1
|
Guerrero-Limón G, Muller M. Exploring estrogen antagonism using CRISPR/Cas9 to generate specific mutants for each of the receptors. CHEMOSPHERE 2024; 364:143100. [PMID: 39159765 DOI: 10.1016/j.chemosphere.2024.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Eslamizadeh E, Mabudi H, Roomiani L, Javaheri Baboli M, Chelehmal Dezfulnejad M. Effects of thyroxin and luteinizing hormone releasing hormone on reproductive physiology of Rohu (Labeo rohita): Insights into spawning performance, oocyte maturation, steroidogenesis, and follicular development genes. Anim Reprod Sci 2024; 267:107542. [PMID: 38954933 DOI: 10.1016/j.anireprosci.2024.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
As the global aquaculture industry grows, attention is increasingly turning towards assisted reproductive technologies. In this study, we examined the impact of D-Ala6, Pro9-Net-mGnRH (LHRHa: 0.4 mL/kg) and two doses (1 and 10 μg/kg fish) of thyroxin (T4) administered through a single injection on oocyte maturation, spawning performance, sex steroid hormone levels, as well as the expression of genes related to steroidogenesis and follicle development (ZP2, Cyp19a1a and SF-1) in Rohu (Labeo rohita). The study found that untreated female Rohu did not spawn, while those treated with LHRHa and thyroxin ovulated and spawned across a hormonal gradient. The highest spawning success was observed with a thyroxin dosage of 10 µg/kg (no significant change with a dose of 1 μg/kg), and female latency period decreased with increasing dosage. Additionally, females treated with thyroxin exhibited significantly higher fecundity than other experimental groups. Treatment with LHRHa and two doses of thyroxin significantly increased the gonadal somatic index compared to the control and sham groups. Hormonal treatment also led to increased fertilization success, hatching rate, and larval survival. At 12 h post-injection, females treated with thyroxin exhibited a significant decline in estradiol levels and expression of Zp2, Cyp19a1a, and SF-1 compared to other experimental groups. Levels of DHP significantly increased across the hormonal gradient. Histological analyses supported a steroidogenic shift, where oocyte maturation was accelerated by hormone administration, particularly with both doses of thyroxin. In conclusion, the findings suggest that thyroxin is a recommended treatment for assisted reproduction of Rohu due to its ability to induce spawning, increase fecundity and improve larval survival.
Collapse
Affiliation(s)
- Ehsan Eslamizadeh
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Hadideh Mabudi
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | - Mojdeh Chelehmal Dezfulnejad
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran; Aquaculture Research Center, Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
3
|
Xu Y, Zhang Z, Wang R, Xue S, Ying Q, Jin L. Roles of estrogen and its receptors in polycystic ovary syndrome. Front Cell Dev Biol 2024; 12:1395331. [PMID: 38961865 PMCID: PMC11219844 DOI: 10.3389/fcell.2024.1395331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder characterized by abnormal steroid hormone levels in peripheral blood and poor-quality oocytes. In the ovary, androgen is produced by theca cells, and estrogen is produced by granulosa cells. Androgen is converted to estrogen in granulosa cells, with cytochrome P450 aromatase as the limiting enzyme during this process. Estrogen receptors (ER) include ER alpha, ER beta, and membrane receptor GPR30. Studies have demonstrated that the abnormal functions of estrogen and its receptors and estradiol synthesis-related enzymes are closely related to PCOS. In recent years, some estrogen-related drugs have made significant progress in clinical application for subfertility with PCOS, such as letrozole and clomiphene. This article will elaborate on the recent advances in PCOS caused by abnormal expression of estrogen and its receptors and the application of related targeted small molecule drugs in clinical research and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rongxiang Wang
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Songguo Xue
- Reproductive Medicine Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ruan Y, Li X, Wang X, Zhai G, Lou Q, Jin X, He J, Mei J, Xiao W, Gui J, Yin Z. New insights into the all-testis differentiation in zebrafish with compromised endogenous androgen and estrogen synthesis. PLoS Genet 2024; 20:e1011170. [PMID: 38451917 PMCID: PMC10919652 DOI: 10.1371/journal.pgen.1011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.
Collapse
Affiliation(s)
- Yonglin Ruan
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuehui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Wang
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wuhan Xiao
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jianfang Gui
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
5
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Mukherjee U, Das S, Ghosh S, Maitra S. Reproductive toxicity of bisphenol A, at environmentally relevant concentrations, on ovarian redox balance, maturational response, and intra-oocyte signalling events in Labeo bata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167415. [PMID: 37777122 DOI: 10.1016/j.scitotenv.2023.167415] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Bisphenol A (BPA) is a widely used plastic monomer that potentially interferes with ovarian neuroendocrine, endocrine, and autocrine/paracrine factors, causing reproductive dysfunction. However, the influence of BPA on redox balance, estrogen receptor (ER) expression vis-à-vis meiotic cell cycle progression, and intra-oocyte signalling events has not been extensively investigated. The present study examines the impact of BPA on reproductive toxicity in female Labeo bata (Order Cypriniformes, Family Cyprinidae), a freshwater teleost preferred as a food fish in the Indian subcontinent. Our results show that while ovarian weight (gonadosomatic index, GSI) and dynamics of follicular growth undergo pronounced changes during the annual reproductive cycle, chronic BPA exposure at environmentally relevant concentrations promotes follicular atresia concomitant with reduced GSI during the spawning phase, the highest response being observed due to low-dose (0.1 μg/L, 0.438 nM) BPA exposure in vivo. Furthermore, BPA perturbation of ovarian StAR expression and ERα/ERβ homeostasis corroborates with elevated oxidative stress in BPA-treated ovary, FG follicles, and follicular cells. A sharp increase in ROS accumulation and nitric oxide (NO) levels in BPA-treated full-grown (FG) follicles coupled with loss of redox balance, elevated follicular cell death, and activation of apoptotic markers (caspase -8, -9, -3, Bax) indicate poor oocyte health and reproductive toxicity. Importantly, maturational steroid (MIS, 17,20β-P)-induced cyclin B-p34cdc2 activation and elevated GVBD (germinal vesicle breakdown) response require protein kinase A (PKA) inhibition and participation of Mos/MAPK- and cdc25-mediated signalling events. While the adenylate cyclase activator forskolin (FK) abrogates, priming with a PKA inhibitor (H89) promotes the meiotic G2-M1 transition, confirming the role of PKA in meiotic cell cycle progression in this species. Furthermore, the negative influence of BPA priming on 17,20β-P-induced oocyte maturation involves elevated PKAc phosphorylation (activation) and significant alteration in Mos/MAPK signalling, indicating derailed meiotic maturational competence and disrupted oocyte quality.
Collapse
Affiliation(s)
- Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sriparna Das
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
7
|
Fernini M, Menad R, Belhocine M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Khammar F, Bonnet X, Exbrayat JM, Moudilou E. Seasonal variations of testis anatomy and of G-coupled oestrogen receptor 1 expression in Gerbillus gerbillus. Anat Histol Embryol 2023; 52:1016-1028. [PMID: 37661709 DOI: 10.1111/ahe.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The gerbil, Gerbillus gerbillus, a nocturnal desert rodent of northern Africa, exhibits a seasonal reproductive cycle with marked anatomical and behavioural shifts between breeding season and resting season. The aim of this study is to investigate key elements involved in these seasonal changes, specifically in males: the histology of the testis as well as the expression of the G-protein-coupled oestrogen receptor 1 (GPER1) in the testis. During the breeding season, the seminiferous tubules were full of spermatozoa, and their epithelium contained germinal cells embedded in Sertoli cells. Amidst tubules, well-developed Leydig cells were observed around blood vessels, with peritubular myoid cells providing structural and dynamic support to the tubules. GPER1 was largely expressed throughout the testis. Notably, Leydig cells, spermatogonia and spermatocytes showed strong immunohistochemical signals. Sertoli cells, spermatozoa and peritubular myoid cells were moderately stained. During the resting season, spermatogenesis was blocked at the spermatocyte stage, spermatids and spermatozoa were absent and the interstitial space was reduced. The weight of the testis decreased significantly. At this stage, GPER1 was found in Leydig cells, spermatocytes and peritubular myoid cells. Sertoli cells and spermatogonia were not marked. Overall, the testis of the gerbil, Gerbillus gerbillus, has undergone noticeable histological, cellular and weight changes between seasons. In addition, the seasonal expression pattern of GPER1, with pronounced differences between resting season and breeding season, indicates that this receptor is involved in the regulation of the reproductive cycle.
