiblast cells undergo EMT while retaining P-cadherin, and raise questions about the mechanisms of EMT regulation during avian gastrulation.
Collapse
Affiliation(s)
- Pricila K. Moly
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ, 85724, United States of America
| | - James R. Cooley
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ, 85724, United States of America
| | - Sebastian L. Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ, 85724, United States of America
| | - Tatiana A. Yatskievych
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ, 85724, United States of America
| | - Parker B. Antin
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 E. Mabel Street, P.O. Box 245217, Tucson, AZ, 85724, United States of America
- * E-mail:
| |
Collapse
|
23
|
Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep 2016; 6:21520. [PMID: 26861754 PMCID: PMC4748282 DOI: 10.1038/srep21520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/26/2016] [Indexed: 12/17/2022] Open
Abstract
Changes in cellular oxygen tension play important roles in physiological processes including development and pathological processes such as tumor promotion. The cellular adaptations to sustained hypoxia are mediated by hypoxia-inducible factors (HIFs) to regulate downstream target gene expression. With hypoxia, the stabilized HIF-α and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-β) heterodimer bind to hypoxia response elements (HREs) and regulate expression of target genes. Here, we report that WNT11 is induced by hypoxia in many cell types, and that transcription of WNT11 is regulated primarily by HIF-1α. We observed induced WNT11 expression in the hypoxic area of allograft tumors. In addition, in mice bearing orthotopic malignant gliomas, inhibition with bevacizumab of vascular endothelial growth factor, which is an important stimulus for angiogenesis, increased nuclear HIF-1α and HIF-2α, and expression of WNT11. Gain- and loss-of-function approaches revealed that WNT11 stimulates proliferation, migration and invasion of cancer-derived cells, and increases activity of matrix metalloproteinase (MMP)-2 and 9. Since tumor hypoxia has been proposed to increase tumor aggressiveness, these data suggest WNT11 as a possible target for cancer therapies, especially for tumors treated with antiangiogenic therapy.
Collapse
|
24
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Bose B, Sudheer PS. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets. Methods Mol Biol 2015; 1341:257-84. [PMID: 25783769 DOI: 10.1007/7651_2015_230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved "Nestin selection pathway," a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60-65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D culture conditions.
Collapse
Affiliation(s)
- Bipasha Bose
- Level 03, Stem Cell Biology and Tissue Engineering Division, Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018, Karnataka, India.
| | - P Shenoy Sudheer
- Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, NTU/SBS Lab location @ Level 2, Singapore Institute for Clinical Sciences Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore, 117609, Singapore
| |
Collapse
|
26
|
Moura RS, Carvalho-Correia E, daMota P, Correia-Pinto J. Canonical Wnt signaling activity in early stages of chick lung development. PLoS One 2014; 9:e112388. [PMID: 25460002 PMCID: PMC4251901 DOI: 10.1371/journal.pone.0112388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/15/2014] [Indexed: 01/08/2023] Open
Abstract
Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.
Collapse
Affiliation(s)
- Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Biology Department, School of Sciences, University of Minho, Braga, Portugal
| | - Eduarda Carvalho-Correia
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paulo daMota
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de Braga, Braga, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| |
Collapse
|
27
|
Sinha T, Lin L, Li D, Davis J, Evans S, Wynshaw-Boris A, Wang J. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development. Dev Biol 2014; 398:177-92. [PMID: 25448697 DOI: 10.1016/j.ydbio.2014.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained from this study will also guide future investigations to decipher the role of non-canonical Wnt/PCP signaling in endoderm development, vasculogenesis and heart formation.
