1
|
Kokity L, Czimmerer Z, Benyhe-Kis B, Poscher A, Belai E, Steinbach G, Lipinszki Z, Pirity MK. Brachyury co-operates with polycomb protein RYBP to regulate gastrulation and axial elongation in vitro. Front Cell Dev Biol 2024; 12:1498346. [PMID: 39676794 PMCID: PMC11638158 DOI: 10.3389/fcell.2024.1498346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Early embryonic development is a complex process where undifferentiated cells lose their pluripotency and start to gastrulate. During gastrulation, three germ layers form, giving rise to different cell lineages and organs. This process is regulated by transcription factors and epigenetic regulators, including non-canonical polycomb repressive complex 1s (ncPRC1s). Previously, we reported that ncPRC1-member RYBP (RING1 and YY1 binding protein) is crucial for embryonic implantation and cardiac lineage commitment in mice. However, the role of RYBP in gastrulation and mesoderm formation has not yet been defined. In this study, we used 2D and 3D in vitro model systems, to analyze the role of RYBP in mesoderm formation. First, we showed that cardiac and endothelial progenitors-both derived from mesoderm-are underrepresented in the Rybp -/- cardiac colonies. In the absence of RYBP, the formation of major germ layers was also disrupted, and the expression of mesoderm- (Brachyury, Eomes, and Gsc) and endoderm-specific (Sox17, Gata4) genes was significantly downregulated. Using 3D embryoid bodies as gastrulation models, we showed that RYBP can co-localize with mesoderm lineage marker protein BRACHYURY and endoderm marker protein GATA4 and both proteins. In mutants, both proteins were detected at low levels and showed altered distribution. Additionally, we compared our in vitro results to available in vivo single-cell transcriptomes and showed that Rybp and Brachyury co-expressed in the primitive streak and six mesodermal clusters. Since caudal mesoderm exhibited one of the strongest co-expressions, we tested axial elongation in wt and Rybp -/- gastruloids. In the absence of RYBP, gastruloids exhibited shortened tails and low BRACHYURY levels in the tailbud. Finally, we identified BRACHYURY as a novel binding partner of RYBP and presented evidence of possible cooperative function during mesoderm formation and axial elongation. Together, our results demonstrate the previously unknown role of RYBP in mesoderm formation. We believe our findings will contribute to better understanding of the highly conserved process of gastrulation.
Collapse
Affiliation(s)
- Lilla Kokity
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Zsolt Czimmerer
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
| | - Bernadett Benyhe-Kis
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Anna Poscher
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Emese Belai
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
- Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Core Facility, Biological Research Centre, Hungarian Research Network, Szeged, Hungary
| | - Zoltan Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network, Szeged, Hungary
- National Laboratory for Biotechnology, Institute of Genetics, Biological Research Centre, Hungarian Research Network, Szeged, Hungary
| | - Melinda Katalin Pirity
- Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary
| |
Collapse
|
2
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Sam J, Torregroza I, Evans T. Gata6 functions in zebrafish endoderm to regulate late differentiating arterial pole cardiogenesis. Development 2024; 151:dev202895. [PMID: 39133135 PMCID: PMC11423812 DOI: 10.1242/dev.202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Mutations in GATA6 are associated with congenital heart disease, most notably conotruncal structural defects. However, how GATA6 regulates cardiac morphology during embryogenesis is undefined. We used knockout and conditional mutant zebrafish alleles to investigate the spatiotemporal role of gata6 during cardiogenesis. Loss of gata6 specifically impacts atrioventricular valve formation and recruitment of epicardium, with a prominent loss of arterial pole cardiac cells, including those of the ventricle and outflow tract. However, there are no obvious defects in cardiac progenitor cell specification, proliferation or death. Conditional loss of gata6 starting at 24 h is sufficient to disrupt the addition of late differentiating cardiomyocytes at the arterial pole, with decreased expression levels of anterior secondary heart field (SHF) markers spry4 and mef2cb. Conditional loss of gata6 in the endoderm is sufficient to phenocopy the straight knockout, resulting in a significant loss of ventricular and outflow tract tissue. Exposure to a Dusp6 inhibitor largely rescues the loss of ventricular cells in gata6-/- larvae. Thus, gata6 functions in endoderm are mediated by FGF signaling to regulate the addition of anterior SHF progenitor derivatives during heart formation.
Collapse
Affiliation(s)
- Jessica Sam
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Lee M, Guo Q, Kim M, Choi J, Segura A, Genceroglu A, LeBlanc L, Ramirez N, Jang YJ, Jang Y, Lee BK, Marcotte EM, Kim J. Systematic mapping of TF-mediated cell fate changes by a pooled induction coupled with scRNA-seq and multi-omics approaches. Genome Res 2024; 34:484-497. [PMID: 38580401 PMCID: PMC11067882 DOI: 10.1101/gr.277926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.
Collapse
Affiliation(s)
- Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joonhyuk Choi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alia Segura
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alper Genceroglu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yeejin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
5
|
de Silva N, Lacko LA, Jamies EA, Evans T, Hurtado R. Atacama Clear for Complex 3D Imaging of Organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576689. [PMID: 38328217 PMCID: PMC10849539 DOI: 10.1101/2024.01.22.576689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
3D reconstructive imaging is a powerful strategy to interrogate the global architecture of tissues. We developed Atacama Clear (ATC), a novel method that increases 3D imaging signal-to-noise ratios (SNRs) while simultaneously increasing the capacity of tissue to be cleared. ATC potentiated the clearing capacity of all tested chemical reagents currently used for optical clearing by an average of 68%, and more than doubled SNRs. This increased imaging efficacy enabled multiplex interrogation of tough fibrous tissue and specimens that naturally exhibit high levels of background noise, including the heart, kidney, and human biopsies. Indeed, ATC facilitated visualization of previously undocumented adjacent nephron segments that exhibit notoriously high autofluorescence, elements of the cardiac conduction system, and the distinct human glomerular tissue layers, at single cell resolution. Moreover, ATC was validated to be compatible with fluorescent reporter proteins in murine, zebrafish, and 3D stem cell model systems. These data establish ATC for 3D imaging studies of challenging tissue types.
Collapse
Affiliation(s)
| | - Lauretta A. Lacko
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, New York, NY USA
| | - Edgar A. Jamies
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Center for Genomic Health
| | - Romulo Hurtado
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Su L, Zhang G, Jiang L, Chi C, Bai B, Kang K. The role of c-Jun for beating cardiomycyte formation in prepared embryonic body. Stem Cell Res Ther 2023; 14:371. [PMID: 38110996 PMCID: PMC10729424 DOI: 10.1186/s13287-023-03544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Morbidity and mortality associated with cardiovascular diseases, such as myocardial infarction, stem from the inability of terminally differentiated cardiomyocytes to regenerate, and thus repair the damaged myocardial tissue structure. The molecular biological mechanisms behind the lack of regenerative capacity for those cardiomyocytes remains to be fully elucidated. Recent studies have shown that c-Jun serves as a cell cycle regulator for somatic cell fates, playing a key role in multiple molecular pathways, including the inhibition of cellular reprogramming, promoting angiogenesis, and aggravation of cardiac hypertrophy, but its role in cardiac development is largely unknown. This study aims to delineate the role of c-Jun in promoting early-stage cardiac differentiation. METHODS The c-Jun gene in mouse embryonic stem cells (mESCs) was knocked out with CRISPR-Cas9, and the hanging drop method used to prepare the resulting embryoid bodies. Cardiac differentiation was evaluated up to 9 days after c-Jun knockout (ko) via immunofluorescence, flow cytometric, and qPCR analyses. RESULTS Compared to the wild-type control group, obvious beating was observed among the c-Jun-ko mESCs after 6 days, which was also associated with significant increases in myocardial marker expression. Additionally, markers associated with mesoderm and endoderm cell layer development, essential for further differentiation of ESCs into cardiomyocytes, were also up-regulated in the c-Jun-ko cell group. CONCLUSIONS Knocking out c-Jun directs ESCs toward a meso-endodermal cell lineage fate, in turn leading to generation of beating myocardial cells. Thus, c-Jun plays an important role in regulating early cardiac cell development.