Collapse
Affiliation(s)
- Meriem Fernini
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Rafik Menad
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
| | - Mansouria Belhocine
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Lynda Lakabi
- Natural Resources Laboratory, University Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Souaâd Smaï
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Thérèse Gernigon-Spychalowicz
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Farida Khammar
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Mammal Ecophysiology, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| | - Elara Moudilou
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| |
Collapse
|
8
|
Jin M, Zhao L, Yang H, Zhao J, Ma H, Chen Y, Zhang J, Luo Y, Zhang Y, Liu J. A long non-coding RNA essential for early embryonic development improves somatic cell nuclear transfer somatic cell nuclear transfer efficiency in goats. Reproduction 2023; 166:285-297. [PMID: 37490350 PMCID: PMC10502959 DOI: 10.1530/rep-23-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In brief Early embryonic development in goats is a complex and an important process. This study identified a novel long non-coding RNA (lncRNA), lncRNA3720, that appears to affect early embryonic development in goats through histone variants. Abstract Although abundant lncRNAs have been found to be highly expressed in early embryos, the functions and mechanisms of most lncRNAs in regulating embryonic development remain unclear. This study was conducted to identify the key lncRNAs during embryonic genome activation (EGA) for promoting embryonic development after somatic cell nuclear transfer (SCNT) in goats. We screened and characterized lncRNAs from transcriptome data of in vitro-fertilized, two-cell (IVF-2c) and eight-cell embryos (IVF-8c) and eight-cell SCNT embryos (SCNT-8c). We obtained 12 differentially expressed lncRNAs that were highly expressed in IVF-8c embryos compared to IVF-2c and less expressed in SCNT-8c embryos. After target gene prediction, expression verification, and functional deletion experiments, we found that the expression level of lncRNA3720 affected the early embryonic development in goats. We cloned full-length lncRNA3720 and over-expressed it in goat fetal fibroblasts (GFFs). We identified histone variants by analyzing the transcriptome data from both GFFs and embryos. Gene annotation of the gene library and the literature search revealed that histone variants may have important roles in early embryo development, so we selected them as the potential target genes for lncRNA3720. Lastly, we compensated for the low expression of lncRNA3720 in SCNT embryos by microinjection and showed that the development rate and quality of SCNT embryos were significantly improved. We speculate that lncRNA3720 is a key promoter of embryonic development in goats by interacting with histone variants.
Collapse
Affiliation(s)
- Miaomiao Jin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lu Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yan Luo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Cruces MP, Pimentel E, Vidal LM, Jiménez E, Suárez H, Camps E, Campos-González E. Genotoxic action of bifenthrin nanoparticles and its effect on the development, productivity, and behavior of Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:661-677. [PMID: 37477220 DOI: 10.1080/15287394.2023.2234408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Rapid development of nanotechnology, particularly nanoparticles of pesticides, has facilitated the transformation of traditional agriculture. However, testing their effectiveness is essential for avoiding any environmental or adverse human health risk attributed to nanoparticle-based formulations, especially insecticides. Recently, organic nanoparticles of bifenthrin, a pyrethroid insecticide, were successfully synthesized by laser ablation of solids in liquid technique, with the most probable size of 5 nm. The aim of the present study was to examine the effects of acute exposure to bifenthrin (BIF) or bifenthrin nanoparticles (BIFNP) on larval-adult viability, developmental time, olfactory capacity, longevity, productivity defined as the number of eggs per couple, and genotoxicity in Drosophila melanogaster. Data demonstrated that BIFNP produced a marked delay in developmental time, significant reduction in viability and olfactory ability compared to BIF. No marked differences were detected between BIF and BIFNP on longevity and productivity. Genotoxicity findings indicated that only BIF, at longer exposure duration increased genetic damage.
Collapse
Affiliation(s)
- Martha P Cruces
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Emilio Pimentel
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Luz M Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Elizabeth Jiménez
- Facultad de Ciencias, Universidad Autónoma Del Estado de México, Toluca, México
| | - Hugo Suárez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Camps
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| | - Enrique Campos-González
- CONACYT-Departamento de física, Instituto Nacional de Investigaciones Nucleares (ININ), Ocoyoacac, México
| |
Collapse
|
10
|
Bowers JM, Li CY, Parker CG, Westbrook ME, Juntti SA. Pheromone Perception in Fish: Mechanisms and Modulation by Internal Status. Integr Comp Biol 2023; 63:407-427. [PMID: 37263784 PMCID: PMC10445421 DOI: 10.1093/icb/icad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.
Collapse
Affiliation(s)
- Jessica M Bowers
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Cheng-Yu Li
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Coltan G Parker
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Molly E Westbrook
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| |
Collapse
|
11
|
Morshead ML, Jensen KM, Ankley GT, Vliet S, LaLone CA, Aller AV, Watanabe KH, Villeneuve DL. Putative adverse outcome pathway development based on physiological responses of female fathead minnows to model estrogen versus androgen receptor agonists. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106607. [PMID: 37354817 PMCID: PMC10910347 DOI: 10.1016/j.aquatox.2023.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Several adverse outcome pathways (AOPs) have linked molecular initiating events like aromatase inhibition, androgen receptor (AR) agonism, and estrogen receptor (ER) antagonism to reproductive impairment in adult fish. Estrogen receptor agonists can also cause adverse reproductive effects, however, the early key events (KEs) in an AOP leading to this are mostly unknown. The primary aim of this study was to develop hypotheses regarding the potential mechanisms through which exposure to ER agonists might lead to reproductive impairment in female fish. Mature fathead minnows were exposed to 1 or 10 ng 17α-ethynylestradiol (EE2)/L or 10 or 100 µg bisphenol A (BPA)/L for 14 d. The response to EE2 and BPA was contrasted with the effects of 500 ng/L of 17β-trenbolone (TRB), an AR agonist, as well as TRB combined with the low and high concentrations of EE2 or BPA tested individually. Exposure to 10 ng EE2/L, 100 µg BPA/L, TRB, or the various mixtures with TRB caused significant decreases in plasma concentrations of 17β-estradiol. Exposure to TRB alone caused a significant reduction in plasma vitellogenin (VTG), but VTG was unaffected or even increased in females exposed to EE2 or BPA alone or, in most cases, in mixtures with TRB. Over the course of the 14-d exposure, the only treatments that clearly did not affect egg production were 1 ng EE2/L and 10 µg BPA/L. Based on these results and knowledge of hypothalamic-pituitary-gonadal axis function, we hypothesize an AOP whereby decreased production of maturation-inducing steroid leading to impaired oocyte maturation and ovulation, possibly due to negative feedback or direct inhibitory effects of membrane ER activation, could be responsible for causing adverse reproductive impacts in female fish exposed to ER agonists.
Collapse
Affiliation(s)
- Mackenzie L Morshead
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M Jensen
- US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Gerald T Ankley
- US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Sara Vliet
- US EPA, Scientific Computing and Data Curation Division, Duluth, MN, USA
| | - Carlie A LaLone
- US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Karen H Watanabe
- Arizona State University, School of Mathematical and Natural Sciences, Phoenix, AZ, USA
| | | |
Collapse
|
12
|
Wen Y, Zhan J, Li C, Li P, Wang C, Wu J, Xu Y, Zhang Y, Zhou Y, Li E, Nie H, Wu X. G-protein couple receptor (GPER1) plays an important role during ovarian folliculogenesis and early development of the Chinese Alligator. Anim Reprod Sci 2023; 255:107295. [PMID: 37422950 DOI: 10.1016/j.anireprosci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The critical role of the G protein-coupled receptor 1 (GPER1), a member of the seven-transmembrane G protein-coupled receptor family, in the functional regulation of oocytes accumulated abundant theories in the early research on model animals. However, the full-length cDNA encoding GPER1 and its role in the folliculogenesis has not been illustrated in crocodilians. 0.5, 3, and 12 months old Alligator sinensis cDNA samples were used to clone the full-length cDNA encoding GPER1. Immunolocalization and quantitative analysis were performed using Immunofluorescence technique, RT-PCR and Western blot. Simultaneously, studies on GPER1's promoter deletion and cis-acting transcriptional regulation mechanism were conducted. Immunolocalization staining for the germline marker DDX4 and GPER1 demonstrated that DDX4-positive oocytes were clustered tightly together within the nests, whereas scarcely any detectable GPER1 was present in the oocytes nest in Stage I. After that, occasionally GPER1-positive immunosignal was observed in oocytes and somatic cells additional with the primordial follicles, and it was mainly located at the granulosa cells or thecal cells within the early PFs in the Stage III. The single mutation of the putative SP1 motif, double mutating of Ets/SP1 and SP1/CRE binding sites all depressed promoter activities. This result will help to investigate the role of GPER1 in the early folliculogenesis of A. sinensis.
Collapse
Affiliation(s)
- Yue Wen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jixiang Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Changcheng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Pengfei Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Chong Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jie Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yunlu Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yuqian Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Haitao Nie
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| |
Collapse
|
13
|
Aickareth J, Hawwar M, Sanchez N, Gnanasekaran R, Zhang J. Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions. MEMBRANES 2023; 13:membranes13030260. [PMID: 36984647 PMCID: PMC10056622 DOI: 10.3390/membranes13030260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors.