Collapse
Affiliation(s)
- Tanvi Sinha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Lizhu Lin
- Skaggs School of Pharmacy and Pharmaceutical Sciences & Department of Medicine, University of California, San Diego, United States
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Jennifer Davis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States
| | - Sylvia Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences & Department of Medicine, University of California, San Diego, United States
| | - Anthony Wynshaw-Boris
- Department of Genetics, School of Medicine, Case Western Reserve University, United States
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, United States.
| |
Collapse
|
28
|
Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biol 2014; 12:63. [PMID: 25115237 PMCID: PMC4171571 DOI: 10.1186/s12915-014-0063-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background The formation of the primitive streak is the first visible sign of gastrulation, the process by which the three germ layers are formed from a single epithelium during early development. Embryonic stem cells (ESCs) provide a good system for understanding the molecular and cellular events associated with these processes. Previous work, both in embryos and in culture, has shown how converging signals from both nodal/TGFβR and Wnt/β-catenin signalling pathways specify cells to adopt a primitive-streak-like fate and direct them to undertake an epithelial-to-mesenchymal transition (EMT). However, many of these approaches have relied on genetic analyses without taking into account the temporal progression of events within single cells. In addition, it is still unclear to what extent events in the embryo are able to be reproduced in culture. Results Here, we combine flow cytometry and a quantitative live single-cell imaging approach to demonstrate how the controlled differentiation of mouse ESCs towards a primitive streak fate in culture results in cells displaying many of the characteristics observed during early mouse development including transient brachyury expression, EMT and increased motility. We also find that the EMT initiates the process, and this is both fuelled and terminated by the action of brachyury, whose expression is dependent on the EMT and β-catenin activity. Conclusions As a consequence of our analysis, we propose that a major output of brachyury expression is in controlling the velocity of the cells that are transiting out of the primitive streak. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0063-7) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Malhotra D, Yang Y. Wnts' fashion statement: from body stature to dysplasia. BONEKEY REPORTS 2014; 3:541. [PMID: 24991404 DOI: 10.1038/bonekey.2014.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Bone is constantly being made and remodeled to maintain bone volume and calcium homeostasis. Even small changes in the dosage, location and duration of int/Wingless (Wnt) signaling affect skeletal development and homeostasis. Wnt/β-catenin signaling controls cell fate determination, proliferation and survival by affecting a balance between bone-forming osteoblast and bone-resorbing osteoclast cell differentiation. During early skeletal development, Wnt/β-catenin signaling is required in directing mesenchymal progenitor cells toward the osteoblast lineage. Later, Wnt/β-catenin in chondrocytes of the growth plate promotes chondrocyte survival, hypertrophic differentiation and endochondral ossification. Gain- or loss-of-function mutations in the Wnt signaling components are causally linked to high or low bone mass in mice and humans. Inactivation of Wnt/β-catenin signaling leads to imbalance between bone formation and resorption because of accelerated osteoclastogenesis due to decline in the levels of osteoprotegerin (OPG) secreted by osteoblasts or directly via Frizzled 8 (Fzd8). In this review, we provide a landscape of the Wnt pathway components in influencing progenitor cell differentiation toward osteoblasts or osteoclasts under physiological conditions as well as pathological disorders resulting in various skeletal dysplasia syndromes.
Collapse
Affiliation(s)
- Deepti Malhotra
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health , Bethesda, MD, USA
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
30
|
Peng X, Yang L, Chang H, Dai G, Wang F, Duan X, Guo L, Zhang Y, Chen G. Wnt/β-catenin signaling regulates the proliferation and differentiation of mesenchymal progenitor cells through the p53 pathway. PLoS One 2014; 9:e97283. [PMID: 24819053 PMCID: PMC4018322 DOI: 10.1371/journal.pone.0097283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Objective Mesenchymal progenitor cells (MPCs) are found in articular cartilage from normal controls and patients with osteoarthritis (OA). Nevertheless, the molecular mechanisms of the proliferation and differentiation of these cells remain unclear. In this study, we aimed to determine the involvement of Wnt/β-catenin signaling in regulating the proliferation and differentiation of MPCs. Methods MPCs were isolated from the articular cartilage of normal and OA patients. Cells were sorted by immunomagnetic cell separation. Cell proliferation capacity was evaluated using the MTT assay. Toluidine blue staining and immunostaining with anti-collagen II or anti-aggrecan antibodies were used to determine the chondrogenic differentiation capabilities of MPCs. The mRNA and protein expression of target genes were examined by quantitative real-time polymerase chain reaction and Western blotting, respectively. Knock-down of p53 expression was achieved with RNA interference. Results Most cells isolated from the normal and OA patients were CD105+ and CD166+ positive (Normal subjects: CD105+/CD166+, 94.6%±1.1%; OA: CD105+/CD166+, 93.5%±1.1%). MPCs derived from OA subjects exhibited decreased differentiation capabilities and enhanced Wnt/β-catenin activity. Inhibition of Wnt/β-catenin signaling promoted proliferation and differentiation, whereas activation of this pathway by treatment with rWnt3a protein decreased the proliferation and differentiation of normal MPCs. Additionally, Wnt/β-catenin signaling positively regulated p53 expression, and silencing of p53 increased proliferation and differentiation of MPCs. Conclusions Wnt/β-catenin regulated the proliferation and differentiation of MPCs through the p53 pathway.
