1
|
Mao JJ, Dai XY, Liu YZ, Ren LJ, Zhang JQZ, Yan L, Li JF, Tian YJ, Zhu JB, Chen JK. DNAJA1 regulates protein ubiquitination and is essential for spermatogenesis in the testes of mice and rats. Reprod Toxicol 2024; 130:108701. [PMID: 39208916 DOI: 10.1016/j.reprotox.2024.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
DNAJA1 is a member of type I DnaJ proteins, which is essential for spermatogenesis and male fertility. However, its expression pattern in the testes and its impact on spermatogenesis remains unclear. Our study aimed to elucidate the mechanism of action of DNAJA1. We employed DNAJA1 knockout mice in this study. Western blotting and immunofluorescence analysis were conducted to determine the protein abundance of DNAJA1 in testes at various developmental stages. Our results revealed that DNAJA1 is predominantly expressed in the testes, and its knockout leads to complete infertility in male mice. We observed that DNAJA1 protein levels increased on postnatal days 14, 21, and 28, peaking on postnatal day 35 in mice. Immunofluorescence staining indicated that DNAJA1 expression varies across different stages of the spermatogenesis cycle. Additionally, DNAJA1 was absent in epididymal sperm. In early- and mid-stage tubules, DNAJA1 protein distribution was co-localized with residual bodies in elongating spermatids. Furthermore, we found that DNAJA1 knockout significantly reduced protein polyubiquitination in the testis. Analysis of the GEO database showed that DNAJA1 levels were significantly decreased in semen samples from subjects with teratozoospermia, asthenozoospermia, and impaired spermatogenesis. Our findings suggest that DNAJA1 is an essential protein for spermatogenesis, and its deletion reduces protein polyubiquitination in the testis, ultimately resulting in infertility and spermatogenesis defects.
Collapse
Affiliation(s)
- Jing-Jing Mao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Shanghai 200433, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yun-Zi Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai 200433, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Shanghai 200433, China
| | - Jin-Feng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Yi-Jun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Shanghai 200433, China.
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Shanghai 200433, China.
| |
Collapse
|
2
|
Ren H, Wen X, He Q, Yi M, Dugarjaviin M, Bou G. Comparative Study on the Sperm Proteomes of Horses and Donkeys. Animals (Basel) 2024; 14:2237. [PMID: 39123763 PMCID: PMC11311092 DOI: 10.3390/ani14152237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The reproductive performance of horse sperm and donkey sperm has been reported to differ. Sperm proteins play a crucial role in sperm viability and fertility. Although differences between species are known, no prior study has investigated disparities in the sperm proteome between horses and donkeys. Therefore, this study characterized and compared the sperm proteomes of horses and donkeys using 4D-DIA mass spectrometry technology. We identified 3436 proteins in horse sperm and 3404 proteins in donkey sperm. Of these, 3363 proteins were expressed in both horse and donkey sperm, with 73 proteins being specifically expressed in horse sperm, and 41 in donkey sperm. According to data analysis, donkeys exhibited a greater percentage of motility and progressive movement in straight-line sperm than horses, as well as lower percentages of static and slow sperm than horses. Joint analysis of the results from the horse and donkey sperm proteomes and their CEROS II-read parameters demonstrated a possible association between sperm proteins and their sperm viability patterns. These findings suggest that there are discrepancies in the expression levels and protein compositions of horse and donkey sperm and that certain specific proteins may be responsible for the differences in performance between these two species.
Collapse
Affiliation(s)
- Hong Ren
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xin Wen
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Minna Yi
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Inner Mongolia Agricultural University, Hohhot 010018, China; (H.R.); (X.W.); (Q.H.); (M.Y.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Arab M, Chen T, Lowe M. Mechanisms governing vesicle traffic at the Golgi apparatus. Curr Opin Cell Biol 2024; 88:102365. [PMID: 38705050 DOI: 10.1016/j.ceb.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.
Collapse
Affiliation(s)
- Maryam Arab
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tong Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Li C, Shen C, Xiong W, Ge H, Shen Y, Chi J, Zhang H, Tang L, Lu S, Wang J, Fei J, Wang Z. Spem2, a novel testis-enriched gene, is required for spermiogenesis and fertilization in mice. Cell Mol Life Sci 2024; 81:108. [PMID: 38421455 PMCID: PMC10904452 DOI: 10.1007/s00018-024-05147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jun Chi
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jinjin Wang
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China.
| |
Collapse
|
5
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
6
|
Park SY, Muschalik N, Chadwick J, Munro S. In vivo characterization of Drosophila golgins reveals redundancy and plasticity of vesicle capture at the Golgi apparatus. Curr Biol 2022; 32:4549-4564.e6. [PMID: 36103876 PMCID: PMC9849145 DOI: 10.1016/j.cub.2022.08.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/29/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.
Collapse
Affiliation(s)
- Sung Yun Park
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Nadine Muschalik
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
7
|
Xiong Y, Yu C, Zhang Q. Ubiquitin-Proteasome System-Regulated Protein Degradation in Spermatogenesis. Cells 2022; 11:1058. [PMID: 35326509 PMCID: PMC8947704 DOI: 10.3390/cells11061058] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a prolonged and highly ordered physiological process that produces haploid male germ cells through more than 40 steps and experiences dramatic morphological and cellular transformations. The ubiquitin proteasome system (UPS) plays central roles in the precise control of protein homeostasis to ensure the effectiveness of certain protein groups at a given stage and the inactivation of them after this stage. Many UPS components have been demonstrated to regulate the progression of spermatogenesis at different levels. Especially in recent years, novel testis-specific proteasome isoforms have been identified to be essential and unique for spermatogenesis. In this review, we set out to discuss our current knowledge in functions of diverse USP components in mammalian spermatogenesis through: (1) the composition of proteasome isoforms at each stage of spermatogenesis; (2) the specificity of each proteasome isoform and the associated degradation events; (3) the E3 ubiquitin ligases mediating protein ubiquitination in male germ cells; and (4) the deubiquitinases involved in spermatogenesis and male fertility. Exploring the functions of UPS machineries in spermatogenesis provides a global picture of the proteome dynamics during male germ cell production and shed light on the etiology and pathogenesis of human male infertility.