Collapse
Affiliation(s)
- Lide Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Guofu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lili Jiang
- Department of Pediatric Dentistry, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Chao Chi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Bing Bai
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
8
|
Jiang CL, Goyal Y, Jain N, Wang Q, Truitt RE, Coté AJ, Emert B, Mellis IA, Kiani K, Yang W, Jain R, Raj A. Cell type determination for cardiac differentiation occurs soon after seeding of human-induced pluripotent stem cells. Genome Biol 2022; 23:90. [PMID: 35382863 PMCID: PMC8985385 DOI: 10.1186/s13059-022-02654-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiac differentiation of human-induced pluripotent stem (hiPS) cells consistently produces a mixed population of cardiomyocytes and non-cardiac cell types, even when using well-characterized protocols. We sought to determine whether different cell types might result from intrinsic differences in hiPS cells prior to the onset of differentiation. RESULTS By associating individual differentiated cells that share a common hiPS cell precursor, we tested whether expression variability is predetermined from the hiPS cell state. In a single experiment, cells that shared a progenitor were more transcriptionally similar to each other than to other cells in the differentiated population. However, when the same hiPS cells were differentiated in parallel, we did not observe high transcriptional similarity across differentiations. Additionally, we found that substantial cell death occurs during differentiation in a manner that suggested all cells were equally likely to survive or die, suggesting that there is no intrinsic selection bias for cells descended from particular hiPS cell progenitors. We thus wondered how cells grow spatially during differentiation, so we labeled cells by expression of marker genes and found that cells expressing the same marker tended to occur in patches. Our results suggest that cell type determination across multiple cell types, once initiated, is maintained in a cell-autonomous manner for multiple divisions. CONCLUSIONS Altogether, our results show that while substantial heterogeneity exists in the initial hiPS cell population, it is not responsible for the variability observed in differentiated outcomes; instead, factors specifying the various cell types likely act during a window that begins shortly after the seeding of hiPS cells for differentiation.
Collapse
Affiliation(s)
- Connie L Jiang
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiaohong Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel E Truitt
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allison J Coté
- Cell Biology, Physiology, and Metabolism, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Emert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Mellis
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karun Kiani
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenli Yang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Chimenti I, Picchio V, Pagano F, Schirone L, Schiavon S, D'Ambrosio L, Valenti V, Forte M, di Nonno F, Rubattu S, Peruzzi M, Versaci F, Greco E, Calogero A, De Falco E, Frati G, Sciarretta S. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov 2022; 8:149. [PMID: 35365624 PMCID: PMC8975847 DOI: 10.1038/s41420-022-00924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- Mediterranea Cardiocentro, Napoli, Italy.
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesca Pagano
- Biochemistry and Cellular Biology Istitute, CNR, Monterotondo, Italy
| | - Leonardo Schirone
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Sonia Schiavon
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Versaci
- Haemodynamic and Cardiology Unit, "Santa Maria Goretti" Hospital, Latina, Italy
- Department of System Medicine, "Tor Vergata" University, Rome, Italy
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Calogero
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elena De Falco
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
10
|
Silva AC, Matthys OB, Joy DA, Kauss MA, Natarajan V, Lai MH, Turaga D, Blair AP, Alexanian M, Bruneau BG, McDevitt TC. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 2021; 28:2137-2152.e6. [PMID: 34861147 DOI: 10.1016/j.stem.2021.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/13/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.
Collapse
Affiliation(s)
- Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Oriane B Matthys
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Mara A Kauss
- Gladstone Institutes, San Francisco, CA 94158, USA; UC San Francisco Graduate Program in Biomedical Sciences, San Francisco, CA 94143, USA
| | | | | | | | | | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Kim YJ, Tamadon A, Kim YY, Kang BC, Ku SY. Epigenetic Regulation of Cardiomyocyte Differentiation from Embryonic and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8599. [PMID: 34445302 PMCID: PMC8395249 DOI: 10.3390/ijms22168599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 08308, Korea;
| | - Amin Tamadon
- Department of Marine Stem Cell and Tissue Engineering, Bushehr University of Medical Sciences, Bushehr 14174, Iran;
| | - Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
12
|
Su L, Zhang G, Zhong H, Luo L, Li Y, Chi C, Jiang L, Huang P, Liu G, Zhu P, Kang K. WITHDRAWN: Knocking out c-Jun promotes cardiomyocyte differentiation from embryonic stem cells. Int J Cardiol 2021:S0167-5273(21)00976-1. [PMID: 34139231 DOI: 10.1016/j.ijcard.2021.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 11/27/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Lide Su
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guofu Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hui Zhong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ling Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Chi
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - LiLi Jiang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Ping Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Guihuan Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Kai Kang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
13
|
Wang TM, Wang SS, Xu YJ, Zhao CM, Qiao XH, Yang CX, Liu XY, Yang YQ. SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension. Int Heart J 2021; 62:566-574. [PMID: 33952808 DOI: 10.1536/ihj.20-711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) refers to a rare, progressive disorder that is characterized by occlusive pulmonary vascular remodeling, resulting in increased pulmonary arterial pressure, right-sided heart failure, and eventual death. Emerging evidence from genetic investigations of pediatric-onset PAH highlights the strong genetic basis underpinning PAH, and deleterious variants in multiple genes have been found to cause PAH. Nevertheless, PAH is of substantial genetic heterogeneity, and the genetic defects underlying PAH in the overwhelming majority of cases remain elusive. In this investigation, a consanguineous family suffering from PAH transmitted as an autosomal-dominant trait was identified. Through whole-exome sequencing and bioinformatic analyses as well as Sanger sequencing analyses of the PAH family, a novel heterozygous SOX17 mutation, NM_022454.4: c.379C>T; p. (Gln127*), was found to co-segregate with the disease in the family, with complete penetrance. The nonsense mutation was neither observed in 612 unrelated healthy volunteers nor retrieved in the population genetic databases encompassing the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Single Nucleotide Polymorphism database. Biological analyses using a dual-luciferase reporter assay system revealed that the Gln127*-mutant SOX17 protein lost the ability to transcriptionally activate its target gene NOTCH1. Moreover, the Gln127*-mutant SOX17 protein exhibited no inhibitory effect on the function of CTNNB1-encode β-catenin, which is a key player in vascular morphogenesis. This research firstly links SOX17 loss-of-function mutation to familial PAH, which provides novel insight into the molecular pathogenesis of PAH, suggesting potential implications for genetic and prognostic risk evaluation as well as personalized prophylaxis of the family members affected with PAH.
Collapse
Affiliation(s)
- Tian-Ming Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Shan-Shan Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University.,Central Laboratory, Shanghai Fifth People's Hospital, Fudan University
| |
Collapse
|
14
|
Andreasson L, Evenbratt H, Mobini R, Simonsson S. Differentiation of induced pluripotent stem cells into definitive endoderm on Activin A-functionalized gradient surfaces. J Biotechnol 2020; 325:173-178. [PMID: 33147515 DOI: 10.1016/j.jbiotec.2020.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/06/2023]
Abstract
Activin A plays a central role in the differentiation of stem cells into definitive endoderm, the first step in embryonic development and function development in many organ systems. The aims of this study were to induce controlled and fine-tuned cell differentiation using a gradient nanotechnology and compare this with a classic protocol and to investigate how induced pluripotent stem cells differentiated depending on the gradual increase of Activin A. The density difference was tested by attaching Activin A to a gold nanoparticle gradient for high-precision density continuity. Cells expressed the definitive endoderm markers SRY-box transcription factor 17 and transcription factor GATA-4 to different extents along the gradient, indicating a density-dependent cell response to Activin A. In both the gradient and the classic differentiation setups, the protein expression increased from days 1 to 5, but a significant increase already on day 3 was found only in the gradient-based setup. By utilizing the gradient technology to present the right amount of active biomolecules to cells in vitro, we were able to find an optimal setting for differentiation into definitive endoderm. The use of gradient surfaces for differentiation allows for improvements, such as efficiency and faster differentiation, compared with a classic protocol.