Collapse
Affiliation(s)
- Xu Peng
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
- * E-mail: (GC); (LY)
| | - Hongxing Chang
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Gang Dai
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Xiaojun Duan
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Lin Guo
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Ying Zhang
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, the Third Military Medical University, Chongqing, China
- * E-mail: (GC); (LY)
| |
Collapse
|
31
|
Kuss P, Kraft K, Stumm J, Ibrahim D, Vallecillo-Garcia P, Mundlos S, Stricker S. Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A. Dev Biol 2013; 385:83-93. [PMID: 24161848 DOI: 10.1016/j.ydbio.2013.10.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
The morphology of bones is genetically determined, but the molecular mechanisms that control shape, size and the overall gestalt of bones remain unclear. We previously showed that metacarpals in the synpolydactyly homolog (spdh) mouse, which carries a mutation in Hoxd13 similar to the human condition synpolydactyly (SPD), were transformed to carpal-like bones with cuboid shape that lack cortical bone and a perichondrium and are surrounded by a joint surface. Here we provide evidence that spdh metacarpal growth plates have a defect in cell polarization with a random instead of linear orientation. In parallel prospective perichondral cells failed to adopt the characteristic flattened cell shape. We observed a similar cell polarity defect in metacarpals of Wnt5a(-/-) mice. Wnt5a and the closely related Wnt5b were downregulated in spdh handplates, and HOXD13 induced expression of both genes in vitro. Concomitant we observed mislocalization of core planar cell polarity (PCP) components DVL2 and PRICKLE1 in spdh metacarpals indicating a defect in the WNT/PCP pathway. Conversely the WNT/β-CATENIN pathway, a hallmark of joint cells lining carpal bones, was upregulated in the perichondral region. Finally, providing spdh limb explant cultures with cells expressing either HOXD13 or WNT5A led to a non-cell autonomous partial rescue of cell polarity the perichondral region and restored the expression of perichondral markers. This study provides a so far unrecognized link between HOX proteins and cell polarity in the perichondrium and the growth plate, a failure of which leads to transformation of metacarpals to carpal-like structures.
Collapse
Affiliation(s)
- Pia Kuss
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Body axis elongation and segmentation are major morphogenetic events that take place concomitantly during vertebrate embryonic development. Establishment of the final body plan requires tight coordination between these two key processes. In this review, we detail the cellular and molecular as well as the physical processes underlying body axis formation and patterning. We discuss how formation of the anterior region of the body axis differs from that of the posterior region. We describe the developmental mechanism of segmentation and the regulation of body length and segment numbers. We focus mainly on the chicken embryo as a model system. Its accessibility and relatively flat structure allow high-quality time-lapse imaging experiments, which makes it one of the reference models used to study morphogenesis. Additionally, we illustrate conservation and divergence of specific developmental mechanisms by discussing findings in other major embryonic model systems, such as mice, frogs, and zebrafish.