Collapse
Affiliation(s)
- Yi Xiong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
| | - Chao Yu
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, 3 East Qing Chun Rd, Hangzhou 310020, China;
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd, Haining 314400, China;
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
8
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
9
|
Sun Y, Zhu Y, Cheng P, Zhang M, Wang N, Cui Z, Wei M, Xu W. A Z-Linked E3 Ubiquitin Ligase Cs-rchy1 Is Involved in Gametogenesis in Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2021; 11:ani11113265. [PMID: 34827998 PMCID: PMC8614299 DOI: 10.3390/ani11113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The sexual growth dimorphism prevails in animals and this phenomenon is even more obvious in marine fish, so understanding the mechanism of gonadal development and gametogenesis is of great importance for sex control, thus increased productivity in aquaculture. In mammal, ubiquitin ligase plays a versatile role in gonadal development and spermatogenesis, whereas its function in fish is little reported. Using Cynoglossus semilaevis (one-year-old female individual usually grows 2–4 times bigger than male) as the fish model, a Z-chromosome linked ubiquitin ligase neurl3 was previously identified and characterized, which suggested its involvement in spermatogenesis. However, in this study, characterization of another Z-chromosome linked ubiquitin ligase Cs-rchy1 suggested it might function both in spermatogenesis and oogenesis, as well as the potential role in growth. These data may provide the genetic resource for gene editing or marker exploration in future. Abstract Ubiquitin ligase (E3) plays a versatile role in gonadal development and spermatogenesis in mammals, while its function in fish is little reported. In this study, a Z-chromosome linked ubiquitin ligase rchy1 in C. semilaevis (Cs-rchy1) was cloned and characterized. The full-length cDNA was composed of 1962 bp, including 551 bp 5′UTR, 736 bp 3′UTR, and 675 bp ORF encoding a 224-amino-acid (aa) protein. Cs-rchy1 was examined among seven different tissues and found to be predominantly expressed in gonads. In testis, Cs-rchy1 could be detected from 40 days post hatching (dph) until 3 years post hatching (yph), but there was a significant increase at 6 months post hatching (mph). In comparison, the expression levels in ovary were rather stable among different developmental stages. In situ hybridization showed that Cs-rchy1 was mainly localized in germ cells, that is, spermatid and spermatozoa in testis and stage I, II and III oocytes in ovary. In vitro RNA interference found that Cs-rchy1 knockdown resulted in the decline of sox9 and igf1 in ovarian cell line and down-regulation of cyp19a in the testicular cell line. These data suggested that Cs-rchy1 might participate in gonadal differentiation and gametogenesis, via regulating steroid hormone synthesis.
Collapse
Affiliation(s)
- Yuxuan Sun
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Ying Zhu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China
| | - Peng Cheng
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
| | - Mengqian Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
| | - Na Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
| | - Zhongkai Cui
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Min Wei
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Wenteng Xu
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; (Y.S.); (Y.Z.); (P.C.); (M.Z.); (N.W.); (Z.C.)
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China;
- Correspondence: ; Tel./Fax: +86-(0)532-85831605
| |
Collapse
|
10
|
Xu W, Cui Z, Wang N, Zhang M, Wang J, Xu X, Liu Y, Chen S. Transcriptomic analysis revealed gene expression profiles during the sex differentiation of Chinese tongue sole (Cynoglossus semilaevis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100919. [PMID: 34634569 DOI: 10.1016/j.cbd.2021.100919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
Sex differentiation in aquatic fish is important both for theoretical study and practical production, as growth dimorphism frequently appears in different sexes, especially in marine fish. The deciphered genome, identification of the male-determining gene dmrt1 and established genotypic sex screening method make Chinese tongue sole (Cynoglossus semilaevis) an ideal model to study sex differentiation in fish. In this study, comparative gonadal transcriptomic analyses were conducted for genetic females and males at 48, 68, and 108 days post hatching (dph), representing pre-, during- and post-gonadal differentiation stages, although the gonad is not completely differentiated and isolable in 48 and 68 dph individuals, while it is in 108 dph individuals. Altogether, 28 libraries were constructed, and a mean of 46.64 M clean reads was obtained. Differentially expressed gene (DEG) analysis revealed that 179 genes had similar expression patterns in males and females in all three stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that the enriched pathways included ubiquitin-mediated proteolysis, lysosomes, and RNA degradation. Moreover, weighted gene coexpression network analyses (WGCNA) identified 14 modules, one of which was closely correlated with female differentiation, exhibiting female-biased expression in all three stages (48, 68, 108 dph). An illustrated core gene interaction network of this module identified 50 genes, most of which are on W chromosomes. Six genes, including two ubiquitin conjugating enzymes, were selected for further investigation, and their female-biased expression was confirmed in even earlier stages, at 10 and 30 dph. These data facilitate our understanding of sex differentiation in fish and provide a genomic rationale for screening candidate genes (preferentially W-linked genes) that could be involved in the female differentiation process.
Collapse
Affiliation(s)
- Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Zhongkai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Mengqian Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jialin Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiwen Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
11
|
Wang W, Tian S, Nie H, Tu C, Liu C, Li Y, Li D, Yang X, Meng L, Hu T, Zhang Q, Du J, Fan L, Lu G, Lin G, Zhang F, Tan YQ. CFAP65 is required in the acrosome biogenesis and mitochondrial sheath assembly during spermiogenesis. Hum Mol Genet 2021; 30:2240-2254. [PMID: 34231842 DOI: 10.1093/hmg/ddab185] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Asthenoteratospermia is a common cause of male infertility. Recent studies have revealed that CFAP65 mutations lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. However, the molecular mechanism underlying CFAP65-associated sperm malformation is largely unclear. Here, we initially examined the role of CFAP65 during spermiogenesis using Cfap65 knockout (Cfap65-/-) mice. The results showed that Cfap65-/- male mice exhibited severe asthenoteratospermia characterized by morphologically defective sperm heads and flagella. In Cfap65-/- mouse testes, hyper-constricted sperm heads were apparent in step 9 spermatids accompanied by abnormal manchette development, and acrosome biogenesis was abnormal in the maturation phase. Moreover, subsequent flagellar elongation was also severely affected and characterized by disrupted assembly of the mitochondrial sheath (MS) in Cfap65-/- male mice. Furthermore, the proteomic analysis revealed that the proteostatic system during acrosome formation, manchette organization, and MS assembly was disrupted when CFAP65 was lost. Importantly, endogenous immunoprecipitation and immunostaining experiments revealed that CFAP65 may form a cytoplasmic protein network comprising MNS1, RSPH1, TPPP2, ZPBP1, and SPACA1. Overall, these findings provide insights into the complex molecular mechanisms of spermiogenesis by uncovering the essential roles of CFAP65 during sperm head shaping, acrosome biogenesis, and MS assembly.