Collapse
|
14
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
15
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
16
|
Casarini L, Simoni M. Membrane estrogen receptor and follicle-stimulating hormone receptor. VITAMINS AND HORMONES 2022; 123:555-585. [PMID: 37717998 DOI: 10.1016/bs.vh.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Follicle-stimulating hormone (FSH) and estrogens are fundamental to support reproductive functions. Beside the well-known FSH membrane receptor (FSHR), a G protein-coupled estrogen receptor (GPER) has been found, over the last two decades, in several tissues. It may trigger rapid, non-genomic responses of estradiol, activating proliferative and survival stimuli. The two receptors were co-characterized in the ovary, where they modulate different intracellular signaling cascades, according to the expression level and developmental stage of ovarian follicles. Moreover, they may physically interact to form heteromeric assemblies, suggestive of a new mode of action to regulate FSH-specific signals, and likely determining the follicular fate between atresia and dominance. The knowledge of FSH and estrogen membrane receptors provides a new, deeper level of comprehension of human reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Simoni
- Unit of Endocrinology, Dept. Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Schönemann AM, Beiras R, Diz AP. Widespread alterations upon exposure to the estrogenic endocrine disruptor ethinyl estradiol in the liver proteome of the marine male fish Cyprinodon variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106189. [PMID: 35537357 DOI: 10.1016/j.aquatox.2022.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Quantitative proteomic changes in the liver of adult males of Sheepshead minnow (Cyprinodon variegatus) upon exposure to ethinyl estradiol (EE2) were assessed to provide an advanced understanding of the metabolic pathways affected by estrogenic endocrine disruption in marine fish, and to identify potential novel molecular biomarkers for the environmental exposure to estrogens. From a total of 3188 identified protein groups (hereafter proteins), 463 showed a statistically significant difference in their abundance between EE2 treatment and solvent control samples. The most affected biological processes upon EE2 exposure were related to ribosomal biogenesis, protein synthesis and transport of nascent proteins to endoplasmic reticulum, and nuclear mRNA catabolism. Within the group of upregulated proteins, a subset of 14 proteins, involved in egg production (Vitellogenin, Zona Pellucida), peptidase activity (Cathepsine E, peptidase S1, Serine/threonine-protein kinase PRP4 homolog, Isoaspartyl peptidase and Whey acidic protein), and nucleic acid binding (Poly [ADP-ribose] polymerase 14) were significantly upregulated with fold-change values higher than 3. In contrast, Collagen alpha-2, involved in the process of response to steroid hormones, among others, was significantly downregulated (fold change = 0.2). This pattern of alterations in the liver proteome of adult males of C. variegatus can be used to identify promising novel biomarkers for the characterization of exposure of marine fish to estrogens. The Whey acidic protein-like showed the highest upregulation in EE2-exposed individuals (21-fold over controls), suggesting the utility of abundance levels of this protein in male liver as a novel biomarker of xenoestrogen exposure.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
| |
Collapse
|
19
|
Thomas P. Membrane Progesterone Receptors (mPRs, PAQRs): Review of Structural and Signaling Characteristics. Cells 2022; 11:cells11111785. [PMID: 35681480 PMCID: PMC9179843 DOI: 10.3390/cells11111785] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The role of membrane progesterone receptors (mPRs), which belong to the progestin and adipoQ receptor (PAQR) family, in mediating rapid, nongenomic (non-classical) progestogen actions has been extensively studied since their identification 20 years ago. Although the mPRs have been implicated in progestogen regulation of numerous reproductive and non-reproductive functions in vertebrates, several critical aspects of their structure and signaling functions have been unresolved until recently and remain the subject of considerable debate. This paper briefly reviews recent developments in our understanding of the structure and functional characteristics of mPRs. The proposed membrane topology of mPRα, the structure of its ligand-binding site, and the binding affinities of steroids were predicted from homology modeling based on the structures of other PAQRs, adiponectin receptors, and confirmed by mutational analysis and ligand-binding assays. Extensive data demonstrating that mPR-dependent progestogen regulation of intracellular signaling through mPRs is mediated by activation of G proteins are reviewed. Close association of mPRα with progesterone membrane receptor component 1 (PGRMC1), its role as an adaptor protein to mediate cell-surface expression of mPRα and mPRα-dependent progestogen signaling has been demonstrated in several vertebrate models. In addition, evidence is presented that mPRs can regulate the activity of other hormone receptors.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA
| |
Collapse
|
20
|
Melatonin Signaling Pathways Implicated in Metabolic Processes in Human Granulosa Cells (KGN). Int J Mol Sci 2022; 23:ijms23062988. [PMID: 35328408 PMCID: PMC8950389 DOI: 10.3390/ijms23062988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Female reproduction depends on the metabolic status, especially during the period of folliculogenesis. Even though it is believed that melatonin can improve oocyte competence, there is still limited knowledge of how it can modulate metabolic processes during folliculogenesis and which signaling pathways are involved in regulating gene expression. To investigate the effects of melatonin on metabolic signals during the antral stage of follicular development, human granulosa-like tumor cells (KGN) were treated with melatonin or forskolin, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05), 1009 and 922 genes were identified as differentially expressed in response to melatonin and forskolin, respectively. Analysis of major upstream regulators suggested that melatonin may activate PKB/mTOR signaling pathways to program the metabolism of KGN cells to support slower growth and differentiation and to prevent follicular atresia. Similarly, PKA activation through stimulation of cAMP synthesis with FSK seemed to exert the same effects as melatonin in reducing follicular growth and regulating differentiation. This study suggests that melatonin may act through PKA and PKB simultaneously in human granulosa cells to prevent follicular atresia and early luteinization at the antral stage.
Collapse
|
21
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
22
|
Abstract
Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors. Steroids can also bind integral membrane proteins, such as the G protein-coupled estrogen receptor. Membrane estrogen and progestin receptors have been cloned and characterized in vitro and influence the development and function of many organ systems. Membrane androgen receptors were cloned and characterized in vitro, but their function as androgen receptors in vivo is unresolved. We review the identity and function of membrane proteins that bind estrogens, progestins, and androgens. We discuss evidence that membrane glucocorticoid and mineralocorticoid receptors exist, and whether glucocorticoid and mineralocorticoid nuclear receptors act at the cell membrane. In many cases, integral membrane steroid receptors act independently of nuclear steroid receptors, even though they may share a ligand.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Daniel A Gorelick, PhD, One Baylor Plaza, Alkek Building N1317.07, Houston, TX, 77030-3411, USA.
| |
Collapse
|
23
|
Meng F, Zhang L, Zhang W. Two forms of G protein-coupled estrogen receptor 1 in the ricefield eel: Expression and functional characterization in relation to ovarian follicle development. Gen Comp Endocrinol 2021; 304:113720. [PMID: 33508329 DOI: 10.1016/j.ygcen.2021.113720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/01/2021] [Accepted: 01/15/2021] [Indexed: 01/02/2023]
Abstract
G protein-coupled estrogen receptor 1 (Gper1) mediates many rapid, non-genomic estrogenic effects in vertebrates, and plays an important reproductive role in the maintenance of oocyte meiotic arrest in teleost fishes. In the present study, two genes for Gper1, namely gper1a and gper1b, were identified in the genome of a teleost fish, the ricefield eel (Monopterus albus) through Blast and syntenic analysis. Although genes neighboring gper1b are of high synteny, ricefield eel Gper1b shares very low (around 15) percent identities with Gper1 homologues of other vertebrates. In transiently transfected HEK293T cells, both ricefield eel Gper1a and Gper1b responded to estradiol (E2) and estradiol-BSA (E2-BSA) challenges by activating pCRE but not pSRE luciferase reporters, which were abolished by G-15 and NF-449. The production of cAMP was also increased in HEK293T cells transfected with Gper1a or Gper1b expression construct after E2-BSA challenge, which was also abolished by G-15. Surprisingly, both Gper1a and Gper1b showed ligand-independent effects on pCRE luciferase reporters at higher transfected doses (10 ng). RT-PCR analysis showed that the transcript of gper1a is broadly expressed in tissues of both female and male fish while the expression of gper1b in tissues demonstrates obvious sexual dimorphism, with transcripts detected in all tissues examined in female whereas they were barely detectable in some peripheral tissues of male including the testis. In the ovary, the expression of both gper1a and gper1b was detected in the oocyte but not the follicular layer, with the mRNA levels increased during vitellogenesis, peaked at the late vitellogenic stage, and decreased precipitously at the full-grown and germinal vesicle breakdown (GVBD) stages. Moreover, E2 and E2-BSA induced cAMP production in the in vitro incubated follicles at mid-vitellogenic stage but not the GVBD stage, and the induction could be completely abolished by G-15, a Gper1 inhibitor. Taken together, these results suggest that both Gper1a and Gper1b may play important roles in the development and maturation of ovarian follicles in ricefield eels, possibly through inhibition of oocyte meiotic resumption.
Collapse
Affiliation(s)
- Feiyan Meng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China; Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
24
|
Cao M, Wang Y, Yang F, Li J, Qin X. Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway. J Pineal Res 2021; 70:e12718. [PMID: 33503294 DOI: 10.1111/jpi.12718] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Glyphosate-based herbicides (GBHs) are a group of widely used broad-spectrum agricultural pesticides. Due to the recalcitrance of GBH, it has been found in food and environment as a contaminant, posing a threat to public health. The health risks associated with GBH have been indicated by reporting acute toxicity data (an acute exposure of GBH at a 0.5% dose), which primarily discuss toxicity in relation to accidental high-rate exposure. Currently, there is little information regarding the toxicity of GBH at environmentally relevant levels. In this study, we used mature mouse oocytes to study the toxic effects of low-dose GBH exposure in vitro (0.00001%-0.00025%) and in vivo (0.0005%, orally administered through daily drinking water) during meiotic maturation. GBH exposure led to meiotic maturation failure with spindle defects and chromosome misalignment. In addition, GBH treatment severely reduced sperm-binding ability and disrupted early embryo cleavage. Moreover, GBH exposure significantly increased the reactive oxygen species (ROS) levels and apoptotic rates. Evidence indicates that such effects in GBH-exposed oocytes are likely due to overexpression of the G-protein estrogen receptor (GPER/GPR30). Remarkably, we found that melatonin administration elicited significant protection against GBH-induced oocyte deterioration via preserving the expression of GPR30, along with activation of its downstream signaling event (pERK/ERK). Taken together, these results revealed that low-dose glyphosate has a certain adverse effect on oocyte maturation and early embryo cleavage, and highlight the protective roles of melatonin.