Collapse
Affiliation(s)
- Bertrand Bénazéraf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Université de Strasbourg, Illkirch F-67400, France;
| | | |
Collapse
|
33
|
Stuckenholz C, Lu L, Thakur PC, Choi TY, Shin D, Bahary N. Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogenesis [corrected] in the zebrafish, Danio rerio. PLoS One 2013; 8:e62470. [PMID: 23638093 PMCID: PMC3639276 DOI: 10.1371/journal.pone.0062470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Sfrp5 belongs to the family of secreted frizzled related proteins (Sfrp), secreted inhibitors of Wingless-MMTV Integration Site (Wnt) signaling, which play an important role in cancer and development. We selected sfrp5 because of its compelling expression profile in the developing endoderm in zebrafish, Danio rerio. In this study, overexpression of sfrp5 in embryos results in defects in both convergent extension (CE) by inhibition of non-canonical Wnt signaling and defects in dorsoventral patterning by inhibition of Tolloid-mediated proteolysis of the BMP inhibitor Chordin. From 25 hours post fertilization (hpf) to 3 days post fertilization (dpf), both overexpression and knockdown of Sfrp5 decrease the size of the endoderm, significantly reducing liver cell number. At 3 dpf, insulin-positive endodermal cells fail to coalesce into a single pancreatic islet. We show that Sfrp5 inhibits both canonical and non-canonical Wnt signaling during embryonic and endodermal development, resulting in endodermal abnormalities.
Collapse
Affiliation(s)
- Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lili Lu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prakash C. Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tae-Young Choi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Martin A, Maher S, Summerhurst K, Davidson D, Murphy P. Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol Dev 2013; 14:178-95. [PMID: 23017026 PMCID: PMC3498729 DOI: 10.1111/j.1525-142x.2012.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Genes encoding Wnt ligands are crucial in body patterning and are highly conserved among metazoans. Given their conservation at the protein-coding level, it is likely that changes in where and when these genes are active are important in generating evolutionary variations. However, we lack detailed knowledge about how their deployment has diverged. Here, we focus on four Wnt subfamilies (Wnt2, Wnt5, Wnt7, and Wnt8) in mammalian and avian species, consisting of a paralogous gene pair in each, believed to have duplicated in the last common ancestor of vertebrates. We use three-dimensional imaging to capture expression patterns in detail and carry out systematic comparisons. We find evidence of greater divergence between these subgroup paralogues than the respective orthologues, consistent with some level of subfunctionalization/neofunctionalization in the common vertebrate ancestor that has been conserved. However, there were exceptions; in the case of chick Wnt2b, individual sites were shared with both mouse Wnt2 and Wnt2b. We also find greater divergence, between paralogues and orthologues, in some subfamilies (Wnt2 and Wnt8) compared to others (Wnt5 and Wnt7) with the more highly similar expression patterns showing more extensive expression in more structures in the embryo. Wnt8 genes were most restricted and most divergent. Major sites of expression for all subfamilies include CNS, limbs, and facial region, and in general there were more similarities in gene deployment in these territories with divergent patterns featuring more in organs such as heart and gut. A detailed comparison of gene expression patterns in the limb showed similarities in overall combined domains across species with notable differences that may relate to lineage-specific morphogenesis.