Collapse
Affiliation(s)
- Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Shixong Tian
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Xiaoxuan Yang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology, Human Phenome Institute, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine, Central South University, Changsha 410078, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, China.,NHC Key Laboratory of human stem cell and reproductive engineering, Central South University, Changsha 410078, China
| |
Collapse
|
12
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Rahimi R, Malek I, Lerrer-Goldshtein T, Elkis Y, Shoval I, Jacob A, Shpungin S, Nir U. TMF1 is upregulated by insulin and is required for a sustained glucose homeostasis. FASEB J 2021; 35:e21295. [PMID: 33475194 DOI: 10.1096/fj.202001995r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023]
Abstract
Insulin-regulated glucose homeostasis is a critical and intricate physiological process, of which not all regulatory components have been deciphered. One of the key players in modulating glucose uptake by cells is the glucose transporter-GLUT4. In this study, we aimed to explore the regulatory role of the trans-Golgi-associated protein-TATA Element Modulatory Factor (TMF1) in the GLUT4 mediated, insulin-directed glucose uptake. By establishing and using TMF1-/- myoblasts and mice, we examined the effect of TMF1 absence on the insulin driven functioning of GLUT4. We show that TMF1 is upregulated by insulin in myoblasts, and is essential for the formation of insulin responsive, glucose transporter GLUT4-containing vesicles. Absence of TMF1 leads to the retention of GLUT4 in perinuclear compartments, and to severe impairment of insulin-stimulated GLUT4 trafficking throughout the cytoplasm and to the cell plasma membrane. Accordingly, glucose uptake is impaired in TMF1-/- cells, and TMF1-/- mice are hyperglycemic. This is reflected by the mice impaired blood glucose clearance and increased blood glucose level. Correspondingly, TMF1-/- animals are leaner than their normal littermates. Thus, TMF1 is a novel effector of insulin-regulated glucose homeostasis, and dys-functioning of this protein may contribute to the onset of a diabetes-like disorder.
Collapse
Affiliation(s)
- Roni Rahimi
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Israel Malek
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerrer-Goldshtein
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Irit Shoval
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
14
|
Jiang Y, Liu Y, Han F, Zhou J, Zhang X, Xu J, Yu Z, Zhao S, Gao F, Zhao H. Loss of GM130 does not impair oocyte meiosis and embryo development in mice. Biochem Biophys Res Commun 2020; 532:336-340. [PMID: 32873390 DOI: 10.1016/j.bbrc.2020.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023]
Abstract
Golgi matrix protein 130 (GM130), encoded by GOLGA2, is the classical marker of the Golgi apparatus. It plays important roles in various mitotic events, such as interacting with importin-alpha and liberating spindle assembly factor TPX2 to regulate mitotic spindle formation. A previous study showed that in vitro knockdown of GM130 could regulate the meiotic spindle pole assembly. In the current study, we found that knockout (KO) mice progressively died, had a small body size and were completely infertile. Furthermore, we constructed an oocyte-specific GM130 knockout mouse model (GM130-ooKO) driven by Gdf9-Cre. Through breeding assays, we found that the GM130-ooKO mice showed similar fecundity as control mice. During superovulation assays, the KO and GM130-ooKO mice had comparable numbers of ovulated eggs, oocyte maturation rates and normal polar bodies, similar to the control groups. Thus, this study indicated that deletion of GM130 might have a limited impact on the maturation and morphology of oocytes. This might due to more than one golgin sharing the same function, with others compensating for the loss of GM130.
Collapse
Affiliation(s)
- Yonghui Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Jingjing Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China
| | - Xinze Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Junting Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiheng Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, 100101, China.
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250001, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
15
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
16
|
Vandenbrouck Y, Pineau C, Lane L. The Functionally Unannotated Proteome of Human Male Tissues: A Shared Resource to Uncover New Protein Functions Associated with Reproductive Biology. J Proteome Res 2020; 19:4782-4794. [PMID: 33064489 DOI: 10.1021/acs.jproteome.0c00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of the Human Proteome Project, we built an inventory of 412 functionally unannotated human proteins for which experimental evidence at the protein level exists (uPE1) and which are highly expressed in tissues involved in human male reproduction. We implemented a strategy combining literature mining, bioinformatics tools to collate annotation and experimental information from specific molecular public resources, and efficient visualization tools to put these unknown proteins into their biological context (protein complexes, tissue and subcellular location, expression pattern). The gathered knowledge allowed pinpointing five uPE1 for which a function has recently been proposed and which should be updated in protein knowledge bases. Furthermore, this bioinformatics strategy allowed to build new functional hypotheses for five other uPE1s in link with phenotypic traits that are specific to male reproductive function such as ciliogenesis/flagellum formation in germ cells (CCDC112 and TEX9), chromatin remodeling (C3orf62) and spermatozoon maturation (CCDC183). We also discussed the enigmatic case of MAGEB proteins, a poorly documented cancer/testis antigen subtype. Tools used and computational outputs produced during this study are freely accessible via ProteoRE (http://www.proteore.org), a Galaxy-based instance, for reuse purposes. We propose these five uPE1s should be investigated in priority by expert laboratories and hope that this inventory and shared resources will stimulate the interest of the community of reproductive biology.
Collapse
Affiliation(s)
- Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, F-38000 Grenoble, France
| | - Charles Pineau
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35042 Rennes cedex, France
| | - Lydie Lane
- SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Souza APB, Lopes TN, da Silva AFT, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Changes in porcine cauda epididymal fluid proteome by disrupting the HPT axis: Unveiling potential mechanisms of male infertility. Mol Reprod Dev 2020; 87:952-965. [PMID: 32749760 DOI: 10.1002/mrd.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/23/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Male infertility or subfertility is frequently associated with disruption of the hypothalamic-pituitary-testis axis events, like secondary hypogonadism. However, little is known how this condition affects the proteomic composition of the epididymal fluid. In the present study, we evaluated the proteomic changes in the cauda epididymal fluid (CEF) in a swine model of secondary hypogonadism induced by anti-GnRH immunization using multidimensional protein identification technology. Seven hundred and eighteen proteins were identified in both GnRH-immunized and control groups. GnRH immunization doubled the number of proteins in the CEF, with 417 proteins being found exclusively in samples from GnRH-immunized boars. CEF from GnRH-immunized boars presented an increase in the number of proteins related to cellular and metabolic processes, with affinity to organic cyclic compounds, small molecules, and heterocyclic compounds, as well changed the enzymatic profile of the CEF. Also, a significant increase in the number of proteins associated to the ubiquitin-proteasome system was identified in CEF from GnRH-immunized animals. These results bring strong evidence of the impact of secondary hypogonadism on the epididymal environment, which is responsible for sperm maturation and storage prior ejaculation. Finally, the differently expressed proteins in the CEF are putative seminal biomarkers for testicular and epididymal disorders caused by secondary hypogonadism.