Collapse
Affiliation(s)
- Linnea Andreasson
- Cline Scientific AB, Mölndal SE-431 53, Sweden; Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg SE-413 45, Sweden.
| | | | - Reza Mobini
- Cline Scientific AB, Mölndal SE-431 53, Sweden.
| | - Stina Simonsson
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, Gothenburg SE-413 45, Sweden.
| |
Collapse
|
15
|
Nees SN, Chung WK. Genetic Basis of Human Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036749. [PMID: 31818857 DOI: 10.1101/cshperspect.a036749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Congenital heart disease (CHD) is the most common major congenital anomaly with an incidence of ∼1% of live births and is a significant cause of birth defect-related mortality. The genetic mechanisms underlying the development of CHD are complex and remain incompletely understood. Known genetic causes include all classes of genetic variation including chromosomal aneuploidies, copy number variants, and rare and common single-nucleotide variants, which can be either de novo or inherited. Among patients with CHD, ∼8%-12% have a chromosomal abnormality or aneuploidy, between 3% and 25% have a copy number variation, and 3%-5% have a single-gene defect in an established CHD gene with higher likelihood of identifying a genetic cause in patients with nonisolated CHD. These genetic variants disrupt or alter genes that play an important role in normal cardiac development and in some cases have pleiotropic effects on other organs. This work reviews some of the most common genetic causes of CHD as well as what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
| | - Wendy K Chung
- Department of Pediatrics.,Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
16
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
17
|
Lan Y, Pan H, Li C, Banks KM, Sam J, Ding B, Elemento O, Goll MG, Evans T. TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Rep 2020; 26:720-732.e4. [PMID: 30650362 PMCID: PMC6366638 DOI: 10.1016/j.celrep.2018.12.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/30/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes (Tet1/2/3) mediate 5-methylcytosine (5mC) hydroxylation, which can facilitate DNA demethylation and thereby impact gene expression. Studied mostly for how mutant isoforms impact cancer, the normal roles for Tet enzymes during organogenesis are largely unknown. By analyzing compound mutant zebrafish, we discovered a requirement for Tet2/3 activity in the embryonic heart for recruitment of epicardial progenitors, associated with development of the atrial-ventricular canal (AVC). Through a combination of methylation, hydroxymethylation, and transcript profiling, the genes encoding the activin A subunit Inhbaa (in endocardium) and Sox9b (in myocardium) were implicated as demethylation targets of Tet2/3 and critical for organization of AVC-localized extracellular matrix (ECM), facilitating migration of epicardial progenitors onto the developing heart tube. This study elucidates essential DNA demethylation modifications that govern gene expression changes during cardiac development with striking temporal and lineage specificities, highlighting complex interactions in multiple cell populations during development of the vertebrate heart. Lan et al. show that zebrafish larvae mutant for tet2 and tet3 fail to demethylate genes encoding Inhbaa (in endocardium) and Sox9b (in myocardium), leading to defects in ECM needed to form valves and to recruit epicardial progenitors onto the heart tube.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Cheng Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jessica Sam
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bo Ding
- Bonacept, LLC, 7699 Palmilla Drive, Apt. 3312, San Diego, CA 92122, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary G Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
18
|
Nees SN, Chung WK. The genetics of isolated congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:97-106. [PMID: 31876989 PMCID: PMC8211463 DOI: 10.1002/ajmg.c.31763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
The genetic mechanisms underlying congenital heart disease (CHD) are complex and remain incompletely understood. The majority of patients with CHD have an isolated heart defect without other organ system involvement, but the genetic basis of isolated CHD has been even more difficult to elucidate compared to syndromic CHD. Our understanding of the genetics of isolated CHD is advancing in large part due to advances in next generation sequencing, and the list of genes associated with CHD is rapidly expanding. Variants in hundreds of genes have been identified that may cause or contribute to CHD, but a genetic cause can still only be identified in about 20-30% of patients. Identifying a genetic cause for CHD can have an impact on clinical outcomes and prognosis and thus it is important for clinicians to understand when and what to test in patients with isolated CHD. This chapter reviews some of the known genetic mechanisms that contribute to isolated inherited and sporadic CHD as well as recommendations for evaluation and genetic testing in patients with isolated CHD.
Collapse
Affiliation(s)
- Shannon N Nees
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
19
|
Maliken BD, Kanisicak O, Karch J, Khalil H, Fu X, Boyer JG, Prasad V, Zheng Y, Molkentin JD. Gata4-Dependent Differentiation of c-Kit +-Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart. Circulation 2019; 138:1012-1024. [PMID: 29666070 PMCID: PMC6125755 DOI: 10.1161/circulationaha.118.033703] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Although c-Kit+ adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation, we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit–expressing cardiac progenitor cells. Methods: Kit allele–dependent lineage tracing and fusion analysis were performed in mice following simultaneous Gata4 and Gata6 cell type–specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit+ cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele–derived hematopoietic cells versus Kit lineage–dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. Results: Deletion of Gata4 in Kit lineage–derived endothelial cells or in total endothelial cells using the Tie2CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart, and a dramatic increase in Kit allele–dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion because of defective endothelial cell differentiation in the absence of Gata4. Conclusions: Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit+ cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit+ endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.
Collapse
Affiliation(s)
- Bryan D Maliken
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Onur Kanisicak
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Jason Karch
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Hadi Khalil
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | | | - Justin G Boyer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.).,Howard Hughes Medical Institute, Cincinnati Children's Hospital Research Foundation, OH (J.G.B., J.D.M)
| | - Vikram Prasad
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.)
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (B.D.M., O.K., J.K., H.K., X.F., J.G.B., V.P., Y.Z., J.D.M.).,Howard Hughes Medical Institute, Cincinnati Children's Hospital Research Foundation, OH (J.G.B., J.D.M)
| |
Collapse
|
20
|
张 慧, 陈 名, 方 涛, 张 甜, 倪 文. [Establishment and verification of a mouse model of Gata4 gene H435Y mutation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1245-1249. [PMID: 30377126 PMCID: PMC6744054 DOI: 10.3969/j.issn.1673-4254.2018.10.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To establish a mouse model of H435Y mutation of Gata4 gene using CRISPR/Cas9- mediated gene targeting. METHODS The single-stranded guide RNA (sgRNA) specific to the H435Y loci of Gata4 gene was designed based on the sequence of Gata4 gene. After activity assessment, the active sgRNA and Cas9 were in vitro transcribed into RNA and microinjected along with the donor DNA fragment with point mutations into fertilized mouse eggs. The microinjected eggs were transferred into pseudopregnant mice to obtain the F0 generation mice with the target Gata4 gene mutation confirmed by PCR and gene sequencing. Gata4 gene mutations in the offsprings of the F0 generation mice were analyzed. RESULTS Gene sequencing confirmed the successful establishment of mouse models carrying H435Y mutation of Gata4 gene in 4 of the F0 generation mice. The positive F0 generation mice were crossed with wild-type C57BL/6J mice to obtain the F1 generation mice, and PCR confirmed the presence of H435Y mutations of Gata4 gene in 6 of the F1 mice. Then F2 generation mice were obtained by F1 generation matting with each other. PCR showed that H435Y mutation of Gata4 gene in F2 mice was found, indicating the mousemodel of Gata4 gene mutation in H435Y was established and propagated successfully. CONCLUSIONS We successfully established Gata4 gene H435Y mutant mouse models using CRISPR/Cas9 technique.