Collapse
Affiliation(s)
- Audrey Martin
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
35
|
Bobbs AS, Saarela AV, Yatskievych TA, Antin PB. Fibroblast growth factor (FGF) signaling during gastrulation negatively modulates the abundance of microRNAs that regulate proteins required for cell migration and embryo patterning. J Biol Chem 2012; 287:38505-14. [PMID: 22995917 PMCID: PMC3493895 DOI: 10.1074/jbc.m112.400598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/19/2012] [Indexed: 01/08/2023] Open
Abstract
FGF signaling plays a pivotal role in regulating cell movements and lineage induction during gastrulation. Here we identify 44 microRNAs that are expressed in the primitive streak region of gastrula stage chicken embryos. We show that the primary effect of FGF signaling on microRNA abundance is to negatively regulate the levels of miR-let-7b, -9, -19b, -107, -130b, and -218. LIN28B inhibits microRNA processing and is positively regulated by FGF signaling. Gain- and loss-of-function experiments show that LIN28B negatively regulates the expression of miR-19b, -130b, and let-7b, whereas negative modulation of miR-9, -107, and -218 appears to be independent of LIN28B function. Predicted mRNA targets of the FGF-regulated microRNAs are over-represented in serine/threonine and tyrosine kinase receptors, including ACVR1, ACVR2B, PDGFRA, TGFBR1, and TGFBR3. Luciferase assays show that these and other candidates are targeted by FGF-regulated microRNAs. PDGFRA, a receptor whose activity is required for cell migration through the primitive streak, is a target of miR-130b and -218 in vivo. These results identify a novel mechanism by which FGF signaling regulates gene expression by negatively modulating microRNA abundance through both LIN28B-dependent and LIN28B-independent pathways.
Collapse
Affiliation(s)
| | | | | | - Parker B. Antin
- From the Departments of Molecular and Cellular Biology and
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
36
|
Katula KS, Joyner-Powell NB, Hsu CC, Kuk A. Differential regulation of the mouse and human Wnt5a alternative promoters A and B. DNA Cell Biol 2012; 31:1585-97. [PMID: 23046419 DOI: 10.1089/dna.2012.1698] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wnt5a is an extracellular glycoprotein that activates Wnt signaling pathways, important in development and tissue homeostasis. Wnt5a expression is often misregulated during cancer progression. In this study, we analyzed the transcriptional regulation of two of the Wnt5a alternative promoters, termed A and B. Transient transfection of promoter A and B luciferase reporter constructs in to NIH3T3 and Caco-2 cells indicated that the separated promoters are both functional and that 300-450 base pair (bp) of upstream sequence is sufficient for activity. Promoter B constructs displayed distinct patterns of expression in the two cell types. The endogenous levels of promoter A-derived transcripts were found to be greater than the promoter B transcripts by four- to sixfold in fibroblast cells. Treatment of NIH3T3 cells with tumor necrosis factor (TNF)-alpha leads to an increase in both promoter A and B activities, but promoter B was more responsive. Using inhibitors of TNF-alpha effector proteins, we provide evidence that the transcription factor nuclear factor-kappaB and the MEK1/2 and p38 kinases have distinct roles in determining the activity levels of promoters, A and B. These results support the conclusion that Wnt5a promoters, A and B, are differentially regulated and provide a model for complex transcriptional regulation of Wnt5a.
Collapse
Affiliation(s)
- Karen S Katula
- Department of Biology, The University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA.
| | | | | | | |
Collapse
|
37
|
Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development 2012; 139:1931-40. [PMID: 22569553 DOI: 10.1242/dev.069377] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development.
Collapse
Affiliation(s)
- Ethan David Cohen
- Department of Medicine, Division of Endocrinology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
38
|
Walentek P, Beyer T, Thumberger T, Schweickert A, Blum M. ATP4a Is Required for Wnt-Dependent Foxj1 Expression and Leftward Flow in Xenopus Left-Right Development. Cell Rep 2012; 1:516-27. [DOI: 10.1016/j.celrep.2012.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
|
39
|
Swetha G, Chandra V, Phadnis S, Bhonde R. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med 2012; 15:396-413. [PMID: 19840197 PMCID: PMC3822804 DOI: 10.1111/j.1582-4934.2009.00937.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration.