Collapse
Affiliation(s)
- Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Wang
- Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fan Yang
- Bureau of Agriculture and Rural Affairs of Hanting District, Weifang, China
| | - Jizhou Li
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xunsi Qin
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Katti PA, Goundadkar BB. Azole pharmaceuticals induce germinal vesicle breakdown (GVBD) in preovulatory oocytes of zebrafish (Danio rerio): an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3694-3702. [PMID: 32929672 DOI: 10.1007/s11356-020-10719-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Azoles, the antifungal pharmaceuticals are emerging as a new class of water contaminants with a potential to influence the endocrine physiology of surrounding aquatic fauna. In this study, we made an attempt to assess the relative efficacy of widely used azoles belonging to two subclasses, i.e., (i) triazoles (letrozole, fluconazole, itraconazole) and (ii) imidazoles (ketaconazole, ornidazole, clotrimazole), on the onset of germinal vesicle breakdown (GVBD) (an initial step in the final maturation of oocytes) in fully grown preovulatory oocytes of zebrafish (Danio rerio) using an in vitro model. Oocytes (> 650 μm) isolated manually from gravid ovaries were exposed to (i) 0.01 and/or 0.1, 1.0, 5.0, 10, 15, and 20 ng/ml and (ii) 1.0, 2.0, 3.0, 4.0, and 5.0 μg/ml of drugs. Zebrafish Ringer's solution (vehicle) and 0.01% ethyl alcohol (solvent) were used as negative controls. 17α, 20 β-Dihydroxy-4-pregnen-3-one (17α-DHP) and diethylstibestrol (DES), potent inducers of GVBD in fish, were used as positive controls. GVBD was scored hourly from 0-6 h. In negative controls, there were no indications of GVBD even at the 6th hour, while in 17α-DHP- and DES-exposed oocytes, GVBD was initiated from the 1st hour, reaching 80% and 76% respectively at the 6th hour. Among azoles, letrozole induced GVBD in 73-85%, fluconazole (30-33%), itraconazole (23-33%), ketaconazole (46-53%), ornidazole (36-40%), and clotrimazole (30-33%) of oocytes. These results suggest that azole pharmaceuticals induce GVBD in fish oocytes that may be attributed to their variable degree of cytochrome P450 enzyme inhibitor activity.
Collapse
|
26
|
Wu XJ, Williams MJ, Kew KA, Converse A, Thomas P, Zhu Y. Reduced Vitellogenesis and Female Fertility in Gper Knockout Zebrafish. Front Endocrinol (Lausanne) 2021; 12:637691. [PMID: 33790865 PMCID: PMC8006473 DOI: 10.3389/fendo.2021.637691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
The role G-protein coupled estrogen receptor (GPER) plays in vertebrate reproduction remains controversial. To investigate GPER's reproductive role, we generated a gper zebrafish mutant line (gper-/- ) using TALENs. Gper mutant females exhibited reduced fertility with a 40.85% decrease in embryo production which was associated with a significant decrease in the number of Stage V (730-750 μm) ovulated oocytes. Correspondingly, the number of early vitellogenic follicles (Stage III, 400-450 µm) in gper-/- ovaries was greater than that in wildtypes (wt), suggesting that subsequent follicle development was retarded in the gper-/- fish. Moreover, plasma vitellogenin levels were decreased in gper-/- females, and epidermal growth factor receptor (Egfr) expression was lower in Stage III vitellogenic oocytes than in wt counterparts. However, hepatic nuclear estrogen receptor levels were not altered, and estrogen levels were elevated in ovarian follicles. These results suggest that Gper is involved in the control of ovarian follicle development via regulation of vitellogenesis and Egfr expression in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | | | - Kimberly Ann Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Aubrey Converse
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| |
Collapse
|
27
|
Miyaoku K, Ogino Y, Lange A, Ono A, Kobayashi T, Ihara M, Tanaka H, Toyota K, Akashi H, Yamagishi G, Sato T, Tyler CR, Iguchi T, Miyagawa S. Characterization of G protein-coupled estrogen receptors in Japanese medaka, Oryzias latipes. J Appl Toxicol 2020; 41:1390-1399. [PMID: 33336402 DOI: 10.1002/jat.4130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/06/2022]
Abstract
The G protein-coupled estrogen receptor 1 (Gper1) is a membrane-bound estrogen receptor that mediates non-genomic action of estrogens. A Gper1-mediating pathway has been implicated in reproductive activities in fish, including oocyte growth, but Gper1 has been characterized in only a very limited number of fish species. In this study, we cloned and characterized two genes encoding medaka (Oryzias latipes) Gper1s, namely, Gper1a and Gper1b, and phylogenic and synteny analyses suggest that these genes originate through a teleost-specific whole genome duplication event. We found that Gper1a induced phosphorylation of mitogen-activated protein kinase (MAPK) in 293T cells transfected with medaka Gper1s on exposure to the natural estrogen, 17β-estradiol (E2) and a synthetic Gper1 agonist (G-1), and treatment with both E2 and G-1 also decreased the rate of spontaneous maturation in medaka oocytes. These findings show that the processes for oocyte growth and maturation are sensitive to estrogens and are possibly mediated through Gper1a in medaka. We also show that 17α-ethinylestradiol (EE2), one of the most potent estrogenic endocrine-disrupting chemicals, and bisphenol A (BPA, a weak environmental estrogen) augmented phosphorylation of MAPK through medaka Gper1s in 293T cells. Interestingly, however, treatment with EE2 or BPA did not attenuate maturation of medaka oocytes. Our findings support that Gper1-mediated effects on oocytes are conserved among fish species, but effects of estrogenic endocrine-disrupting chemicals on oocytes acting through Gper1 may be divergent among fish species.
Collapse
Affiliation(s)
- Kaori Miyaoku
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yukiko Ogino
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ayaka Ono
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tohru Kobayashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Masaru Ihara
- Research Centre for Environmental Quality Management, Kyoto University, Ohtsu, Japan
| | - Hiroaki Tanaka
- Research Centre for Environmental Quality Management, Kyoto University, Ohtsu, Japan
| | - Kenji Toyota
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Japan
| | - Hiroshi Akashi
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Genki Yamagishi
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Shinichi Miyagawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Division of Biological Environment Innovation, Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
28
|
Jeng SR, Thomas P, Pang Y, Dufour S, Lin CJ, Yueh WS, Chang CF. Elevated estradiol-17β levels inhibit final oocyte maturation via G protein-coupled estrogen receptor (Gper) in yellowfin porgy, Acanthopagrus latus. Gen Comp Endocrinol 2020; 299:113587. [PMID: 32827512 DOI: 10.1016/j.ygcen.2020.113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Yellowfin porgy a protandrous teleost, exhibits asynchronous oocyte development and multiple spawning. Seasonal profiles of plasma estradiol-17β (E2) levels showed a peak in three-year-old females during the spawning season, when batches of fully-grown oocytes undergo final oocyte maturation (FOM). Because E2 has been shown to inhibit FOM via the G protein-coupled estrogen receptor (Gper) in several teleost species, we investigated the role of this "paradoxical" increase in E2 during FOM in yellowfin porgy. In vivo treatment with a GnRH-agonist stimulated germinal vesicle breakdown (GVBD) and increased E2 plasma levels, and ovarian cyp19a1a transcripts, confirming the increase in E2 production at the time of FOM. Ovarian transcripts of gper peaked at the time of FOM, indicating an increase in ovarian responsiveness to Gper-mediated E2 effects. In vitro, E2 and the Gper agonist, G-1, inhibited the stimulatory effect of maturation-inducing steroids (MIS) on GVBD, while an aromatase inhibitor enhanced the MIS effect, in agreement with a physiological inhibitory role of E2 on FOM via Gper. Immunohistological studies showed that the Gper protein was specifically located on the oocyte plasma membrane. Ovarian membranes displayed high-affinity and limited-capacity specific [3H]-E2 receptor binding which was displaced by G-1, characteristic of Gper. Expression of gper increased at the time of FOM in mid-vitellogenic oocytes, but not in larger oocytes undergoing GVBD. These results suggest increases in both E2 production and E2 responsiveness via Gper upregulation in mid-vitellogenic oocytes, may maintain meiotic arrest in this oocyte stage class during the period when full-grown oocytes are undergoing FOM. This study indicates a critical involvement of E2 in the control of asynchronous oocyte maturation and the multiple spawning pattern in Sparidae.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
29
|
Lu H, Zhao C, Zhu B, Zhang Z, Ge W. Loss of Inhibin Advances Follicle Activation and Female Puberty Onset but Blocks Oocyte Maturation in Zebrafish. Endocrinology 2020; 161:5921142. [PMID: 33045050 DOI: 10.1210/endocr/bqaa184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Inhibin was first characterized in mammals as a gonadal dimeric protein that inhibited pituitary follicle-stimulating hormone (FSH) secretion. As in mammals, the inhibin-specific α subunit (INHA/Inha/inha) has also been characterized in teleosts; however, its functions and physiological importance in fish reproduction remain unknown. Using CRISPR/Cas9 method, we generated an inha-deficient zebrafish line and analyzed its reproductive performance. As expected, pituitary expression of fshb increased significantly in both the young and the adult inha mutant. The expression of lhb also increased in the mutant, but only in sexually mature adults. Interestingly, the expression of activin βA (inhbaa) increased significantly in both the ovary and the testis of inha mutant, and the expression of ovarian aromatase (cyp19a1a) also increased dramatically in the mutant ovary. The juvenile female mutant showed clear signs of early follicle activation or precocious puberty onset. However, the adult female mutant was infertile with follicles arrested at the full-grown stage without final oocyte maturation and ovulation. Although follicle growth was normal overall in the mutant, the size and distribution of yolk granules in oocytes were distinct and some follicles showed granulosa cell hypertrophy. In contrast to females, inha-null males showed normal spermatogenesis and fertility. As reported in mammals, we also found sporadic tumor formation in inha mutants. Taken together, our study not only confirmed some conserved roles of inhibin across vertebrates, such as inhibition of FSH biosynthesis and tumor formation, but also revealed novel aspects of inhibin functions such as disruption of folliculogenesis and female infertility but no obvious involvement in spermatogenesis in fish.