Collapse
Affiliation(s)
- 慧 张
- />安徽医科大学附属省立医院儿科,安徽 合肥 230001Department of Pediatrics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 23001, China
| | - 名武 陈
- />安徽医科大学附属省立医院儿科,安徽 合肥 230001Department of Pediatrics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 23001, China
| | - 涛 方
- />安徽医科大学附属省立医院儿科,安徽 合肥 230001Department of Pediatrics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 23001, China
| | - 甜 张
- />安徽医科大学附属省立医院儿科,安徽 合肥 230001Department of Pediatrics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 23001, China
| | - 文泉 倪
- />安徽医科大学附属省立医院儿科,安徽 合肥 230001Department of Pediatrics, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 23001, China
| |
Collapse
|
21
|
Zhu N, Welch CL, Wang J, Allen PM, Gonzaga-Jauregui C, Ma L, King AK, Krishnan U, Rosenzweig EB, Ivy DD, Austin ED, Hamid R, Pauciulo MW, Lutz KA, Nichols WC, Reid JG, Overton JD, Baras A, Dewey FE, Shen Y, Chung WK. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease. Genome Med 2018; 10:56. [PMID: 30029678 PMCID: PMC6054746 DOI: 10.1186/s13073-018-0566-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/09/2018] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by distinctive changes in pulmonary arterioles that lead to progressive pulmonary arterial pressures, right-sided heart failure, and a high mortality rate. Up to 30% of adult and 75% of pediatric PAH cases are associated with congenital heart disease (PAH-CHD), and the underlying etiology is largely unknown. There are no known major risk genes for PAH-CHD. METHODS To identify novel genetic causes of PAH-CHD, we performed whole exome sequencing in 256 PAH-CHD patients. We performed a case-control gene-based association test of rare deleterious variants using 7509 gnomAD whole genome sequencing population controls. We then screened a separate cohort of 413 idiopathic and familial PAH patients without CHD for rare deleterious variants in the top association gene. RESULTS We identified SOX17 as a novel candidate risk gene (p = 5.5e-7). SOX17 is highly constrained and encodes a transcription factor involved in Wnt/β-catenin and Notch signaling during development. We estimate that rare deleterious variants contribute to approximately 3.2% of PAH-CHD cases. The coding variants identified include likely gene-disrupting (LGD) and deleterious missense, with most of the missense variants occurring in a highly conserved HMG-box protein domain. We further observed an enrichment of rare deleterious variants in putative targets of SOX17, many of which are highly expressed in developing heart and pulmonary vasculature. In the cohort of PAH without CHD, rare deleterious variants of SOX17 were observed in 0.7% of cases. CONCLUSIONS These data strongly implicate SOX17 as a new risk gene contributing to PAH-CHD as well as idiopathic/familial PAH. Replication in other PAH cohorts and further characterization of the clinical phenotype will be important to confirm the precise role of SOX17 and better estimate the contribution of genes regulated by SOX17.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY USA
| | - Carrie L. Welch
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - Jiayao Wang
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY USA
| | - Philip M. Allen
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | | | - Lijiang Ma
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - Alejandra K. King
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Usha Krishnan
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
| | - Erika B. Rosenzweig
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
- Department of Medicine, Columbia University Medical Center, New York, NY USA
| | - D. Dunbar Ivy
- Department of Pediatric Cardiology, Children’s Hospital Colorado, Denver, CO USA
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of CincinnatiCollege of Medicine, Cincinnati, OH USA
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, University of CincinnatiCollege of Medicine, Cincinnati, OH USA
| | - Jeffrey G. Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - John D. Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Frederick E. Dewey
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY USA
- Department of Biomedical Informatics, Columbia University, New York, NY USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York, NY USA
- Department of Medicine, Columbia University Medical Center, New York, NY USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY USA
- New York, USA
| |
Collapse
|
22
|
Cho DI, Kang WS, Hong MH, Kang HJ, Kim MR, Kim MC, Kim YS, Ahn Y. The optimization of cell therapy by combinational application with apicidin-treated mesenchymal stem cells after myocardial infarction. Oncotarget 2018; 8:44281-44294. [PMID: 28498815 PMCID: PMC5546480 DOI: 10.18632/oncotarget.17471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/16/2017] [Indexed: 11/25/2022] Open
Abstract
Although mesenchymal stem cells (MSC) have been shown to be safe in preclinical studies of cardiovascular disease, multiple meta-analyses have debated whether functional improvement is significant or not. The cardiac differentiation from MSC is achievable using cardiogenic factors, however, the high cost and long culture period may limit the applications. Here, we developed a novel method to optimize the therapeutic outcome for myocardial infarction (MI). Treatment of MSC with apicidin, a histone deacetylase inhibitor, dramatically increased the expressions of cardiac markers such as GATA4, Nkx2.5, and cardiac troponin I (cTnI). In AC/MSC, stemness-related genes and yes-associated protein (YAP), a potent oncogene that drives cell proliferation, were significantly suppressed. Furthermore apicidin treatment or YAP knockdown downregulated miR-130a expression followed by induction of cardiac markers in MSC. In the comparison study, we found that both cardiac gene induction and angiogenesis were most prominent in the mixture of non-treated MSC and AC/MSC (Mix). Using mouse MI model, we show that application of Mix was strongly associated with cardiac differentiation of injected MSC and improved cardiac performance. Our results suggest that suppression of YAP/miR-130a shifts MSC cell fate toward cardiac lineage and identify apicidin as a potential pharmacological target for therapeutic development.
Collapse
Affiliation(s)
- Dong Im Cho
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Wan Seok Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Moon Hwa Hong
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Hye Jin Kang
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Mi Ra Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea.,Biomedical Research Institute, Chonnam National University Hospital, Gwangju, South Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University Hospital, Gwangju, South Korea.,Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| |
Collapse
|
23
|
Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep 2018; 8:1801. [PMID: 29379062 PMCID: PMC5789065 DOI: 10.1038/s41598-018-20131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.
Collapse
|
24
|
Rosen MB, Jeffay SC, Nichols HP, Hoopes MR, Hunter ES. ATP Binding Cassette Sub-family Member 2 (ABCG2) and Xenobiotic Exposure During Early Mouse Embryonic Stem Cell Differentiation. Birth Defects Res 2018; 110:35-47. [PMID: 28990372 PMCID: PMC9831278 DOI: 10.1002/bdr2.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND ATP binding cassette sub-family member 2 (ABCG2) is a well-defined efflux transporter found in a variety of tissues. The role of ABCG2 during early embryonic development, however, is not established. Previous work which compared data from the ToxCast screening program with that from in-house studies suggested an association exists between exposure to xenobiotics that regulate Abcg2 transcription and differentiation of mouse embryonic stem cells (mESC), a relationship potentially related to redox homeostasis. METHODS mESC were grown for up to 9 days. Pharmacological inhibitors were used to assess transporter function with and without xenobiotic exposure. Proliferation and differentiation were evaluated using RedDot1 and quantiative reverse transcriptase-polymerase chain reaction, respectively. ABCG2 activity was assessed using a Pheophorbide a-based fluorescent assay. Protein expression was measured by capillary-based immunoassay. RESULTS ABCG2 activity increased in differentiating mESC. Treatment with K0143, an inhibitor of ABCG2, had no effect on proliferation or differentiation. As expected, mitoxantrone and topotecan, two chemotherapeutics, displayed increased toxicity in the presence of K0143. Exposure to K0143 in combination with chemicals predicted by ToxCast to regulate ABCG2 expression did not alter xenobiotic-induced toxicity. Moreover, inhibition of ABCG2 did not shift the toxicity of either tert-Butyl hydroperoxide or paraquat, two oxidative stressors. CONCLUSION As previously reported, ABCG2 serves a protective role in mESC. The role of ABCG2 in regulating redox status, however, was unclear. The hypothesis that ABCG2 plays a fundamental role during mESC differentiation or that regulation of the receptor by xenobiotics may be associated with altered mESC differentiation could not be supported. Birth Defects Research, 110:35-47, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Mitchell B Rosen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Susan C Jeffay
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Harriette P Nichols
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Maria R Hoopes
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - E Sidney Hunter
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| |
Collapse
|
25
|
Mercer EJ, Lin YF, Cohen-Gould L, Evans T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 2018; 435:41-55. [PMID: 29331499 DOI: 10.1016/j.ydbio.2018.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
Small heat shock proteins are chaperones with variable mechanisms of action. The function of cardiac family member Hspb7 is unknown, despite being identified through GWAS as a potential cardiomyopathy risk gene. We discovered that zebrafish hspb7 mutants display mild focal cardiac fibrosis and sarcomeric abnormalities. Significant mortality was observed in adult hspb7 mutants subjected to exercise stress, demonstrating a genetic and environmental interaction that determines disease outcome. We identified large sarcomeric proteins FilaminC and Titin as Hspb7 binding partners in cardiac cells. Damaged FilaminC undergoes autophagic processing to maintain sarcomeric homeostasis. Loss of Hspb7 in zebrafish or human cardiomyocytes stimulated autophagic pathways and expression of the sister gene encoding Hspb5. Inhibiting autophagy caused FilaminC aggregation in HSPB7 mutant human cardiomyocytes and developmental cardiomyopathy in hspb7 mutant zebrafish embryos. These studies highlight the importance of damage-processing networks in cardiomyocytes, and a previously unrecognized role in this context for Hspb7.