Collapse
Affiliation(s)
- G Swetha
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune, India
| | | | | | | |
Collapse
|
40
|
Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A 2012; 109:4044-51. [PMID: 22343533 DOI: 10.1073/pnas.1200421109] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnts make up a large family of extracellular signaling molecules that play crucial roles in development and disease. A subset of noncanonical Wnts signal independently of the transcription factor β-catenin by a mechanism that regulates key morphogenetic movements during embryogenesis. The best characterized noncanonical Wnt, Wnt5a, has been suggested to signal via a variety of different receptors, including the Ror family of receptor tyrosine kinases, the Ryk receptor tyrosine kinase, and the Frizzled seven-transmembrane receptors. Whether one or several of these receptors mediates the effects of Wnt5a in vivo is not known. Through loss-of-function experiments in mice, we provide conclusive evidence that Ror receptors mediate Wnt5a-dependent processes in vivo and identify Dishevelled phosphorylation as a physiological target of Wnt5a-Ror signaling. The absence of Ror signaling leads to defects that mirror phenotypes observed in Wnt5a null mutant mice, including decreased branching of sympathetic neuron axons and major defects in aspects of embryonic development that are dependent upon morphogenetic movements, such as severe truncation of the caudal axis, the limbs, and facial structures. These findings suggest that Wnt5a-Ror-Dishevelled signaling constitutes a core noncanonical Wnt pathway that is conserved through evolution and is crucial during embryonic development.
Collapse
|
41
|
Abstract
Genetic studies of Wnt11 have revealed many insights into the roles and regulation of Wnt11, particularly during development. New tools to study Wnt11 have recently become available, making it timely to review the literature regarding this unique Wnt family member. In this study, we focus on mammalian Wnt11, describing its main sites of expression during development, and how the Wnt11 gene is regulated. We highlight an emerging theme in which canonical Wnt signals regulate Wnt11 expression through transcription factors in addition to, or other than, Tcf/LEF family members. We also discuss the frizzled family and other receptors that bind to Wnt11, the intracellular kinases and small GTPases that act downstream of Wnt11, and the effects of Wnt11 on Wnt/β-catenin signalling. Finally, we elaborate on the relevance of Wnt11 to human cancer, where it appears to be important both for proliferation and/or survival during normal differentiation and for migration/invasion.
Collapse
Affiliation(s)
- P Uysal-Onganer
- Department of Surgery and Cancer, Imperial College London, UK
| | | |
Collapse
|
42
|
Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2011; 241:270-83. [PMID: 22170865 DOI: 10.1002/dvdy.23711] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
43
|
Kuraku S, Kuratani S. Genome-wide detection of gene extinction in early mammalian evolution. Genome Biol Evol 2011; 3:1449-62. [PMID: 22094861 PMCID: PMC3296468 DOI: 10.1093/gbe/evr120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Detecting gene losses is a novel aspect of evolutionary genomics that has been made feasible by whole-genome sequencing. However, research to date has concentrated on elucidating evolutionary patterns of genomic components shared between species, rather than identifying disparities between genomes. In this study, we searched for gene losses in the lineage leading to eutherian mammals. First, as a pilot analysis, we selected five gene families (Wnt, Fgf, Tbx, TGFβ, and Frizzled) for molecular phylogenetic analyses, and identified mammalian lineage-specific losses of Wnt11b, Tbx6L/VegT/tbx16, Nodal-related, ADMP1, ADMP2, Sizzled, and Crescent. Second, automated genome-wide phylogenetic screening was implemented based on this pilot analysis. As a result, we detected 147 chicken genes without eutherian orthologs, which resulted from 141 gene loss events. Our inventory contained a group of regulatory genes governing early embryonic axis formation, such as Noggins, and multiple members of the opsin and prolactin-releasing hormone receptor (“PRLHR”) gene families. Our findings highlight the potential of genome-wide gene phylogeny (“phylome”) analysis in detecting possible rearrangement of gene networks and the importance of identifying losses of ancestral genomic components in analyzing the molecular basis underlying phenotypic evolution.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan.