Collapse
Affiliation(s)
- Ana P B Souza
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Tayná N Lopes
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Anna F T da Silva
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Ivan C Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Xu Y, Hu D, Hou X, Shen J, Liu J, Cen X, Fu J, Li X, Hu H, Xiong L. OsTMF attenuates cold tolerance by affecting cell wall properties in rice. THE NEW PHYTOLOGIST 2020; 227:498-512. [PMID: 32176820 DOI: 10.1111/nph.16549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/04/2020] [Indexed: 05/15/2023]
Abstract
Plant cell wall composition and structure can be modified as plants adapt to environmental stresses; however, the underlying regulatory mechanisms remain elusive. Here, we report that OsTMF, a homologue of the human TATA modulatory factor (TMF) in rice (Oryza sativa) and highly conserved in plants, negatively regulates cold tolerance through modification of cell wall properties. Cold stress increased the expression of OsTMF and accumulation of OsTMF in the nucleus, where OsTMF acts as a transcription activator and modulates the expression of genes involved in pectin degradation (OsBURP16), cellulose biosynthesis (OsCesA4 and OsCesA9), and cell wall structural maintenance (genes encoding proline-rich proteins and peroxidases). OsTMF directly activated the expression of OsBURP16, OsCesA4, and OsCesA9 through binding to the TATA cis-elements in their promoters. Under cold stress conditions, OsTMF negatively regulated pectin content and peroxidase activity and positively regulated cellulose content, causing corresponding alterations to cell wall properties, all of which collectively contribute to the negative effect of OsTMF on cold tolerance. Our findings unravel a previously unreported molecular mechanism of a conserved plant TMF protein in the regulation of cell wall changes under cold stress.
Collapse
Affiliation(s)
- Yan Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Hou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianqiang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Cen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
20
|
A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 2020; 140:155-182. [PMID: 32248361 DOI: 10.1007/s00439-020-02159-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype-phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.
Collapse
|
21
|
Da Costa R, Bordessoules M, Guilleman M, Carmignac V, Lhussiez V, Courot H, Bataille A, Chlémaire A, Bruno C, Fauque P, Thauvin C, Faivre L, Duplomb L. Vps13b is required for acrosome biogenesis through functions in Golgi dynamic and membrane trafficking. Cell Mol Life Sci 2020; 77:511-529. [PMID: 31218450 PMCID: PMC11104845 DOI: 10.1007/s00018-019-03192-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 01/03/2023]
Abstract
The sperm acrosome is a lysosome-related organelle that develops using membrane trafficking from the Golgi apparatus as well as the endolysosomal compartment. How vesicular trafficking is regulated in spermatids to form the acrosome remains to be elucidated. VPS13B, a RAB6-interactor, was recently shown involved in endomembrane trafficking. Here, we report the generation of the first Vps13b-knockout mouse model and show that male mutant mice are infertile due to oligoasthenoteratozoospermia. This phenotype was explained by a failure of Vps13b deficient spermatids to form an acrosome. In wild-type spermatids, immunostaining of Vps13b and Rab6 revealed that they transiently locate to the acrosomal inner membrane. Spermatids lacking Vps13b did not present with the Golgi structure that characterizes wild-type spermatids and showed abnormal targeting of PNA- and Rab6-positive Golgi-derived vesicles to Eea1- and Lamp2-positive structures. Altogether, our results uncover a function of Vps13b in the regulation of the vesicular transport between Golgi apparatus, acrosome, and endolysosome.
Collapse
Affiliation(s)
- Romain Da Costa
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France.
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.
| | - Morgane Bordessoules
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Magali Guilleman
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Virginie Carmignac
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Centre de Référence Maladies Génétique à Expression Cutanée MAGEC-Mosaique, CHU Dijon, Dijon, France
| | - Vincent Lhussiez
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Hortense Courot
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
| | - Amandine Bataille
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Amandine Chlémaire
- Plateforme d'Imagerie Cellulaire CellImaP/DimaCell, Inserm LNC UMR1231, 21000, Dijon, France
| | - Céline Bruno
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Patricia Fauque
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- Laboratoire de Biologie de la Reproduction, Hôpital François Mitterrand, Université de Bourgogne, 21000, Dijon, France
| | - Christel Thauvin
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, 21000, Dijon, France
| | - Laurence Faivre
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, 21000, Dijon, France
| | - Laurence Duplomb
- Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, 15 boulevard du Maréchal de Lattre de Tassigny, 21000, Dijon Cedex, France
- FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| |
Collapse
|
22
|
Wang Z, Shi Y, Ma S, Huang Q, Yap YT, Shi L, Zhang S, Zhou T, Li W, Hu B, Zhang L, Krawetz SA, Pazour GJ, Hess RA, Zhang Z. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice. Am J Physiol Cell Physiol 2020; 318:C174-C190. [PMID: 31577511 PMCID: PMC6985835 DOI: 10.1152/ajpcell.00517.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
Abstract
GMAP210 (TRIP11) is a cis-Golgi network-associated protein and a Golgi membrane receptor for IFT20, an intraflagellar transport component essential for male fertility and spermiogenesis in mice. To investigate the role of GMAP210 in male fertility and spermatogenesis, floxed Gmap210 mice were bred with Stra8-iCre mice so that the Gmap210 gene is disrupted in spermatocytes and spermatids in this study. The Gmap210flox/flox: Stra8-iCre mutant mice showed no gross abnormalities and survived to adulthood. In adult males, testis and body weights showed no difference between controls and mutant mice. Low-magnification histological examination of the testes revealed normal seminiferous tubule structure, but sperm counts and fertility were significantly reduced in mutant mice compared with controls. Higher resolution examination of the mutant seminiferous epithelium showed that nearly all sperm had more oblong, abnormally shaped heads, while the sperm tails appeared to have normal morphology. Electron microscopy also revealed abnormally shaped sperm heads but normal axoneme core structure; some sperm showed membrane defects in the midpiece. In mutant mice, expression levels of IFT20 and other selective acrosomal proteins were significantly reduced, and their localization was also affected. Peanut-lectin, an acrosome maker, was almost absent in the spermatids and epididymal sperm. Mitochondrion staining was highly concentrated in the heads of sperm, suggesting that the midpieces were coiling around or aggregating near the heads. Defects in acrosome biogenesis were further confirmed by electron microscopy. Collectively, our findings suggest that GMAP210 is essential for acrosome biogenesis, normal mitochondrial sheath formation, and male fertility, and it determines expression levels and acrosomal localization of IFT20 and other acrosomal proteins.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yuqin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Suheng Ma