Collapse
Affiliation(s)
- Emily J Mercer
- Department of Surgery, Weill Cornell Medical College, United States
| | - Yi-Fan Lin
- Department of Surgery, Weill Cornell Medical College, United States
| | - Leona Cohen-Gould
- Department of Biochemistry, Weill Cornell Medical College, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, United States.
| |
Collapse
|
26
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
27
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Enhanced cardiomyogenic induction of mouse pluripotent cells by cyclic mechanical stretch. Biochem Biophys Res Commun 2017; 488:590-595. [PMID: 28527889 DOI: 10.1016/j.bbrc.2017.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
The cardiac milieu is mechanically active with spontaneous contraction beginning from early development and persistent through maturation and homeostasis, suggesting that mechanical loading may provide a biomimetic myocardial developmental signal. In this study, we tested the role of cyclic mechanical stretch loading in the cardiomyogenesis of pluripotent murine embryonic (P19) stem cells. A Flexcell tension system was utilized to apply equiaxial stretch (12% strain, 1.25 Hz frequency) to P19 cell-derived embryoid bodies (EBs). Interestingly, while control EBs without any further stimulation did not exhibit cardiomyogenesis, stretch stimulation alone could induce P19-derived EBs to become spontaneously beating cardiomyocytes (CMs). The beating colony number, average contracting area, and beating rate, as quantified by video capturing and framed image analysis, were even increased for stretch alone case relative to those from known biochemical induction with 5-Azacytidine (5-Aza). Key CM differentiation markers, GATA4 and Troponin T, could also be detected for the stretch alone sample at comparable levels as with 5-Aza treatment. Stretch and 5-Aza co-stimulation produced in general synergistic effects in CM developments. Combined data suggest that stretch loading may serve as a potent trigger to induce functional CM development in both beating dynamics and genomic development, which is still a challenge for myocardial regenerative medicine.
Collapse
|
29
|
Nasrallah R, Fast EM, Solaimani P, Knezevic K, Eliades A, Patel R, Thambyrajah R, Unnikrishnan A, Thoms J, Beck D, Vink CS, Smith A, Wong J, Shepherd M, Kent D, Roychoudhuri R, Paul F, Klippert J, Hammes A, Willnow T, Göttgens B, Dzierzak E, Zon LI, Lacaud G, Kouskoff V, Pimanda JE. Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes. Blood 2016; 128:1928-1939. [PMID: 27554085 PMCID: PMC5064716 DOI: 10.1182/blood-2016-02-697870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.
Collapse
Affiliation(s)
- Rabab Nasrallah
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Eva M Fast
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Parham Solaimani
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kathy Knezevic
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Alexia Eliades
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Roshana Thambyrajah
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Ashwin Unnikrishnan
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Julie Thoms
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Chris S Vink
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Aileen Smith
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Jason Wong
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Mairi Shepherd
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - David Kent
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Rahul Roychoudhuri
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Fabian Paul
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Julia Klippert
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Annette Hammes
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Thomas Willnow
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Bertie Göttgens
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Elaine Dzierzak
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - George Lacaud
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia; Department of Haematology, The Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
30
|
Lee SH, Chen TY, Dhar SS, Gu B, Chen K, Kim YZ, Li W, Lee MG. A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness. Nucleic Acids Res 2016; 44:10603-10618. [PMID: 27625395 PMCID: PMC5159542 DOI: 10.1093/nar/gkw788] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/10/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022] Open
Abstract
Self-renewal and pluripotency are two fundamental characteristics of embryonic stem cells (ESCs) and are controlled by diverse regulatory factors, including pluripotent factors, epigenetic regulators and microRNAs (miRNAs). Although histone methyltransferases are key epigenetic regulators, whether and how a histone methyltransferase forms a network with miRNAs and the core pluripotent factor system to regulate ESC stemness is little known. Here, we show that the protein arginine methyltransferase 7 (PRMT7) is a pluripotent factor essential for the stemness of mouse ESCs. PRMT7 repressed the miR-24-2 gene encoding miR-24-3p and miR-24-2-5p by upregulating the levels of symmetrically dimethylated H4R3. Notably, miR-24-3p targeted the 3′ untranslated regions (UTRs) of the major pluripotent factors Oct4, Nanog, Klf4 and c-Myc, whereas miR-24-2-5p silenced Klf4 and c-Myc expression. miR-24-3p and miR-24-2-5p also targeted the 3′UTR of their repressor gene Prmt7. miR-24-3p and miR-24-2-5p induced mouse ESC differentiation, and their anti-sense inhibitors substantially reversed spontaneous differentiation of PRMT7-depleted mouse ESCs. Oct4, Nanog, Klf4 and c-Myc positively regulated Prmt7 expression. These findings define miR-24-3p and miR-24-2-5p as new anti-pluripotent miRNAs and also reveal a novel epigenetic stemness-regulatory mechanism in which a double-negative feedback loop consisting of PRMT7 and miR-24-3p/miR24-2-5p interplays with Oct4, Nanog, Klf4 and c-Myc to control ESC stemness.
Collapse
Affiliation(s)
- Sung-Hun Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Tsai-Yu Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bingnan Gu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Kaifu Chen
- Institutefor Academic Medicine, The Methodist Hospital Research Institute, Houston, TX77030, USA.,Centerfor Cardiovascular Regeneration, Department of Cardiovascular Sciences, TheMethodist Hospital Research Institute, Houston, TX 77030, USA.,WeillCornell Medical College, Cornell University, New York, NY 10065, USA
| | - Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158, Paryong-ro, Masan Hoiwon-Gu, Changwon, Gyeongsangnam-do, 630-723, Republic of Korea
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA .,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
31
|
Lu W, Fang L, Ouyang B, Zhang X, Zhan S, Feng X, Bai Y, Han X, Kim H, He Q, Wan M, Shi FT, Feng XH, Liu D, Huang J, Songyang Z. Actl6a protects embryonic stem cells from differentiating into primitive endoderm. Stem Cells 2016; 33:1782-93. [PMID: 25802002 DOI: 10.1002/stem.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 02/06/2023]
Abstract
Actl6a (actin-like protein 6A, also known as Baf53a or Arp4) is a subunit shared by multiple complexes including esBAF, INO80, and Tip60-p400, whose main components (Brg1, Ino80, and p400, respectively) are crucial for the maintenance of embryonic stem cells (ESCs). However, whether and how Actl6a functions in ESCs has not been investigated. ESCs originate from the epiblast (EPI) that is derived from the inner cell mass (ICM) in blastocysts, which also give rise to primitive endoderm (PrE). The molecular mechanisms for EPI/PrE specification remain unclear. In this study, we provide the first evidence that Actl6a can protect mouse ESCs (mESCs) from differentiating into PrE. While RNAi knockdown of Actl6a, which appeared highly expressed in mESCs and downregulated during differentiation, induced mESCs to differentiate towards the PrE lineage, ectopic expression of Actl6a was able to repress PrE differentiation. Our work also revealed that Actl6a could interact with Nanog and Sox2 and promote Nanog binding to pluripotency genes such as Oct4 and Sox2. Interestingly, cells depleted of p400, but not of Brg1 or Ino80, displayed similar PrE differentiation patterns. Mutant Actl6a with impaired ability to bind Tip60 and p400 failed to block PrE differentiation induced by Actl6a dysfunction. Finally, we showed that Actl6a could target to the promoters of key PrE regulators (e.g., Sall4 and Fgf4), repressing their expression and inhibiting PrE differentiation. Our findings uncover a novel function of Actl6a in mESCs, where it acts as a gatekeeper to prevent mESCs from entering into the PrE lineage through a Yin/Yang regulating pattern.