| | | |
Collapse
|
44
|
Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res 2011; 91:185-95. [DOI: 10.1093/cvr/cvr127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB. FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC DEVELOPMENTAL BIOLOGY 2011; 11:20. [PMID: 21418646 PMCID: PMC3071786 DOI: 10.1186/1471-213x-11-20] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 03/21/2011] [Indexed: 12/15/2022]
Abstract
Background FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos. Results We find that pharmacological inhibition of FGFR activity blocks migration of cells through the primitive streak of chicken embryos without apparent alterations in the level or intracellular localization of E-cadherin. E-cadherin protein is localized to the periphery of epiblast, primitive streak and some mesodermal cells. FGFR inhibition leads to downregulation of a large number of regulatory genes in the preingression epiblast adjacent to the primitive streak, the primitive streak and the newly formed mesoderm. This includes members of the FGF, NOTCH, EPH, PDGF, and canonical and non-canonical WNT pathways, negative modulators of these pathways, and a large number of transcriptional regulatory genes. SNAI2 expression in the primitive streak and mesoderm is not altered by FGFR inhibition, but is downregulated only in the preingression epiblast region with no significant effect on E-cadherin. Furthermore, over expression of SNAIL has no discernable effect on E-cadherin protein levels or localization in epiblast, primitive streak or mesodermal cells. FGFR activity modulates distinct downstream pathways including RAS/MAPK and PI3K/AKT. Pharmacological inhibition of MEK or AKT indicate that these downstream effectors control discrete and overlapping groups of genes during gastrulation. FGFR activity regulates components of several pathways known to be required for cell migration through the streak or in the mesoderm, including RHOA, the non-canonical WNT pathway, PDGF signalling and the cell adhesion protein N-cadherin. Conclusions In chicken embryos, FGF signalling regulates cell movement through the primitive streak by mechanisms that appear to be independent of changes in E-cadherin expression or protein localization. The positive and negative effects on large groups of genes by pharmacological inhibition of FGF signalling, including major signalling pathways and transcription factor families, indicates that the FGF pathway is a focal point of regulation during gastrulation in chicken.
Collapse
Affiliation(s)
- Katharine M Hardy
- Department of Cell Biology and Anatomy, University of Arizona, Medical Research Building, 1656 E, Mabel Street, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
46
|
He Z, Li H, Zuo S, Pasha Z, Wang Y, Yang Y, Jiang W, Ashraf M, Xu M. Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells Dev 2011; 20:1771-8. [PMID: 21231807 DOI: 10.1089/scd.2010.0380] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) has emerged as a potential treatment for ischemic heart repair. Previous studies have suggested that Wnt11 plays a critical role in cardiac specification and morphogenesis. In this study, we examined whether transduction of Wnt11 directly increases MSC differentiation into cardiac phenotypes. MSCs harvested from rat bone marrow were transduced with both Wnt11 and green fluorescent protein (GFP) (MSC(Wnt11)) using the murine stem cell virus (pMSCV) retroviral expression system; control cells were only GFP-transfected (MSC(Null)). Compared with control cells, MSC(Wnt11) was shown to have higher expression of Wnt11 by immunofluorescence, real-time polymerase chain reaction, and western blotting. MSC(Wnt11) shows a higher expression of cardiac-specific genes, including GATA-4, brain natriuretic peptide (BNP), islet-1, and α-actinin, after being cultured with cardiomyocytes (CMs) isolated from ventricles of neonatal (1-3 day) SD rats. Some MSC(Wnt11) were positive for α-actinin when MSCs were cocultured with native CMs for 7 days. Electron microscopy further confirmed the appearance of sarcomeres in MSC(Wnt11). Connexin 43 was found between GFP-positive MSCs and neonatal rat CMs labeled with red fluorescent probe PKH26. The transdifferentiation rate was significantly higher in MSC(Wnt11) than in MSC(Null), as assessed by flow cytometry. Functional studies indicated that the differentiation of MSC(Wnt11) was diminished by knockdown of GATA-4 with GATA-4-siRNA. Transduction of Wnt11 into MSCs increases their differentiation into CMs by upregulating GATA-4.