Collapse
Affiliation(s)
- Huijie Lu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Zhao
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
30
|
Thomson-Laing G, Damsteegt EL, Nagata J, Ijiri S, Adachi S, Todo T, Hiramatsu N, Lokman PM. Synergistic effects of estradiol and 11-ketotestosterone on vitellogenin physiology in the shortfinned eel (Anguilla australis). Biol Reprod 2020; 100:1319-1332. [PMID: 30657861 DOI: 10.1093/biolre/ioz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 11/14/2022] Open
Abstract
Estradiol-17β (E2) and 11-ketotestosterone (11KT) have been implicated in vitellogenesis and in regulating expression of the follicle-stimulating hormone receptor (fshr), respectively. To override the captivity-induced reproductive block in shortfinned eel, Anguilla australis, we hypothesized that in combination, 11KT and E2 would stimulate ovarian uptake of vitellogenin (Vtg). Early pubertal eels received hormone implants containing varying concentrations of E2 (0, 0.2, 2, 5 mg) with or without 11KT (1 mg). Vtg levels were determined in plasma, liver, and ovarian tissues by histological examination, qPCR, immunoblotting, or single radial immunodiffusion. The expression of gonadotropin-beta subunits and gonadotropin receptors in the pituitary and ovary, respectively, were analyzed to determine mechanisms by which steroid effects may be exerted. When administered alone, E2 increased hepatic production and plasma levels of Vtg. In contrast, 11KT decreased plasma levels of Vtg, seemingly reducing its production. Neither 11KT nor E2 could induce uptake of Vtg into oocytes, although E2 treatment appeared necessary for uptake to occur. This was the case despite 11KT dramatically increasing both oocyte size and fshr mRNA levels. Astonishingly, the uptake of Vtg was successfully induced by co-treatment with 11KT and E2, suggesting that 11KT might facilitate the incorporation of Vtg into the developing oocyte. These results highlight the potential of sex steroid co-treatment, an approach aimed at mimicking oogenesis in wild eels, to induce vitellogenesis, specifically ovarian yolk deposition, even in the absence of exogenous gonadotropin treatment.
Collapse
Affiliation(s)
| | - Erin L Damsteegt
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jun Nagata
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| | - Shinji Adachi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| | - Takashi Todo
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| | - Naoshi Hiramatsu
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, Japan
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
32
|
Martyniuk CJ, Feswick A, Munkittrick KR, Dreier DA, Denslow ND. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. Gen Comp Endocrinol 2020; 286:113325. [PMID: 31733209 PMCID: PMC6961817 DOI: 10.1016/j.ygcen.2019.113325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
Abstract
In aquatic toxicology, perhaps no pharmaceutical has been investigated more intensely than 17alpha-ethinylestradiol (EE2), the active ingredient of the birth control pill. At the turn of the century, the fields of comparative endocrinology and endocrine disruption research witnessed the emergence of omics technologies, which were rapidly adapted to characterize potential hazards associated with exposures to environmental estrogens, such as EE2. Since then, significant advances have been made by the scientific community, and as a result, much has been learned about estrogen receptor signaling in fish from environmental xenoestrogens. Vitellogenin, the egg yolk precursor protein, was identified as a major estrogen-responsive gene, establishing itself as the premier biomarker for estrogenic exposures. Omics studies have identified a plethora of estrogen responsive genes, contributing to a wealth of knowledge on estrogen-mediated regulatory networks in teleosts. There have been ~40 studies that report on transcriptome responses to EE2 in a variety of fish species (e.g., zebrafish, fathead minnows, rainbow trout, pipefish, mummichog, stickleback, cod, and others). Data on the liver and testis transcriptomes dominate in the literature and have been the subject of many EE2 studies, yet there remain knowledge gaps for other tissues, such as the spleen, kidney, and pituitary. Inter-laboratory genomics studies have revealed transcriptional networks altered by EE2 treatment in the liver; networks related to amino acid activation and protein folding are increased by EE2 while those related to xenobiotic metabolism, immune system, circulation, and triglyceride storage are suppressed. EE2-responsive networks in other tissues are not as comprehensively defined which is a knowledge gap as regulated networks are expected to be tissue-specific. On the horizon, omics studies for estrogen-mediated effects in fish include: (1) Establishing conceptual frameworks for incorporating estrogen-responsive networks into environmental monitoring programs; (2) Leveraging in vitro and computational toxicology approaches to identify chemicals associated with estrogen receptor-mediated effects in fish (e.g., male vitellogenin production); (3) Discovering new tissue-specific estrogen receptor signaling pathways in fish; and (4) Developing quantitative adverse outcome pathway predictive models for estrogen signaling. As we look ahead, research into EE2 over the past several decades can serve as a template for the array of hormones and endocrine active substances yet to be fully characterized or discovered.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, USA; Canadian Rivers Institute, Canada.
| | - April Feswick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Canadian Rivers Institute, Canada
| | - Kelly R Munkittrick
- Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Canadian Rivers Institute, Canada
| | - David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; University of Florida Genetics Institute, USA
| |
Collapse
|
33
|
Brantley N, Lessman CA. In vivo assessment of gonad status, secondary sex characteristics and spawning in transparent Casper zebrafish. Mech Dev 2019; 160:103582. [PMID: 31634535 DOI: 10.1016/j.mod.2019.103582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Important aspects of vertebrate reproduction, such as gametogenesis, involve changes in organs found deep internally and thus not easily studied directly in most living vertebrates due to obscuring pigment and overlying tissues. Transparent lines of zebrafish, especially the Casper double mutant, allow direct observation and analysis of reproductive events in the gonads in vivo. The natural production of fertilized eggs in zebrafish is a complex process involving oogenesis, spermatogenesis, mating behavior, endocrine and neurological processes with inputs from the environment including light, temperature and nutrition. While these factors play important roles, the hypothalamic-pituitary-gonadal axis (HPGA) is central in the regulation of embryo output. Endocrine disrupting compounds (EDCs) include a variety of pollutants often present in the environment. EDCs may have direct effects on the HPGA or indirect effects through toxic action on supporting organs such as the liver or kidney. Estrogenic compounds such as diethylstilbestrol (DES) have been reported to affect reproduction in a variety of species including man. In this study, the effects of DES on reproduction were determined in a novel way by using transparent Casper zebrafish that allow direct visualization of gonad status over time. Changes in gonad status with DES treatment were correlated with effects on secondary sex characteristics (i.e., genital vent size and breeding tubercles) spawning and embryo production. The results suggest that the Casper zebrafish is a useful model for studying dynamics of reproductive events in vertebrate gonads in vivo and for determining effects of EDCs on zebrafish reproduction.