Collapse
Affiliation(s)
- Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lekun Fang
- Guangdong Gastroenterology Institute, Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Department of Urology, The First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoquan Zhan
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuyang Feng
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaofu Bai
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Han
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ma Wan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Feng-Tao Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Aksoy I, Marcy G, Chen J, Divakar U, Kumar V, John-Sanchez D, Rahmani M, Buckley NJ, Stanton LW. A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification. Stem Cells 2016; 34:860-72. [PMID: 26864965 DOI: 10.1002/stem.2304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/09/2022]
Abstract
During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/β-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation.
Collapse
Affiliation(s)
- Irene Aksoy
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore.,Stem Cell and Brain Research Institute, INSERM U1208, 69500 Bron, France.,University of Lyon, University of Lyon I, 69003 Lyon, France
| | - Guillaume Marcy
- Stem Cell and Brain Research Institute, INSERM U1208, 69500 Bron, France.,University of Lyon, University of Lyon I, 69003 Lyon, France
| | - Jiaxuan Chen
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Ushashree Divakar
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Vibhor Kumar
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Daniel John-Sanchez
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Mehran Rahmani
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, UK
| | - Lawrence W Stanton
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
33
|
Org T, Duan D, Ferrari R, Montel-Hagen A, Van Handel B, Kerényi MA, Sasidharan R, Rubbi L, Fujiwara Y, Pellegrini M, Orkin SH, Kurdistani SK, Mikkola HK. Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO J 2015; 34:759-77. [PMID: 25564442 PMCID: PMC4369313 DOI: 10.15252/embj.201490542] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Scl/Tal1 confers hemogenic competence and prevents ectopic cardiomyogenesis in embryonic endothelium by unknown mechanisms. We discovered that Scl binds to hematopoietic and cardiac enhancers that become epigenetically primed in multipotent cardiovascular mesoderm, to regulate the divergence of hematopoietic and cardiac lineages. Scl does not act as a pioneer factor but rather exploits a pre-established epigenetic landscape. As the blood lineage emerges, Scl binding and active epigenetic modifications are sustained in hematopoietic enhancers, whereas cardiac enhancers are decommissioned by removal of active epigenetic marks. Our data suggest that, rather than recruiting corepressors to enhancers, Scl prevents ectopic cardiogenesis by occupying enhancers that cardiac factors, such as Gata4 and Hand1, use for gene activation. Although hematopoietic Gata factors bind with Scl to both activated and repressed genes, they are dispensable for cardiac repression, but necessary for activating genes that enable hematopoietic stem/progenitor cell development. These results suggest that a unique subset of enhancers in lineage-specific genes that are accessible for regulators of opposing fates during the time of the fate decision provide a platform where the divergence of mutually exclusive fates is orchestrated.
Collapse
Affiliation(s)
- Tõnis Org
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Dan Duan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Roberto Ferrari
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Amelie Montel-Hagen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Ben Van Handel
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Marc A Kerényi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Rajkumar Sasidharan
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuko Fujiwara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute Harvard Stem Cell Institute Harvard Medical School, Boston, MA, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Hanna Ka Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Ohno R, Fujita C, Haruna T, Yuasa S, Sano M, Fujita J, Fukuda K. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 2014; 3:1473-83. [PMID: 25355733 DOI: 10.5966/sctm.2014-0072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cardiac regenerative therapy with human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, has been hampered by the lack of efficient strategies for expanding functional cardiomyocytes (CMs) to clinically relevant numbers. The development of the massive suspension culture system (MSCS) has shed light on this critical issue, although it remains unclear how hPSCs could differentiate into functional CMs using a MSCS. The proliferative rate of differentiating hPSCs in the MSCS was equivalent to that in suspension cultures using nonadherent culture dishes, although the MSCS provided more homogeneous embryoid bodies (EBs), eventually reducing apoptosis. However, pluripotent markers such as Oct3/4 and Tra-1-60 were still expressed in EBs 2 weeks after differentiation, even in the MSCS. The remaining undifferentiated stem cells in such cultures could retain a strong potential for teratoma formation, which is the worst scenario for clinical applications of hPSC-derived CMs. The metabolic purification of CMs in glucose-depleted and lactate-enriched medium successfully eliminated the residual undifferentiated stem cells, resulting in a refined hPSC-derived CM population. In colony formation assays, no Tra-1-60-positive colonies appeared after purification. The nonpurified CMs in the MSCS produced teratomas at a rate of 60%. However, purified CMs never induced teratomas, and enriched CMs showed proper electrophysiological properties and calcium transients. Overall, the combination of a MSCS and metabolic selection is a highly effective and practical approach to purify and enrich massive numbers of functional CMs and provides an essential technique for cardiac regenerative therapy with hPSC-derived CMs.
Collapse
Affiliation(s)
- Natsuko Hemmi
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shugo Tohyama
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kazuaki Nakajima
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kanazawa
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoyuki Suzuki
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hattori
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomohisa Seki
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshikazu Kishino
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akinori Hirano
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Marina Okada
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ryota Tabei
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Rei Ohno
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Chihana Fujita
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Haruna
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shinsuke Yuasa
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Motoaki Sano
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Jun Fujita
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Keiichi Fukuda
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Transcriptional response to cardiac injury in the zebrafish: systematic identification of genes with highly concordant activity across in vivo models. BMC Genomics 2014; 15:852. [PMID: 25280539 PMCID: PMC4197235 DOI: 10.1186/1471-2164-15-852] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022] Open
Abstract
Background Zebrafish is a clinically-relevant model of heart regeneration. Unlike mammals, it has a remarkable heart repair capacity after injury, and promises novel translational applications. Amputation and cryoinjury models are key research tools for understanding injury response and regeneration in vivo. An understanding of the transcriptional responses following injury is needed to identify key players of heart tissue repair, as well as potential targets for boosting this property in humans. Results We investigated amputation and cryoinjury in vivo models of heart damage in the zebrafish through unbiased, integrative analyses of independent molecular datasets. To detect genes with potential biological roles, we derived computational prediction models with microarray data from heart amputation experiments. We focused on a top-ranked set of genes highly activated in the early post-injury stage, whose activity was further verified in independent microarray datasets. Next, we performed independent validations of expression responses with qPCR in a cryoinjury model. Across in vivo models, the top candidates showed highly concordant responses at 1 and 3 days post-injury, which highlights the predictive power of our analysis strategies and the possible biological relevance of these genes. Top candidates are significantly involved in cell fate specification and differentiation, and include heart failure markers such as periostin, as well as potential new targets for heart regeneration. For example, ptgis and ca2 were overexpressed, while usp2a, a regulator of the p53 pathway, was down-regulated in our in vivo models. Interestingly, a high activity of ptgis and ca2 has been previously observed in failing hearts from rats and humans. Conclusions We identified genes with potential critical roles in the response to cardiac damage in the zebrafish. Their transcriptional activities are reproducible in different in vivo models of cardiac injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-852) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Abstract
Haploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations. We identified a broad spectrum of disease: hematologic (MDS 84%, AML 14%, chronic myelomonocytic leukemia 8%), infectious (severe viral 70%, disseminated mycobacterial 53%, and invasive fungal infections 16%), pulmonary (diffusion 79% and ventilatory defects 63%, pulmonary alveolar proteinosis 18%, pulmonary arterial hypertension 9%), dermatologic (warts 53%, panniculitis 30%), neoplastic (human papillomavirus+ tumors 35%, Epstein-Barr virus+ tumors 4%), vascular/lymphatic (venous thrombosis 25%, lymphedema 11%), sensorineural hearing loss 76%, miscarriage 33%, and hypothyroidism 14%. Viral infections and lymphedema were more common in individuals with null mutations (P = .038 and P = .006, respectively). Monocytopenia, B, NK, and CD4 lymphocytopenia correlated with the presence of disease (P < .001). GATA2 deficiency unites susceptibility to MDS/AML, immunodeficiency, pulmonary disease, and vascular/lymphatic dysfunction. Early genetic diagnosis is critical to direct clinical management, preventive care, and family screening.