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qian Huang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shiyang Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Ting Zhou
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Bo Hu
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Ling Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Stephen A Krawetz
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| |
Collapse
|
23
|
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2019; 52:e13463. [DOI: 10.1111/and.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Peyman Salehi
- Infertility Center Shahid Beheshti Hospital Isfahan Iran
| | | | | | - Mohammad Reza Deemeh
- Andrology Department Nobel Laboratory Isfahan Iran
- Department of Clinical Biochemistry Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
24
|
Khawar MB, Gao H, Li W. Mechanism of Acrosome Biogenesis in Mammals. Front Cell Dev Biol 2019; 7:195. [PMID: 31620437 PMCID: PMC6759486 DOI: 10.3389/fcell.2019.00195] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
During sexual reproduction, two haploid gametes fuse to form the zygote, and the acrosome is essential to this fusion process (fertilization) in animals. The acrosome is a special kind of organelle with a cap-like structure that covers the anterior portion of the head of the spermatozoon. The acrosome is derived from the Golgi apparatus and contains digestive enzymes. With the progress of our understanding of acrosome biogenesis, a number of models have been proposed to address the origin of the acrosome. The acrosome has been regarded as a lysosome-related organelle, and it has been proposed to have originated from the lysosome or the autolysosome. Our review will provide a brief historical overview and highlight recent findings on acrosome biogenesis in mammals.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Lowe M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol 2019; 7:94. [PMID: 31316978 PMCID: PMC6611411 DOI: 10.3389/fcell.2019.00094] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The golgins comprise a family of vesicle tethering proteins that act in a selective manner to tether transport vesicles at the Golgi apparatus. Tethering is followed by membrane fusion to complete the delivery of vesicle-bound cargo to the Golgi. Different golgins are localized to different regions of the Golgi, and their ability to selectively tether transport vesicles is important for the specificity of vesicle traffic in the secretory pathway. In recent years, our mechanistic understanding of golgin-mediated tethering has greatly improved. We are also beginning to appreciate how the loss of golgin function can impact upon physiological processes through the use of animal models and the study of human disease. These approaches have revealed that loss of a golgin causes tissue-restricted phenotypes, which can vary in severity and the cell types affected. In many cases, it is possible to attribute these phenotypes to a defect in vesicular traffic, although why certain tissues are sensitive to loss of a particular golgin is still, in most cases, unclear. Here, I will summarize recent progress in our understanding of golgins, focusing on the physiological roles of these proteins, as determined from animal models and the study of disease in humans. I will describe what these in vivo analyses have taught us, as well as highlight less understood aspects, and areas for future investigations.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Guidi LG, Holloway ZG, Arnoult C, Ray PF, Monaco AP, Molnár Z, Velayos-Baeza A. AU040320 deficiency leads to disruption of acrosome biogenesis and infertility in homozygous mutant mice. Sci Rep 2018; 8:10379. [PMID: 29991750 PMCID: PMC6039479 DOI: 10.1038/s41598-018-28666-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/27/2018] [Indexed: 12/31/2022] Open
Abstract
Study of knockout (KO) mice has helped understand the link between many genes/proteins and human diseases. Identification of infertile KO mice provides valuable tools to characterize the molecular mechanisms underlying gamete formation. The KIAA0319L gene has been described to have a putative association with dyslexia; surprisingly, we observed that homozygous KO males for AU040320, KIAA0319L ortholog, are infertile and present a globozoospermia-like phenotype. Mutant spermatozoa are mostly immotile and display a malformed roundish head with no acrosome. In round spermatids, proacrosomal vesicles accumulate close to the acroplaxome but fail to coalesce into a single acrosomal vesicle. In wild-type mice AU040320 localises to the trans-Golgi-Network of germ cells but cannot be detected in mature acrosomes. Our results suggest AU040320 may be necessary for the normal formation of proacrosomal vesicles or the recruitment of cargo proteins required for downstream events leading to acrosomal fusion. Mutations in KIAA0319L could lead to human infertility; we screened for KIAA0319L mutations in a selected cohort of globozoospermia patients in which no genetic abnormalities have been previously identified, but detected no pathogenic changes in this particular cohort.
Collapse
Affiliation(s)
- Luiz G Guidi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Zoe G Holloway
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Anthony P Monaco
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Antonio Velayos-Baeza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
27
|
At the ends of their tethers! How coiled-coil proteins capture vesicles at the Golgi. Biochem Soc Trans 2017; 46:43-50. [PMID: 29273618 DOI: 10.1042/bst20170188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Cells face a complex problem: how to transfer lipids and proteins between membrane compartments in an organized, timely fashion. Indeed, many thousands of membrane and secretory proteins must traffic out of the ER to different organelles to function, while others are retrieved from the plasma membrane having fulfilled their roles [Nat. Rev. Mol. Cell Biol. (2013) 14, 382-392]. This process is highly dynamic and failure to target cargo accurately leads to catastrophic consequences for the cell, as is clear from the numerous human diseases associated with defects in membrane trafficking [Int. J. Mol. Sci. (2013) 14, 18670-18681; Traffic (2000) 1, 836-851]. How then does the cell organize this enormous transfer of material in its crowded internal environment? And how specifically do vesicles carrying proteins and lipids recognize and fuse with the correct compartment?