Collapse
Affiliation(s)
- Nikki Brantley
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America
| | - Charles A Lessman
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38152, United States of America.
| |
Collapse
|
34
|
Tang L, Chen J, Ye Z, Zhao M, Meng Z, Lin H, Li S, Zhang Y. Transcriptomic Analysis Revealed the Regulatory Mechanisms of Oocyte Maturation and Hydration in Orange-Spotted Grouper (Epinephelus coioides). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:537-549. [PMID: 31129797 DOI: 10.1007/s10126-019-09902-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Oocyte maturation and hydration are regulated by a complex interplay of various hormones and local factors. We have investigated the morphological changes of follicles and serum steroid levels during the HCG (human choionic gonadotophin)-induced oocyte maturation in the orange-spotted grouper. For the first time, a large-scale transcriptomic analysis of follicles during the maturation has been conducted in a fish species which produce pelagic oocytes. Eight cDNA libraries of follicle samples, from full-grown immature follicles to mature follicles, were constructed. A total of 402,530,284 high-quality clean reads were obtained after filtering, 79.66% of which perfectly mapped to the orange-spotted grouper genome. Real-time PCR results of 12 representative genes related to oocyte maturation and hydration verified the reliability of the RNA-seq data. A large number of genes related to oocyte maturation and hydration were identified in the transcriptome dataset. And the transcriptomic analysis revealed the dynamic changes of the steroid synthesis pathway and the pathway of hydration during oocyte maturation. The present study will facilitate future study on the oocyte maturation and hydration in the orange-spotted grouper and other marine pelagic egg spawner.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
35
|
Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: An overview. Gen Comp Endocrinol 2019; 279:35-44. [PMID: 30244056 DOI: 10.1016/j.ygcen.2018.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
36
|
Milon A, Kaczmarczyk M, Pawlicki P, Bilinska B, Duliban M, Gorowska-Wojtowicz E, Tworzydlo W, Kotula-Balak M. Do estrogens regulate lipid status in testicular steroidogenic Leydig cell? Acta Histochem 2019; 121:611-618. [PMID: 31126612 DOI: 10.1016/j.acthis.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
In this study mouse Leydig cell (MA-10) were treated with G-protein coupled membrane estrogen receptor antagonist (G-15; 10 nM). Cells were analyzed by Western blotting for expression of estrogen-related receptors (ERRα, β and γ), steroidogenic markers (lutropin receptor; LHR and 3β-hydroxysteroid dehydrogenase; 3β-HSD) and lipid droplet markers (perilipin; PLIN and microtubule-associated protein 1 A/1B-light chain 3; LC3). Concomitantly, microscopic analyses by light microscope (immunofluorescent staining for lipid droplets, PLIN and LC3) as well as by electron microscope (for lipid droplet ultrastructure) were utilized. For analysis of cholesterol content, cAMP level and progesterone secretion, G-15, estrogen receptor (ER) antagonist (ICI 182,780; 10 μM), 17β-estradiol (10 mM) and, bisphenol A (BPA; 10 nM) were used alone or in combinations. We revealed no changes in ERRs expression but alterations in ERRβ and γ localization in G-15-treated cells when compared to control. Partial translocation of ERRβ and γ from the cell nucleus to cytoplasm was observed. Decreased expression of LHR, 3β-HSD, PLIN and LC3 was detected. Moreover, in treated cells large lipid droplets and differences in their distribution were found. Very strong signal of co-localization for PLIN and LC3 was found in treated cells when compared to control. In ultrastructure of treated cells, degenerating lipid droplets and double membrane indicating on presence of lipophagosome were observed. We found, that only (i) BPA and G-15 did not effect on cholesterol content, (ii) BPA, G-15 and ICI did not effect on cAMP level and (iii) BPA, ICI alone and in combination, and BPA with G-15 did not modulate progesterone secretion. These findings showed complex and diverse estrogen effects on mouse Leydig cells at various steps of steroid hormone production (cholesterol storage, release and processing). Lipid homeostasis and metabolism in these cells were affected by endogenous and exogenous estrogen, interactions of receptors (GPER, ER and ERR) and GPER and ER antagonists.
Collapse
Affiliation(s)
- A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kaczmarczyk
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
37
|
Chen Y, Tang H, He J, Wu X, Wang L, Liu X, Lin H. Interaction of nuclear ERs and GPER in vitellogenesis in zebrafish. J Steroid Biochem Mol Biol 2019; 189:10-18. [PMID: 30711474 DOI: 10.1016/j.jsbmb.2019.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/23/2022]
Abstract
Estrogens exert their biological functions through the estrogen receptors (ERs). In zebrafish, three nuclear estrogen receptors (nERs) named ERα, ERβ1 and ERβ2 and one membrane-bound G protein-coupled estrogen receptor (GPER) are identified. Vitellogenin (Vtg) is predominantly expressed in liver and strongly response to the stimulation of estrogen. It has been proposed that all three nERs are functionally involved in vitellogenesis and ERα may act as the major mediator in teleost. However, the role of GPER and its interaction with nERs in this process are not yet defined in teleost species. In the present study, we provide genetic evidence for the functional significance of ERα that the expression of Vtg genes (vtg1, vtg2, vtg3) and their response to estradiol stimulation were significantly decreased in esr1 mutant zebrafish. Activation of ERβ1 and ERβ2 induced Vtg expression through ERα. Moreover, the involvement of GPER in vitellogenesis and its interaction with nERs in zebrafish were firstly proposed in this work. Activation of GPER induced Vtg genes expression while inhibition of GPER significantly attenuated the estrogenic effect on Vtg. Both treatments altered the expression levels of nERs, suggesting GPER acts interactively with nERs. Collectively, the involvement of both nERs and GPER in regulation of vitellogenesis is demonstrated. ERα is the central factor, acting interactively with ERβ1, ERβ2 and GPER, and GPER regulates vitellogenesis directly and interactively with nERs.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianan He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Zhang H, Wei Q, Gao Z, Ma C, Yang Z, Zhao H, Liu C, Liu J, Zhao X, Ma B. G protein-coupled receptor 30 mediates meiosis resumption and gap junction communications downregulation in goat cumulus-oocyte complexes by 17β-estradiol. J Steroid Biochem Mol Biol 2019; 187:58-67. [PMID: 30414946 DOI: 10.1016/j.jsbmb.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 11/17/2022]
Abstract
Estrogen plays a critical role in the regulation of gap junctions between oocytes and granulosa cells in mammalian ovaries. G protein-coupled receptor 30 (GPR30) was identified as a membrane estrogen receptor, mediating rapid, nongenomic signaling events that might be responsible for the regulation of oocyte meiosis resumption and gap junction intercellular communications (GJICs). The present study aimed to determine the expression and localization of GPR30 and its role in oocyte meiotic progression and GJICs in goat cumulus-oocyte complexes (COCs). Immunofluorescence experiments revealed that GPR30 was primarily located in the plasma membrane of cumulus cells and oocytes in goats. 17β-estradiol could promote oocyte meiotic progression, which was blocked by G15 (a selective GPR30 antagonist) but not ICI182780 (a nuclear estrogen receptor inhibitor) in the early stage of in vitro culture. The effect of 17β-estradiol on the GJICs was quantified by lucifer yellow (LY) microinjection and calcein-AM fluorescent dye diffusion. 17β-estradiol treatment of goat COCs resulted in rapid downregulation of GJICs. The transfer of calcein from cumulus cells to oocytes could be significantly inhibited by carbenoxolone (a known gap junction blocker), 17β-estradiol or G1 (a GPR30 agonist), and this inhibition could be reversed by G15 but not ICI182780, indicating that GPR30 mediates the effect of 17β-estradiol on the rapid downregulation of GJICs. 17β-estradiol also stimulated the serine 368 phosphorylation of connexin 43 (Cx43) when COCs were in vitro cultured for 4 h, 6 h, and 8 h. More importantly, 17β-estradiol or G1 could separately promote the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and Cx43 significantly when COCs were cultured for 4 h. Furthermore, both ERK1/2 and Cx43 phosphorylation could be inhibited by G15 and the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 or by the ERK1/2 inhibitor PD98059, indicating that EGFR-ERK1/2 signaling was involved in these events. These results supported the hypothesis that GPR30 mediated 17β-estradiol-stimulated meiotic resumption and GJIC reduction in goat COCs. Thus, the present study provides novel insights into elucidating the mechanisms for steroid hormone action in the regulation of oocyte maturation.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhen Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chiyuan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhenshan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chen Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
39
|
Maskey E, Crotty H, Wooten T, Khan IA. Disruption of oocyte maturation by selected environmental chemicals in zebrafish. Toxicol In Vitro 2019; 54:123-129. [PMID: 30266436 DOI: 10.1016/j.tiv.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Oocyte maturation can be a target of endocrine disruption by environmental chemicals capable of acting as hormone mimics, receptor blockers, and/or enzyme inhibitors. Six environmental chemicals (genistein, endosulfan, malathion, iprodione, carbaryl, and glyphosate) were selected to determine their ability to interfere with oocyte maturation in zebrafish. The translucent oocytes undergoing germinal vesicle (nucleus) breakdown (GVBD) were counted and expressed as a ratio of oocytes undergoing GVBD and total oocytes exposed. The GVBD increased significantly in oocytes exposed to 10 IU/ml to 100 IU/ml human chorionic gonadotropin (hCG). The lowest effective concentration of genistein that inhibited hCG-induced GVBD was 30 μM, while endosulfan inhibited it at 0.03 μM concentration. In addition, malathion inhibited hCG-induced GVBD at the lowest concentration of 60 μM. These inhibitory effects were likely due to the chemicals acting as estrogen mimics, induction of estrogen receptors, or increase in aromatase activity resulting in enhanced estrogen action. Fungicide iprodione, possibly acting as a progestin mimic, promoted hCG-induced GVBD at the lowest concentration of 20 μM, while the weed killer glyphosate inhibited hCG-induced GVBD starting at the 50 μM concentration. These results demonstrate the feasibility of using fully grown zebrafish oocytes arrested at the prophase I stage in an in vitro incubation system to evaluate the effects of a variety of environmental chemicals on oocyte maturation.