Collapse
|
37
|
Geuss LR, Suggs LJ. Making cardiomyocytes: How mechanical stimulation can influence differentiation of pluripotent stem cells. Biotechnol Prog 2013; 29:1089-96. [DOI: 10.1002/btpr.1794] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Laura R. Geuss
- Dept. of Biomedical Engineering; The University of Texas at Austin; Austin TX 78712
| | - Laura J. Suggs
- Dept. of Biomedical Engineering; The University of Texas at Austin; Austin TX 78712
| |
Collapse
|
38
|
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963-75. [PMID: 23706735 DOI: 10.1016/j.cell.2013.05.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
Abstract
The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.
Collapse
Affiliation(s)
- Jian Shu
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng P, Andersen P, Hassel D, Kaynak BL, Limphong P, Juergensen L, Kwon C, Srivastava D. Fibronectin mediates mesendodermal cell fate decisions. Development 2013; 140:2587-96. [PMID: 23715551 DOI: 10.1242/dev.089052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm.
Collapse
Affiliation(s)
- Paul Cheng
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rosenfeld GE, Mercer EJ, Mason CE, Evans T. Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Dev Biol 2013; 381:389-400. [PMID: 23850773 DOI: 10.1016/j.ydbio.2013.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 01/05/2023]
Abstract
Cardiac morphogenesis is a complex multi-stage process, and the molecular basis for controlling distinct steps remains poorly understood. Because gata4 encodes a key transcriptional regulator of morphogenesis, we profiled transcript changes in cardiomyocytes when Gata4 protein is depleted from developing zebrafish embryos. We discovered that gata4 regulates expression of two small heat shock genes, hspb7 and hspb12, both of which are expressed in the embryonic heart. We show that depletion of Hspb7 or Hspb12 disrupts normal cardiac morphogenesis, at least in part due to defects in ventricular size and shape. We confirmed that gata4 interacts genetically with the hspb7/12 pathway, but surprisingly, we found that hspb7 also has an earlier, gata4-independent function. Depletion perturbs Kupffer's vesicle (KV) morphology leading to a failure in establishing the left-right axis of asymmetry. Targeted depletion of Hspb7 in the yolk syncytial layer is sufficient to disrupt KV morphology and also causes an even earlier block to heart tube formation and a bifid phenotype. Recently, several genome-wide association studies found that HSPB7 SNPs are highly associated with idiopathic cardiomyopathies and heart failure. Therefore, GATA4 and HSPB7 may act alone or together to regulate morphogenesis with relevance to congenital and acquired human heart disease.
Collapse
|
41
|
Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc 2013; 8:1028-41. [PMID: 23640167 DOI: 10.1038/nprot.2013.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At the time of implantation in the maternal uterus, the mouse blastocyst possesses an inner cell mass comprising two lineages: epiblast (Epi) and primitive endoderm (PrE). Representative stem cells derived from these two cell lineages can be expanded and maintained indefinitely in vitro as either embryonic stem (ES) or XEN cells, respectively. Here we describe protocols that can be used to establish XEN cell lines. These include the establishment of XEN cells from blastocyst-stage embryos in either standard embryonic or trophoblast stem (TS) cell culture conditions. We also describe protocols for establishing XEN cells directly from ES cells by either retinoic acid and activin-based conversion or by overexpression of the GATA transcription factor Gata6. XEN cells are a useful model of PrE cells, with which they share gene expression, differentiation potential and lineage restriction. The robust protocols for deriving XEN cells described here can be completed within 2-3 weeks.
Collapse
|
42
|
Liu Y, Schwartz RJ. Transient Mesp1 expression: a driver of cardiac cell fate determination. Transcription 2013; 4:92-6. [PMID: 23584093 DOI: 10.4161/trns.24588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesp1 sits on the tip of the cardiac regulatory hierarchy, recent evidences support that it is regulated by stem cell factor Oct4, early gastrulation signal canonical Wnts and a couple of T-box factors, T and Eomes. With other transcription factors, Mesp1 programs/reprograms human cells toward cardiomyocytes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry; University of Houston; Houston, TX USA
| | | |
Collapse
|
43
|
Turbendian HK, Gordillo M, Tsai SY, Lu J, Kang G, Liu TC, Tang A, Liu S, Fishman GI, Evans T. GATA factors efficiently direct cardiac fate from embryonic stem cells. Development 2013; 140:1639-44. [PMID: 23487308 DOI: 10.1242/dev.093260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GATA4 transcription factor is implicated in promoting cardiogenesis in combination with other factors, including TBX5, MEF2C and BAF60C. However, when expressed in embryonic stem cells (ESCs), GATA4 was shown to promote endoderm, not cardiac mesoderm. The capacity of related GATA factors to promote cardiogenesis is untested. We found that expression of the highly related gene, Gata5, very efficiently promotes cardiomyocyte fate from murine ESCs. Gata5 directs development of beating sheets of cells that express cardiac troponin T and show a full range of action potential morphologies that are responsive to pharmacological stimulation. We discovered that by removing serum from the culture conditions, GATA4 and GATA6 are each also able to efficiently promote cardiogenesis in ESC derivatives, with some distinctions. Thus, GATA factors can function in ESC derivatives upstream of other cardiac transcription factors to direct the efficient generation of cardiomyocytes.
Collapse
Affiliation(s)
- Harma K Turbendian
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hartung S, Schwanke K, Haase A, David R, Franz WM, Martin U, Zweigerdt R. Directing cardiomyogenic differentiation of human pluripotent stem cells by plasmid-based transient overexpression of cardiac transcription factors. Stem Cells Dev 2013; 22:1112-25. [PMID: 23157212 DOI: 10.1089/scd.2012.0351] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) possess a high potential for regenerative medicine. Previous publications suggested that viral transduction of a defined set of transcription factors (TFs) known to play pivotal roles in heart development also increases cardiomyogenesis in vitro upon overexpression in mouse or human ES cells. To circumvent issues associated with viral approaches such as insertional mutagenesis, we have established a transient transfection system for straightforward testing of TF combinations. Applying this method, the transfection efficiency and the temporal pattern of transgene expression were extensively assessed in hPSCs by quantitative real time-polymerase chain reaction (qRT-PCR), TF-specific immunofluorescence analysis, and flow cytometry. Testing TF combinations in our approach revealed that BAF60C, GATA4, and MESP1 (BGM) were most effective for cardiac forward programming in human induced pluripotent stem cell lines and human ES cells as well. Removal of BAF60C slightly diminished formation of CM-like cells, whereas depletion of GATA4 or MESP1 abolished cardiomyogenesis. Each of these TFs alone had no inductive effect. In addition, we have noted sensitivity of CM formation to cell density effects, which highlights the necessity for cautious analysis when interpreting TF-directed lineage induction. In summary, this is the first report on TF-induced cardiomyogenesis of hPSCs applying a transient, nonintegrating method of cell transfection.