Collapse
|
28
|
Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M. Human Globozoospermia-Related Gene Spata16 Is Required for Sperm Formation Revealed by CRISPR/Cas9-Mediated Mouse Models. Int J Mol Sci 2017; 18:ijms18102208. [PMID: 29065458 PMCID: PMC5666888 DOI: 10.3390/ijms18102208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
A recent genetic analysis of infertile globozoospermic patients identified causative mutations in three genes: a protein interacting with C kinase 1 (PICK1), dpy 19-like 2 (DPY19L2), and spermatogenesis associated 16 (SPATA16). Although mouse models have clarified the physiological functions of Pick1 and Dpy19l2 during spermatogenesis, Spata16 remains to be determined. Globozoospermic patients carried a homozygous point mutation in SPATA16 at 848G→A/R283Q. We generated CRISPR/Cas9-mediated mutant mice with the same amino acid substitution in the fourth exon of Spata16 to analyze the mutation site at R284Q, which corresponded with R283Q of mutated human SPATA16. We found that the point mutation in Spata16 was not essential for male fertility; however, deletion of the fourth exon of Spata16 resulted in infertile male mice due to spermiogenic arrest but not globozoospermia. This study demonstrates that Spata16 is indispensable for male fertility in mice, as well as in humans, as revealed by CRISPR/Cas9-mediated mouse models.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | - Tamara Larasati
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Kanako Kojima-Kita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
29
|
Posttranslational Modifications in Spermatozoa and Effects on Male Fertility and Sperm Viability. ACTA ACUST UNITED AC 2017; 21:245-256. [DOI: 10.1089/omi.2016.0173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Fári K, Takács S, Ungár D, Sinka R. The role of acroblast formation during Drosophila spermatogenesis. Biol Open 2016; 5:1102-10. [PMID: 27481842 PMCID: PMC5004609 DOI: 10.1242/bio.018275] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Protein recycling is important for maintaining homeostasis of the Golgi and its cisternae. The Vps54 (Scat) protein, a subunit of the GARP tethering complex, is a central factor in retrograde transport to the trans-Golgi. We found the scat1 mutant to be male sterile in Drosophila with individualization problems occurring during spermatogenesis. Another typically observed phenotype was the abnormal nuclear structure in elongated mutant cysts. When examining the structure and function of the Golgi, a failure in acrosome formation and endosome-Golgi vesicular transport were found in the scat1 mutant. This acrosome formation defect was due to a fault in the trans-Golgi side of the acroblast ribbon. When testing a mutation in a second retrograde transport protein, Fws, a subunit of the conserved oligomeric Golgi (COG) tethering complex, the acroblast structure, was again disrupted. fwsP caused a similar, albeit milder, acrosome and sperm individualization phenotype as the scat1 mutant. In the case of fwsP the cis side of the acroblast ribbon was dispersed, in-line with the intra-Golgi retrograde function of COG. Our results highlight the importance of an intact acroblast for acrosome formation, nuclear elongation and therefore sperm maturation. Moreover, these results suggest the importance of retrograde tethering complexes in the formation of a functional Golgi ribbon. Summary: This study demonstrates that retrograde tethering complexes are necessary to form a functional acroblast, which is essential for normal nuclear elongation and acrosome formation during Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Karolina Fári
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Sándor Takács
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| | - Dániel Ungár
- Department of Biology, University of York, York YO10 5DD, UK
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
31
|
Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A 2016; 113:E3696-705. [PMID: 27303034 DOI: 10.1073/pnas.1522333113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper biogenesis of a sperm-specific organelle, the acrosome, is essential for gamete interaction. An acrosomal matrix protein, ACRBP, is known as a proacrosin-binding protein. In mice, two forms of ACRBP, wild-type ACRBP-W and variant ACRBP-V5, are generated by pre-mRNA alternative splicing of Acrbp Here, we demonstrate the functional roles of these two ACRBP proteins. ACRBP-null male mice lacking both proteins showed a severely reduced fertility, because of malformation of the acrosome. Notably, ACRBP-null spermatids failed to form a large acrosomal granule, leading to the fragmented structure of the acrosome. The acrosome malformation was rescued by transgenic expression of ACRBP-V5 in ACRBP-null spermatids. Moreover, exogenously expressed ACRBP-W blocked autoactivation of proacrosin in the acrosome. Thus, ACRBP-V5 functions in the formation and configuration of the acrosomal granule during early spermiogenesis. The major function of ACRBP-W is to retain the inactive status of proacrosin in the acrosome until acrosomal exocytosis.
Collapse
|
32
|
Toh WH, Gleeson PA. Emerging Insights into the Roles of Membrane Tethers from Analysis of Whole Organisms: The Tip of an Iceberg? Front Cell Dev Biol 2016; 4:12. [PMID: 26973835 PMCID: PMC4770024 DOI: 10.3389/fcell.2016.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/08/2016] [Indexed: 12/02/2022] Open
Abstract
Membrane tethers have been identified throughout different compartments of the endomembrane system. It is now well established that a number of membrane tethers mediate docking of membrane carriers in anterograde and retrograde transport and in regulating the organization of membrane compartments. Much of our information on membrane tethers have been obtained from the analysis of individual membrane tethers in cultured cells. In the future it will be important to better appreciate the network of interactions mediated by tethers and the potential co-ordination of their collective functions in vivo. There are now a number of studies which have analyzed membrane tethers in tissues and organisms which are providing new insights into the role of this class of membrane protein at the physiological level. Here we review recent advances in the understanding of the function of membrane tethers from knock outs (or knock downs) in whole organisms and from mutations in tethers associated with disease.
Collapse
Affiliation(s)
- Wei Hong Toh
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
33
|
Elkis Y, Bel S, Rahimi R, Lerer-Goldstein T, Levin-Zaidman S, Babushkin T, Shpungin S, Nir U. TMF/ARA160 Governs the Dynamic Spatial Orientation of the Golgi Apparatus during Sperm Development. PLoS One 2015; 10:e0145277. [PMID: 26701263 PMCID: PMC4689540 DOI: 10.1371/journal.pone.0145277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022] Open
Abstract
TMF/ARA160 is known to be a TATA element Modulatory Factor (TMF). It was initially identified as a DNA-binding factor and a coactivator of the Androgen receptor. It was also characterized as a Golgi-associated protein, which is essential for acrosome formation during functional sperm development. However, the molecular roles of TMF in this intricate process have not been revealed. Here, we show that during spermiogenesis, TMF undergoes a dynamic change of localization throughout the Golgi apparatus. Specifically, TMF translocates from the cis-Golgi to the trans-Golgi network and to the emerging vesicles surface, as the round spermatids develop. Notably, lack of TMF led to an abnormal spatial orientation of the Golgi and to the deviation of the trans-Golgi surface away from the nucleus of the developing round spermatids. Concomitantly, pro-acrosomal vesicles derived from the TMF-/- Golgi lacked targeting properties and did not tether to the spermatid nuclear membrane thereby failing to form the acrosome anchoring scaffold, the acroplaxome, around the cell-nucleus. Absence of TMF also perturbed the positioning of microtubules, which normally lie in proximity to the Golgi and are important for maintaining Golgi spatial orientation and dynamics and for chromatoid body formation, which is impaired in TMF-/- spermatids. In-silico evaluation combined with molecular and electron microscopic analyses revealed the presence of a microtubule interacting domain (MIT) in TMF, and confirmed the association of TMF with microtubules in spermatogenic cells. Furthermore, the MIT domain in TMF, along with microtubules integrity, are required for stable association of TMF with the Golgi apparatus. Collectively, we show here for the first time that a Golgi and microtubules associated protein is crucial for maintaining proper Golgi orientation during a cell developmental process.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shai Bel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Roni Rahimi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tali Lerer-Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Smadar Levin-Zaidman
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tatiana Babushkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
34
|
Abstract
Cilia/flagella are conserved eukaryotic organelles that play an important role in the control of cell motility and detection of environmental cues. However, the molecular mechanisms underlying ciliary/flagellar assembly, maintenance, disassembly, and signal transduction are not yet completely understood. Recent studies demonstrated that post-translational modifications (PTMs) such as phosphorylation, methylation, glutamylation, and ubiquitination are involved in these processes. In this mini review, we present a summary of research progress in ciliary/flagellar protein ubiquitination, including the ubiquitin conjugation system identified by proteomics as well as the role of ciliary/flagellar protein ubiquitination in flagellar disassembly, motility, and signal transduction. Moreover, we described putative further research directions in the study of ciliary/flagellar protein ubiquitination.