Collapse
Affiliation(s)
- Era Maskey
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA; Nutribiotech USA, Garland, TX, USA
| | - Hannah Crotty
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA
| | - Taelah Wooten
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA; Kansas City University of Medicine and Biosciences, Joplin, MO, USA
| | - Izhar A Khan
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA.
| |
Collapse
|
40
|
Zadmajid V, Butts IAE. Spawning performance, serum sex steroids, and ovarian histology in wild-caught Levantine scraper, Capoeta damascina (Valenciennes, 1842) treated with various doses of sGnRHa + domperidone. J Anim Sci 2018; 96:5253-5264. [PMID: 30508152 DOI: 10.1093/jas/sky348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
As global aquaculture continues to expand, increasing efforts are focusing on assisted reproductive technologies. This study sought to test whether salmon GnRH [D-Arg6, Pro9NEt]) analogue (sGnRHa) + domperidone injection at 0.25 mL/body weight (BW; 5-μg sGnRHa + 2.5-mg domperidone), 0.5 mL/kg BW (10-μg sGnRHa + 5-mg domperidone), or 1.0 mL/kg BW (20-μg sGnRHa + 10-mg domperidone) affects spawning performance and gamete quality in wild-caught Levantine scraper, Capoeta damascina. The ability of these treatments to elicit a response was further examined by in vivo stimulation of estradiol (E2) and 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and by its in vivo potency to induce oocyte maturation (OM). Females that received saline injection (control) did not spawn, whereas sGnRHa + domperidone induced ovulation and spawning across the hormonal gradient. Spawning success was highest with the 0.5 mL/kg dosage (80%) and female latency period decreased with increasing dosage. Females treated with 0.5 mL/kg had a significantly higher fecundity than those injected with 0.25 or 1.0 mL/kg. Mean oocyte diameter significantly increased in females treated with 0.5 or 1.0 mL/kg. Fertilization success, hatching rate, larvae morphology, and survival were not affected by hormonal treatment. At 12 h postinjection, E2 levels significantly declined in females treated with 0.5 or 1.0 mL/kg, whereas DHP levels significantly increased across the hormonal gradient. This steroidogenic shift is supported by histological analyses, where OM was accelerated by administration of sGnRHa + domperidone in a dose-dependent manner. In conclusion, the 0.5 mL/kg dosage of sGnRHa + domperidone is recommended for assisted reproduction of Levantine scraper.
Collapse
Affiliation(s)
- Vahid Zadmajid
- Department of Fisheries Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
41
|
Li J, Huang D, Sun X, Li X, Cheng CHK. Zinc mediates the action of androgen in acting as a downstream effector of luteinizing hormone on oocyte maturation in zebrafish†. Biol Reprod 2018; 100:468-478. [DOI: 10.1093/biolre/ioy224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/01/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xuehui Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
42
|
Crowder CM, Romano SN, Gorelick DA. G Protein-Coupled Estrogen Receptor Is Not Required for Sex Determination or Ovary Function in Zebrafish. Endocrinology 2018; 159:3515-3523. [PMID: 30169775 PMCID: PMC6137278 DOI: 10.1210/en.2018-00685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors α and β (ERα and ERβ) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERα and ERβ are required for normal ovary development and function. However, the degree to which GPER signaling contributes to ovary development and function is less well understood. Previous studies using cultured fish oocytes found that estradiol inhibits oocyte maturation in a GPER-dependent manner, but whether GPER regulates oocyte maturation in vivo is not known. To test the hypothesis that GPER regulates oocyte maturation in vivo, we assayed ovary development and function in gper mutant zebrafish. We found that homozygous mutant gper embryos developed into male and female adults with normal sex ratios. Adult mutant fish exhibited normal secondary sex characteristics and fertility. Additionally, mutant ovaries were histologically normal. We observed no differences in the number of immature versus mature oocytes in mutant versus wild-type ovaries from both young and aged adults. Furthermore, expression of genes associated with sex determination and ovary function was normal in gper mutant ovaries compared with wild type. Our findings suggest that GPER is not required for sex determination, ovary development, or fertility in zebrafish.
Collapse
Affiliation(s)
- Camerron M Crowder
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon N Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Correspondence: Daniel A. Gorelick, PhD, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Alkek Building, Suite N1317.02, One Baylor Plaza, BCM229, Houston, Texas 77030. E-mail:
| |
Collapse
|
43
|
Pang Y, Thomas P. Role of natriuretic peptide receptor 2-mediated signaling in meiotic arrest of zebrafish oocytes and its estrogen regulation through G protein-coupled estrogen receptor (Gper). Gen Comp Endocrinol 2018; 265:180-187. [PMID: 29574150 DOI: 10.1016/j.ygcen.2018.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
44
|
Aizen J, Pang Y, Harris C, Converse A, Zhu Y, Aguirre MA, Thomas P. Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation. Gen Comp Endocrinol 2018; 263:51-61. [PMID: 29649418 PMCID: PMC6480306 DOI: 10.1016/j.ygcen.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/06/2018] [Accepted: 04/07/2018] [Indexed: 01/15/2023]
Abstract
Although previous studies suggest membrane progesterone receptor alpha (mPRα/Paqr7) mediates 17, 20β-dihydroxy-4-pregnen-3-one (DHP) induction of oocyte maturation (OM) in zebrafish, critical information needed to establish mPRα as the receptor mediating OM is lacking. The relative potencies of progestins and specific mPRα agonists in inducing OM matched their relative binding affinities for zebrafish mPRα, supporting its role in OM. Microinjection of pertussis toxin blocked DHP induction of OM and the progestin-induced decrease in cyclic AMP levels, suggesting mPRα activates an inhibitory G protein (Gi). Microinjection of morpholino antisense oligonucleotides to zebrafish pgrmc1 blocked induction of OM by DHP which was accompanied by decreased levels of Pgrmc1 and mPRα on the oocyte plasma membranes. Similarly, treatment of denuded oocytes with a PGRMC1 inhibitor, AG205, blocked the gonadotropin-induced increase in plasma membrane mPRα levels and attenuated DHP induction of OM. Co-incubation with two inhibitors of epidermal growth factor Erbb2, ErbB2 inhibitor II and AG 879, prevented induction of OM by DHP, indicating the likely involvement of Erbb2 in mPRα-mediated signaling. Treatment with AG205 reversed the inhibitory effects of the Erbb2 inhibitors on OM and also inhibited insulin-like growth factor-1 induction of OM. Close associations between Pgrmc1 and mPRα, and between Pgrmc1 and Erbb2 were detected in zebrafish oocytes with in situ proximity ligation assays. The results suggest progestin induction of OM in zebrafish is mediated through an mPRα/Gi/Erbb2 signaling pathway that requires Pgrmc1 for expression of mPRα on oocyte membranes and that Pgrmc1 also is required for induction of OM through Erbb2.
Collapse
Affiliation(s)
- Joseph Aizen
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yefei Pang
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Caleb Harris
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Aubrey Converse
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Yong Zhu
- East Carolina University, Department of Biology, Greenville, NC 27858, USA
| | - Meagan A Aguirre
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
45
|
Kotula-Balak M, Pawlicki P, Milon A, Tworzydlo W, Sekula M, Pacwa A, Gorowska-Wojtowicz E, Bilinska B, Pawlicka B, Wiater J, Zarzycka M, Galas J. The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function-in vivo and in vitro evaluation. Cell Tissue Res 2018; 374:389-412. [PMID: 29876633 PMCID: PMC6209072 DOI: 10.1007/s00441-018-2861-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
In this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 μg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17β-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes. Depending on age, differences in structure and distribution of various Leydig cell organelles were observed. Concomitantly, modulation of activity of the mitochondria and tubulin microfibers was revealed. Diverse and complex GPER regulation at the mRNA level and protein of estrogen signaling molecules (estrogen receptor α and β; ERα, ERβ and cytochrome P450 aromatase; P450arom) in G-15 Leydig cells was found in relation to age and the experimental system utilized (in vivo and in vitro). Changes in expression patterns of ERs and P450arom, as well as steroid secretion, reflected Leydig cell heterogeneity to estrogen regulation throughout male life including cell physiological status.We show, for the first time, GPER with ERs and P450arom work in tandem to maintain Leydig cell architecture and supervise its steroidogenic function by estrogen during male life. Full set of estrogen signaling molecules, with involvement of GPER, is crucial for proper Leydig cell function where each molecule acts in a specific and/or complementary manner. Further understanding of the mechanisms by which GPER controls Leydig cells with special regard to male age, cell of origin and experimental system used is critical for predicting and preventing testis steroidogenic disorders based on perturbations in estrogen signaling.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - W Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Sekula
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - A Pacwa
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - E Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - B Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - J Wiater
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Zarzycka
- Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - J Galas
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
46
|
Romano SN, Gorelick DA. Crosstalk between nuclear and G protein-coupled estrogen receptors. Gen Comp Endocrinol 2018; 261:190-197. [PMID: 28450143 PMCID: PMC5656538 DOI: 10.1016/j.ygcen.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/04/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
Abstract
In 2005, two groups independently discovered that the G protein-coupled receptor GPR30 binds estradiol in cultured cells and, in response, initiates intracellular signaling cascades Revankar et al. (2005), Thomas et al. (2005). GPR30 is now referred to as GPER, the G-protein coupled estrogen receptor Prossnitz and Arterburn (2015). While studies in animal models are illuminating GPER function, there is controversy as to whether GPER acts as an autonomous estrogen receptor in vivo, or whether GPER interacts with nuclear estrogen receptor signaling pathways in response to estrogens. Here, we review the evidence that GPER acts as an autonomous estrogen receptor in vivo and discuss experimental approaches to test this hypothesis directly. We propose that the degree to which GPER influences nuclear estrogen receptor signaling likely depends on cell type, developmental stage and pathology.