Collapse
Affiliation(s)
- Susann Hartung
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Torregroza I, Holtzinger A, Mendelson K, Liu TC, Hla T, Evans T. Regulation of a vascular plexus by gata4 is mediated in zebrafish through the chemokine sdf1a. PLoS One 2012; 7:e46844. [PMID: 23056483 PMCID: PMC3463525 DOI: 10.1371/journal.pone.0046844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Using the zebrafish model we describe a previously unrecognized requirement for the transcription factor gata4 controlling embryonic angiogenesis. The development of a vascular plexus in the embryonic tail, the caudal hematopoietic tissue (CHT), fails in embryos depleted of gata4. Rather than forming a normal vascular plexus, the CHT of gata4 morphants remains fused, and cells in the CHT express high levels of osteogenic markers ssp1 and runx1. Definitive progenitors emerge from the hemogenic aortic endothelium, but fail to colonize the poorly vascularized CHT. We also found abnormal patterns and levels for the chemokine sdf1a in gata4 morphants, which was found to be functionally relevant, since the embryos also show defects in development of the lateral line, a mechano-sensory organ system highly dependent on a gradient of sdf1a levels. Reduction of sdf1a levels was sufficient to rescue lateral line development, circulation, and CHT morphology. The result was surprising since neither gata4 nor sdf1a is obviously expressed in the CHT. Therefore, we generated transgenic fish that conditionally express a dominant-negative gata4 isoform, and determined that gata4 function is required during gastrulation, when it is co-expressed with sdf1a in lateral mesoderm. Our study shows that the gata4 gene regulates sdf1a levels during early embryogenesis, which impacts embryonic patterning and subsequently the development of the caudal vascular plexus.
Collapse
Affiliation(s)
- Ingrid Torregroza
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Audrey Holtzinger
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ting-Chun Liu
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, Lucchesi PA, Pu WT, Srivastava D, Garg V. Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet 2012; 8:e1002690. [PMID: 22589735 PMCID: PMC3349729 DOI: 10.1371/journal.pgen.1002690] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans. Cardiac malformations occur due to abnormal heart development and are the most prevalent human birth defect. Defects of atrial and ventricular septation are the most common type of congenital heart defect and are the result of incomplete closure of the atrial and ventricular septa, a process required for formation of a four-chambered heart. The molecular mechanisms that underlie atrial and ventricular septal defects are unknown. We previously published a highly penetrant autosomal dominant mutation (G296S) in GATA4, which was associated with atrial and ventricular septal defects in a large kindred. The disease-causing mutation has a spectrum of biochemical deficits affecting both DNA binding and protein–protein interactions. Here, we report the generation and phenotypic characterization of mice harboring the orthologous mutation in Gata4 (G295S). While homozygous mutant mice display embryonic lethality and cardiac defects, the phenotype is less severe than Gata4-null mice. A subset of Gata4 G295S heterozygote mice display a persistent interatrial communication (patent foramen ovale) and stenosis of the semilunar valves. Molecular characterization of the mutant mice suggests that the Gata4 G295S mutant protein results in diminished expression of Gata4 target genes in the heart and functional deficits in cardiomyocyte proliferation. Thus, cardiomyocyte proliferation defects may contribute to defects of cardiac septation found in humans with GATA4 mutations.
Collapse
Affiliation(s)
- Chaitali Misra
- Center for Cardiovascular and Pulmonary Research and the Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Nita Sachan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Caryn Rothrock McNally
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sara N. Koenig
- Center for Cardiovascular and Pulmonary Research and the Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Haley A. Nichols
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anuradha Guggilam
- Center for Cardiovascular and Pulmonary Research and the Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Pamela A. Lucchesi
- Center for Cardiovascular and Pulmonary Research and the Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - William T. Pu
- Department of Cardiology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Department Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Vidu Garg
- Center for Cardiovascular and Pulmonary Research and the Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Sun H, Guns T, Fierro AC, Thorrez L, Nijssen S, Marchal K. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection. Nucleic Acids Res 2012; 40:e90. [PMID: 22422841 PMCID: PMC3384348 DOI: 10.1093/nar/gks237] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC.
Collapse
Affiliation(s)
- Hong Sun
- Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Liu W, Brown K, Legros S, Foley AC. Nodal mutant eXtraembryonic ENdoderm (XEN) stem cells upregulate markers for the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies. Biol Open 2012; 1:208-19. [PMID: 23213411 PMCID: PMC3507291 DOI: 10.1242/bio.2012038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interactions between the endoderm and mesoderm that mediate myocardial induction are difficult to study in vivo because of the small size of mammalian embryos at relevant stages. However, we and others have demonstrated that signals from endodermal cell lines can influence myocardial differentiation from both mouse and human embryoid bodies (EBs), and because of this, assays that utilize embryonic stem (ES) cells and endodermal cell lines provide excellent in vitro models to study early cardiac differentiation. Extraembryonic endoderm (XEN) stem cells have a particular advantage over other heart-inducing cell lines in that they can easily be derived from both wild type and mutant mouse blastocysts. Here we describe the first isolation of a Nodal mutant XEN stem cell line. Nodal−/− XEN cell lines were not isolated at expected Mendelian ratios, and those that were successfully established, showed an increase in markers for the anterior visceral endoderm (AVE). Since AVE represents the heart-inducing endoderm in the mouse, cardiac differentiation was compared in EBs treated with conditioned medium (CM) collected from wild type or Nodal−/− XEN cells. EBs treated with CM from Nodal−/− cells began beating earlier and showed early activation of myocardial genes, but this early cardiac differentiation did not cause an overall increase in cardiomyocyte yield. By comparison, CM from wild type XEN cells both delayed cardiac differentiation and caused a concomitant increase in overall cardiomyocyte formation. Detailed marker analysis suggested that early activation of cardiac differentiation by Nodal−/− XEN CM caused premature differentiation and subsequent depletion of cardiac progenitors.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Weill Cornell Medical College , New York, NY 10065 , USA
| | | | | | | |
Collapse
|
49
|
Abstract
Transcription factors regulate formation and function of the heart, and perturbation of transcription factor expression and regulation disrupts normal heart structure and function. Multiple mechanisms regulate the level and locus-specific activity of transcription factors, including transcription, translation, subcellular localization, posttranslational modifications, and context-dependent interactions with other transcription factors, chromatin remodeling enzymes, and epigenetic regulators. The zinc finger transcription factor GATA4 is among the best-studied cardiac transcriptional factors. This review focuses on molecular mechanisms that regulate GATA4 transcriptional activity in the cardiovascular system, providing a framework to investigate and understand the molecular regulation of cardiac gene transcription by other transcription factors.
Collapse
|
50
|
Poudel B, Bilbao D, Sarathchandra P, Germack R, Rosenthal N, Santini MP. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea. Biochem Biophys Res Commun 2011; 416:293-9. [PMID: 22100652 PMCID: PMC3407877 DOI: 10.1016/j.bbrc.2011.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 12/13/2022]
Abstract
The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac mesodermal induction in undifferentiated cells independently of cell proliferation. This analysis suggests that IGF-1Ea may be a good candidate to improve both in vitro production of cardiomyocytes from pluripotent stem cells and in vivo activation of the differentiation program of cardiac progenitor cells.
Collapse
Affiliation(s)
- Bhawana Poudel
- Heart Science Centre, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Padmini Sarathchandra
- Heart Science Centre, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Renee Germack
- Heart Science Centre, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Nadia Rosenthal
- Heart Science Centre, National Heart and Lung Institute, Imperial College, London, United Kingdom
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Maria Paola Santini
- Heart Science Centre, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|