Collapse
|
35
|
Baker MA. Proteomics of post-translational modifications of mammalian spermatozoa. Cell Tissue Res 2015; 363:279-287. [DOI: 10.1007/s00441-015-2249-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
|
36
|
Zhang L, Li W, Ni J, Wu J, Liu J, Zhang Z, Zhang Y, Li H, Shi Y, Teves ME, Song S, Strauss JF, Zhang Z. RC/BTB2 is essential for formation of primary cilia in mammalian cells. Cytoskeleton (Hoboken) 2015; 72:171-81. [PMID: 25762510 DOI: 10.1002/cm.21214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
RC/BTB2 is a binding partner of sperm associated antigen 16S (SPAG16S), which is a regulator of spermiogenesis in mice, a process during which sperm flagella are formed. The expression of Rc/btb2 is also regulated by multicilin, a protein that controls ciliogenesis. Given that mouse Rc/btb2 mRNA is not only expressed in tissues bearing motile cilia, but also in tissues without motile cilia, we investigated whether RC/BTB2 plays a role in the general process of ciliogenesis by studying two cell lines that have primary cilia, NIH3T3, and IMCD3. We discovered that the subcellular localization of RC/BTB2 in the NIH3T3 and IMCD3 cells encompasses the pathway for ciliogenesis. RC/BTB2 was found in the Golgi bodies and centrosomes, two key structures essential for normal ciliogenesis. Knockdown of Rc/btb2 gene expression in these cell lines disrupted ciliogenesis. The percentage of cells with primary cilia was significantly reduced in stable cell lines transduced with specific Rc/btb2 shRNA viruses as compared to the control cells. When cilia were formed in the knockdown cells, they were significantly shorter than those in the control cells. Knockdown of Rc/btb2 expression did not affect cell proliferation and the cell cycle. Exogenous expression of RC/BTB2 in these stable knockdown cells restored ciliogenesis. These findings suggest that RC/BTB2 is a necessary component of the process of formation of primary cilia in somatic cells, perhaps through the transportation of cargos from Golgi bodies to centrosomes for cilia assembling.
Collapse
Affiliation(s)
- Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Wei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Jin Ni
- Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jinghua Wu
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Junping Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhengang Zhang
- Department of Infectious Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
- Department of Dermatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongfei Li
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yuqin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Maria E Teves
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Shizheng Song
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jerome F Strauss
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Zhibing Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
38
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PHG, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJM. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 2015; 26:4015-32. [PMID: 25808494 PMCID: PMC4710233 DOI: 10.1091/mbc.e14-12-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
A total of 1318 proteins characterized in the male germ cell Golgi apparatus reveal a new germ cell–specific Golgi marker and a new pan-Golgi marker for all cells. The localization of these and other Golgi proteins reveals differential expression linked to mitosis, meiosis, acrosome formation, and postacrosome Golgi migration and destination in the late spermatid. The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Robert E Kearney
- Department of Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kewei Ma
- Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
39
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
40
|
Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:561426. [PMID: 25045686 PMCID: PMC4089148 DOI: 10.1155/2014/561426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins (HSPs), their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect, we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue) and the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y) during the spermiogenesis in both mammals and nonmammalian vertebrates.
Collapse
|
41
|
Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF-/- mice. Proc Natl Acad Sci U S A 2014; 111:4964-9. [PMID: 24639530 DOI: 10.1073/pnas.1319114111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tata Element Modulatory Factor (TMF/ARA160) is a multifunctional Golgi-associated protein, which accumulates in colonic enterocytes and goblet cells. Mice lacking TMF/ARA160 (TMF(-/-)) produce thick and uniform colonic mucus that resists adherent bacterial colonization and diminishes susceptibility of these mice to induced acute colitis, through a mechanism that is not fully understood. Here, we show that mucus secretion by goblet cells is altered in the colon of TMF(-/-) mice, resulting in the formation of a highly oligomerized colonic gel-forming mucin, MUC2. Microbiome analysis revealed a shift in the microbiota of TMF(-/-) mice leading to predominance of the Firmicutes phylum and a significantly higher abundance of probiotic beneficial bacterial species. Notably, this trait was transmissible, and when cohoused with wild-type animals, TMF(-/-) mice influenced the microbiota and diminished the susceptibility of wild-type mice to chemically induced dextran sulfate sodium colitis. Thus, altered mucus secretion in TMF(-/-) mouse colons is accompanied by a reprogrammed intestinal microbiota, leading to a transmissible reduced sensitivity to induced colitis.
Collapse
|
42
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
43
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
44
|
Elkis Y, Bel S, Lerer-Goldstein T, Nyska A, Creasy DM, Shpungin S, Nir U. Testosterone deficiency accompanied by testicular and epididymal abnormalities in TMF(-/-) mice. Mol Cell Endocrinol 2013; 365:52-63. [PMID: 23000399 DOI: 10.1016/j.mce.2012.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/01/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
TMF/ARA160 is a Golgi-associated protein, which is essential for spermiogenesis. In this study, we show that lack of TMF/ARA160 leads to defects in both the testis and the epididymis. In the testis, spermatid retention and extensive proliferation of Leydig cells were observed. Concomitantly, the serum levels of luteinizing hormone (LH), a stimulator of Leydig cell proliferation, were significantly increased in TMF(-/-) mice. Structural and functional defects were also seen in the epididymis. These included apoptosis of epithelial epididymal cells and sperm stasis in the cauda. Notably, the serum testosterone levels of TMF(-/-) mice were significantly lower than those of wt mice, and external testosterone administration decreased the number of apoptotic epithelial epididymal cells in TMF(-/-) animals. In summary, we show here for the first time that TMF/ARA160 participates in the control of serum testosterone levels in males, and its absence results in major testicular and epididymal defects.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
46
|
Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D. Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF). J Biol Chem 2012; 288:4229-40. [PMID: 23239882 DOI: 10.1074/jbc.m112.426767] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein sorting between eukaryotic compartments requires vesicular transport, wherein tethering provides the first contact between vesicle and target membranes. Here we map and start to functionally analyze the interaction network of the conserved oligomeric Golgi (COG) complex that mediates retrograde tethering at the Golgi. The interactions of COG subunits with members of transport factor families assign the individual subunits as specific interaction hubs. Functional analysis of selected interactions suggests a mechanistic tethering model. We find that the COG complex interacts with two different Rabs in addition to each end of the golgin "TATA element modulatory factor" (TMF). This allows COG to potentially bridge the distance between the distal end of the golgin and the target membrane thereby promoting tighter docking. Concurrently we show that the central portion of TMF can bind to Golgi membranes that are liberated of their COPI cover. This latter interaction could serve to bring vesicle and target membranes into close apposition prior to fusion. A target selection mechanism, in which a hetero-oligomeric tethering factor organizes Rabs and coiled transport factors to enable protein sorting specificity, could be applicable to vesicle targeting throughout eukaryotic cells.