Collapse
Affiliation(s)
- Zhisong He
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Garriock RJ, Czeisler C, Ishii Y, Navetta AM, Mikawa T. An anteroposterior wave of vascular inhibitor downregulation signals aortae fusion along the embryonic midline axis. Development 2010; 137:3697-706. [PMID: 20940228 DOI: 10.1242/dev.051664] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Paracrine signals, both positive and negative, regulate the positioning and remodeling of embryonic blood vessels. In the embryos of mammals and birds, the first major remodeling event is the fusion of bilateral dorsal aortae at the midline to form the dorsal aorta. Although the original bilaterality of the dorsal aortae occurs as the result of inhibitory factors (antagonists of BMP signaling) secreted from the midline by the notochord, it is unknown how fusion is later signaled. Here, we report that dorsal aortae fusion is tightly regulated by a change in signaling by the notochord along the anteroposterior axis. During aortae fusion, the notochord ceases to exert its negative influence on vessel formation. This is achieved by a transcriptional downregulation of negative regulators while positive regulators are maintained at pre-fusion levels. In particular, Chordin, the most abundant BMP antagonist expressed in the notochord prior to fusion, undergoes a dramatic downregulation in an anterior to posterior wave. With inhibitory signals diminished and sustained expression of the positive factors SHH and VEGF at the midline, fusion of the dorsal aortae is signaled. These results demonstrate a novel mechanism by which major modifications of the vascular pattern can occur through modulation of vascular inhibitors without changes in the levels of positive vascular regulators.
Collapse
Affiliation(s)
- Robert J Garriock
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
48
|
Ferrer-vaquer A, Viotti M, Hadjantonakis AK. Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adh Migr 2010; 4:447-57. [PMID: 20200481 PMCID: PMC2958623 DOI: 10.4161/cam.4.3.10771] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/30/2009] [Indexed: 12/19/2022] Open
Abstract
Multicellular organisms arise from the generation of different cell types and the organization of cells into tissues and organs. Cells of metazoa display two main phenotypes, the ancestral epithelial state and the recent mesenchymal derivative. Epithelial cells are usually stationary and reside in two-dimensional sheets. By contrast mesenchymal cells are loosely packed and can move to new positions, thereby providing a vehicle for cell rearrangement, dispersal and novel cell-cell interactions. Transitions between epithelial and mesenchymal states drive key morphogenetic events in the early vertebrate embryo, including gastrulation, germ layer formation and somitogenesis. The cell behaviors and molecular mechanisms promoting transitions between these two states in the early mouse embryo are discussed in this review.
Collapse
Affiliation(s)
- Anna Ferrer-vaquer
- Developmental Biology program; Sloan-Kettering institute; New York, NY USA
| | - Manuel Viotti
- Developmental Biology program; Sloan-Kettering institute; New York, NY USA
- Biochemistry, Cell and Molecular Biology program, weill Graduate School of Medical Sciences of Cornell university, New York, NY USA
| | | |
Collapse
|
49
|
Sienknecht UJ, Fekete DM. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 2010; 517:751-64. [PMID: 19842206 DOI: 10.1002/cne.22169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular microenvironments. Strikingly, prosensory domains express Wnts transiently. This includes: 1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, and -11); and 2) sensory primordia at stage 25 (Wnt7a and Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
50
|
7TM-Cadherins: developmental roles and future challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 706:14-36. [PMID: 21618823 DOI: 10.1007/978-1-4419-7913-1_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 7TM-Cadherins, Celsr/Flamingo/Starry night, represent a unique subgroup of adhesion-GPCRs containing atypical cadherin repeats, capable of homophilic interaction, linked to the archetypal adhesion-GPCR seven-transmembrane domain. Studies in Drosophila provided a first glimpse of their functional properties, most notably in the regulation of planar cell polarity (PCP) and in the formation of neural architecture. Many of the developmental functions identified in flies are conserved in vertebrates with PCP predicted to influence the development of multiple organ systems. Details of the molecular and cellular functions of 7TM-Cadherins are slowly emerging but many questions remain unanswered. Here the developmental roles of 7TM-Cadherins are discussed and future challenges in understanding their molecular and cellular roles are explored.
Collapse
|