Collapse
Affiliation(s)
- Shannon N Romano
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA
| | - Daniel A Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, USA.
| |
Collapse
|
47
|
Zhu D, Yang L, Huang J, Zhou F, Yang Q, Jiang S, Jiang S. The comprehensive expression analysis of the G protein-coupled receptor from Penaeus monodon indicating it participates in innate immunity and anti-ammonia nitrogen stress. FISH & SHELLFISH IMMUNOLOGY 2018; 75:17-26. [PMID: 29410275 DOI: 10.1016/j.fsi.2018.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
The G protein-coupled receptors (GPCRs) composed a superfamily that played an important role in physiological processes of crustaceans, with multiple functions such as growth and development, acting as a defense against stimulations from external factors. In this paper, one kind of GPCRs were identified from Penaeus monodon, called PmGPCR, included an open reading frame (ORF) of 1113 bp. Bioinformatic analysis showed that PmGPCR protein had the typical structure of seven transmembrane domains (7TM), especially the special Asp-Arg-Try motif (DRY motif) between the third transmembrane structures (TM3) and the second intracellular loops (IL-2) which can prove that PmGPCR belongs to the rhodopsin-like family. The analyses of phylogenetic tree indicated that the amino acid sequence of PmGPCR should be merged into Procambarus clarkiic with high identity (98%). Quantitative real-time PCR (q RT-PCR) revealed that PmGPCR mRNA was highly expressed in hepatopancreas, abdominal ganglia and lymph, in which it was significantly higher than that of other tissues (P < 0.05). In addition, the expression of PmGPCR was analyzed during three days post-stimulation with the gram-positive/negative bacteria, the mRNA expression level increased after challenged with gram - positive bacteria in hepatopancreas, lymph and intestines. During the development stages, PmGPCR showed significantly higher expression in nauplius, zoea III, mysis III and post larvae stages than that in other development stages. Meanwhile, the highest transcripts expression of PmGPCR in abdominal ganglia, hepatopancreas, lymph and intestines respectively appeared at D0, D1, D2 and D3/D4 stages of molting. High or low concentration of ammonia nitrogen up-regulated the expression level of PmGPCR at the initial stage in hepatopancreas and gill, and then down-regulated at 48 h. These results indicated PmGPCR may mediate the pathways that involved in growth and development process, survival in the adversity, in addition, provided the useful data to research GPCR-mediated physiological and biological process and explain the mechanisms to defense pathogens and anti-stress in shrimp.
Collapse
Affiliation(s)
- Dandan Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518108, PR China.
| |
Collapse
|
48
|
Garcia-Reyero N, Jayasinghe BS, Kroll KJ, Sabo-Attwood T, Denslow ND. Estrogen signaling through both membrane and nuclear receptors in the liver of fathead minnow. Gen Comp Endocrinol 2018; 257:50-66. [PMID: 28733229 DOI: 10.1016/j.ygcen.2017.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/04/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Estradiol is a potent sex steroid hormone that controls reproduction and other cellular pathways in fish. It is known to regulate important proteins such as vitellogenin, the egg yolk precursor protein, and zona radiata proteins that form the eggshell for fish eggs. These proteins are made in the liver and transported out into the blood from where they are taken up into the ovary during oogenesis. Estradiol can exert its influence directly through soluble nuclear receptors (there are three in fish) or indirectly through membrane receptors and a phosphorylation cascade. Often there is coordination through both genomic and non-genomic pathways. We have used a toxicogenomics approach to determine the contribution of genomic and non-genomic regulation in the liver of fathead minnows exposed to 5ng ethinylestradiol per liter or to a mixture of 5ng ethinylestradiol and 100ng ZM189,154 (ZM) per liter. ZM has previously been shown to be a "perfect" antagonist for the fish nuclear estrogen receptors but has displayed agonistic activities for membrane receptors. We find that both nuclear and membrane receptors contribute to the biosynthesis of vitellogenin 1 and estrogen receptor one (Esr1), among others. In addition, lipid metabolism pathways appear to require both activities.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - B Sumith Jayasinghe
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
49
|
Crowder CM, Lassiter CS, Gorelick DA. Nuclear Androgen Receptor Regulates Testes Organization and Oocyte Maturation in Zebrafish. Endocrinology 2018; 159:980-993. [PMID: 29272351 PMCID: PMC5788001 DOI: 10.1210/en.2017-00617] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
Androgens act through the nuclear androgen receptor (AR) to regulate gonad differentiation and development. In mice, AR is necessary for spermatogenesis, testis development, and formation of external genitalia in males and oocyte maturation in females. However, the extent to which these phenotypes are conserved in nonmammalian vertebrates is not well understood. Here, we generate zebrafish with a mutation in the ar gene (aruab105/105) and examine the role of AR in sexual determination and gonad development. We found that zebrafish AR regulates male sexual determination, because the majority of aruab105/105 mutant embryos developed ovaries and displayed female secondary sexual characteristics. The small percentage of mutants that developed testes displayed female secondary sexual characteristics, exhibited structurally disorganized testes, and were unable to release or produce normal levels of sperm, demonstrating that AR is necessary for zebrafish testis development and fertility. In females, we found that AR regulates oocyte maturation and fecundity. The aruab105/105 mutant females developed ovaries filled primarily with immature stage I oocytes and few mature stage III oocytes. Two genes whose expression is enriched in wild-type ovaries compared with testes (cyp19a1a, foxl2a) were upregulated in ar mutant testes, and two genes enriched in testes (amh, dmrt1) were upregulated in ar mutant ovaries. These findings demonstrate that AR regulates sexual determination, testis development, and oocyte maturation and suggest that AR regulates sexually dimorphic gene expression. The ar mutant we developed will be useful for modeling human endocrine function in zebrafish.
Collapse
Affiliation(s)
- Camerron M. Crowder
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | | - Daniel A. Gorelick
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
50
|
Thomas P. Reprint of "Role of G protein-coupled estrogen receptor (GPER/GPR30) in maintenance of meiotic arrest in fish oocytes". J Steroid Biochem Mol Biol 2018; 176:23-30. [PMID: 29102625 DOI: 10.1016/j.jsbmb.2017.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/23/2016] [Accepted: 12/16/2016] [Indexed: 01/07/2023]
Abstract
An essential role for GPER (formerly known as GPR30) in regulating mammalian reproduction has not been identified to date, although it has shown to be involved in the regulation a broad range of other estrogen-dependent functions. In contrast, an important reproductive role for GPER in the maintenance of oocyte meiotic arrest has been identified in teleost fishes, which is briefly reviewed here. Recent studies have clearly shown that ovarian follicle production of estradiol-17β (E2) maintains meiotic arrest in several teleost species through activation of GPER coupled to a stimulatory G protein (Gs) on oocyte plasma membranes, resulting in stimulation of cAMP production and maintenance of elevated cAMP levels. Studies with denuded zebrafish oocytes and with microinjection of GPER antisense oligonucleotides into oocytes have demonstrated the requirement for both ovarian follicle production of estrogens and expression of GPER on the oocyte surface for maintenance of meiotic arrest. This inhibitory action of E2 on the resumption of meiosis is mimicked by the GPER-selective agonist G-1, by the GPER agonists and nuclear ER antagonists, ICI 182,780 and tamoxifen, and also by the xenoestrogen bisphenol-A (BPA) and related alkylphenols. GPER also maintains meiotic arrest of zebrafish oocytes through estrogen- and BPA-dependent GPER activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) signaling. Interestingly, progesterone receptor component 1 (PGRMC1) is also involved in estrogen maintenance of meiotic arrest through regulation of EGFR expression on the oocyte plasma membrane. The preovulatory surge in LH secretion induces the ovarian synthesis of progestin hormones that activate a membrane progestin receptor alpha (mPRα)/inhibitory G protein (Gi) pathway. It also increases ovarian synthesis of the catecholestrogen, 2-hydroxy-estradiol-17β (2-OHE2) which inhibits the GPER/Gs/adenylyl cyclase pathway. Both of these LH actions cause declines in oocyte cAMP levels resulting in the resumption of meiosis. GPER is also present on murine oocytes but there are no reports of studies investigating its possible involvement in maintaining meiotic arrest in mammals.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| |
Collapse
|