Collapse
Affiliation(s)
- Victoria J Miller
- Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
MARCH7 E3 ubiquitin ligase is highly expressed in developing spermatids of rats and its possible involvement in head and tail formation. Histochem Cell Biol 2012; 139:447-60. [PMID: 23104140 DOI: 10.1007/s00418-012-1043-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
Spermatogenesis is a highly complicated metamorphosis process of male germ cells. Recent studies have provided evidence that the ubiquitin-proteasome system plays an important role in sperm head shaping, but the underlying mechanism is less understood. In this study, we localized membrane-associated RING-CH (MARCH)7, an E3 ubiquitin ligase, in rat testis. Northern blot analysis showed that March7 mRNA is expressed ubiquitously but highly in the testis and ovary. In situ hybridization of rat testis demonstrated that March7 mRNA is expressed weakly in spermatogonia and its level is gradually increased as they develop. Immunohistochemical analysis detected MARCH7 protein expression in spermiogenic cells from late round spermatids to elongated spermatids and in epididymal spermatozoa. Moreover, MARCH7 was found to be localized to the caudal end of the developing acrosome of late round and elongating spermatids, colocalizing with β-actin, a component of the acroplaxome. In addition, MARCH7 was also detected in the developing flagella and its expression levels were prominent in elongated spermatids. We also showed that MARCH7 catalyzes lysine 48 (K48)-linked ubiquitination. Immunolocalization studies revealed that K48-linked ubiquitin chains were detected in the heads of elongating spermatids and in the acrosome/acroplaxome, neck, midpiece and cytoplasmic lobes of elongated spermatids. These results suggest that MARCH7 is involved in spermiogenesis by regulating the structural and functional integrity of the head and tail of developing spermatids.
Collapse
|
48
|
Bel S, Elkis Y, Lerer-Goldstein T, Nyska A, Shpungin S, Nir U. Loss of TMF/ARA160 protein renders colonic mucus refractory to bacterial colonization and diminishes intestinal susceptibility to acute colitis. J Biol Chem 2012; 287:25631-9. [PMID: 22553199 DOI: 10.1074/jbc.m112.364786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TMF/ARA160 is a Golgi-associated protein with several cellular functions, among them direction of the NF-κB subunit, p65 RelA, to ubiquitination and proteasomal degradation in stressed cells. We sought to investigate the role of TMF/ARA160 under imposed stress conditions in vivo. TMF(-/-) and wild-type (WT) mice were treated with the ulcerative agent dextran sulfate sodium (DSS), and the severity of the inflicted acute colitis was determined. TMF(-/-) mice were found to be significantly less susceptible to DSS-induced colitis, with profoundly less bacterial penetration into the colonic epithelia. Surprisingly, unlike in WT mice, no bacterial colonies were visualized in colons of healthy untreated TMF(-/-) mice, indicating the constitutive resistance of TMF(-/-) colonic mucus to bacterial retention and penetration. Gene expression analysis of colon tissues from unchallenged TMF(-/-) mice revealed 5-fold elevated transcription of the muc2 gene, which encodes the major component of the colonic mucus gel, the MUC2 mucin. Accordingly, the morphology of the colonic mucus in TMF(-/-) mice was found to differ from the mucus structure in WT colons. The NF-κB subunit, p65, a well known transcription inducer of muc2, was up-regulated significantly in TMF(-/-) intestinal epithelial cells. However, this did not cause spontaneous inflammation or increased colonic crypt cell proliferation. Collectively, our findings demonstrate that absence of TMF/ARA160 renders the colonic mucus refractory to bacterial colonization and the large intestine less susceptible to the onset of colitis.
Collapse
Affiliation(s)
- Shai Bel
- The Mina and Everard Goodman Faculty of Life-Science, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The omnipresent ubiquitin–proteasome system (UPS) is an ATP-dependent enzymatic machinery that targets substrate proteins for degradation by the 26S proteasome by tagging them with an isopeptide chain composed of covalently linked molecules of ubiquitin, a small chaperone protein. The current knowledge of UPS involvement in the process of sperm penetration through vitelline coat (VC) during human and animal fertilization is reviewed in this study, with attention also being given to sperm capacitation and acrosome reaction/exocytosis. In ascidians, spermatozoa release ubiquitin-activating and conjugating enzymes, proteasomes, and unconjugated ubiquitin to first ubiquitinate and then degrade the sperm receptor on the VC; in echinoderms and mammals, the VC (zona pellucida/ZP in mammals) is ubiquitinated during oogenesis and the sperm receptor degraded during fertilization. Various proteasomal subunits and associated enzymes have been detected in spermatozoa and localized to sperm acrosome and other sperm structures. By using specific fluorometric substrates, proteasome-specific proteolytic and deubiquitinating activities can be measured in live, intact spermatozoa and in sperm protein extracts. The requirement of proteasomal proteolysis during fertilization has been documented by the application of various proteasome-specific inhibitors and antibodies. A similar effect was achieved by depletion of sperm-surface ATP. Degradation of VC/ZP-associated sperm receptor proteins by sperm-borne proteasomes has been demonstrated in ascidians and sea urchins. On the applied side, polyspermy has been ameliorated by modulating sperm-associated deubiquitinating enzymes. Diagnostic and therapeutic applications could emerge in human reproductive medicine. Altogether, the studies on sperm proteasome indicate that animal fertilization is controlled in part by a unique, gamete associated, extracellular UPS.
Collapse
|
50
|
Abstract
A number of long coiled-coil proteins are present on the Golgi. Often referred to as "golgins," they are well conserved in evolution and at least five are likely to have been present in the last common ancestor of all eukaryotes. Individual golgins are found in different parts of the Golgi stack, and they are typically anchored to the membrane at their carboxyl termini by a transmembrane domain or by binding a small GTPase. They appear to have roles in membrane traffic and Golgi structure, but their precise function is in most cases unclear. Many have binding sites for Rab family GTPases along their length, and this has led to the suggestion that the golgins act collectively to form a tentacular matrix that surrounds the Golgi to capture Rab-coated membranes in the vicinity of the stack. Such a collective role might explain the lack of cell lethality seen following loss of some of the genes in human familial conditions or mouse models.
Collapse
|