1
|
Li Z, Yao A, Yang X, Luo S, Wu Z, Yu Y. NRP1 promotes osteo/odontogenic differentiation via shroom3 in dental pulp stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119795. [PMID: 39033931 DOI: 10.1016/j.bbamcr.2024.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Neuropilin-1 (NRP1) is a single transmembrane glycoprotein involved in a variety of physiological events. However, the exact mechanisms by which NRP1 regulates dental pulp stem cells (DPSCs) to differentiate toward an osteo/odontogenic phenotype are poorly understood. Here, we determined the significantly increased expression of full-length NRP1 and glycosaminoglycan (GAG)-modified NRP1 during osteo/odontogenesis in DPSCs. NRP1 was confirmed to promote alkaline phosphatase (ALP) activity, mineralized nodule deposition, protein and mRNA expression of Runx2, DSPP and DMP1 in DPSCs via the loss-of-function and gain-of-function approaches. Further, a non-GAG-modified NRP1 mutant (NRP1 S612A) was generated and the suppression of osteo/odontogenic differentiation was observed in the NRP1 S612A overexpression cells. Knockdown of the adaptor protein shroom3 resulted in the inhibition of osteo/odontogenesis. The protein-protein interaction network, the protein-protein docking and confocal analyses indicated the interactions between NRP1 and shroom3. Furthermore, immunoprecipitation followed by western analysis confirmed the binding of NRP1 to shroom3, but overexpression of NRP1 S612A greatly influenced the recruitment of shroom3 by NRP1. These results provide strong evidence that NRP1 is a critical regulator for osteo/odontogenesis through interacting with shroom3. Moreover, our results indicate that NRP1 S612A attenuates osteo/odontogenesis, suggesting that GAG modification is essential for NRP1 in DPSCs.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Aokang Yao
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Xinyue Yang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Sheng Luo
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Zhuoyang Wu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China.
| |
Collapse
|
2
|
Liu W, Xiu L, Zhou M, Li T, Jiang N, Wan Y, Qiu C, Li J, Hu W, Zhang W, Wu J. The Critical Role of the Shroom Family Proteins in Morphogenesis, Organogenesis and Disease. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:187-202. [PMID: 38884059 PMCID: PMC11169129 DOI: 10.1007/s43657-023-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Mingzhe Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Tao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Hu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| |
Collapse
|
3
|
Paul A, Lawlor A, Cunanan K, Gaheer PS, Kalra A, Napoleone M, Lanktree MB, Bridgewater D. The Good and the Bad of SHROOM3 in Kidney Development and Disease: A Narrative Review. Can J Kidney Health Dis 2023; 10:20543581231212038. [PMID: 38107159 PMCID: PMC10722951 DOI: 10.1177/20543581231212038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose of review Multiple large-scale genome-wide association meta-analyses studies have reliably identified an association between genetic variants within the SHROOM3 gene and chronic kidney disease. This association extends to alterations in known markers of kidney disease including baseline estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, and blood urea nitrogen. Yet, an understanding of the molecular mechanisms behind the association of SHROOM3 and kidney disease remains poorly communicated. We conducted a narrative review to summarize the current state of literature regarding the genetic and molecular relationships between SHROOM3 and kidney development and disease. Sources of information PubMed, PubMed Central, SCOPUS, and Web of Science databases, as well as review of references from relevant studies and independent Google Scholar searches to fill gaps in knowledge. Methods A comprehensive narrative review was conducted to explore the molecular mechanisms underlying SHROOM3 and kidney development, function, and disease. Key findings SHROOM3 is a unique protein, as it is the only member of the SHROOM group of proteins that regulates actin dynamics through apical constriction and apicobasal cell elongation. It holds a dichotomous role in the kidney, as subtle alterations in SHROOM3 expression and function can be both pathological and protective toward kidney disease. Genome-wide association studies have identified genetic variants near the transcription start site of the SHROOM3 gene associated with chronic kidney disease. SHROOM3 also appears to protect the glomerular structure and function in conditions such as focal segmental glomerulosclerosis. However, little is known about the exact mechanisms by which this protection occurs, which is why SHROOM3 binding partners remain an opportunity for further investigation. Limitations Our search was limited to English articles. No structured assessment of study quality was performed, and selection bias of included articles may have occurred. As we discuss future directions and opportunities, this narrative review reflects the academic views of the authors.
Collapse
Affiliation(s)
- Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Pukhraj S. Gaheer
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
| | - Aditya Kalra
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Melody Napoleone
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Lawlor A, Cunanan K, Cunanan J, Paul A, Khalili H, Ko D, Khan A, Gros R, Drysdale T, Bridgewater D. Minimal Kidney Disease Phenotype in Shroom3 Heterozygous Null Mice. Can J Kidney Health Dis 2023; 10:20543581231165716. [PMID: 37313360 PMCID: PMC10259099 DOI: 10.1177/20543581231165716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 06/15/2023] Open
Abstract
Background Shroom family member 3 (SHROOM3) encodes an actin-associated protein that regulates epithelial morphology during development. Several genome-wide association studies (GWAS) have identified genetic variances primarily in the 5' region of SHROOM3, associated with chronic kidney disease (CKD) and poor transplant outcomes. These genetic variants are associated with alterations in Shroom3 expression. Objective Characterize the phenotypic abnormalities associated with reduced Shroom3 expression in postnatal day 3-, 1-month and 3-month-old mice. Methods The Shroom3 protein expression pattern was determined by immunofluorescence. We generated Shroom3 heterozygous null mice (Shroom3Gt/+) and performed comparative analyses with wild type littermates based on somatic and kidney growth, gross renal anatomy, renal histology, renal function at postnatal day 3, 1 month, and 3 months. Results The Shroom3 protein expression localized to the apical regions of medullary and cortical tubular epithelium in postnatal wild type kidneys. Co-immunofluorescence studies confirmed protein expression localized to the apical side of the tubular epithelium in proximal convoluted tubules, distal convoluted tubules, and collecting ducts. While Shroom3 heterozygous null mice exhibited reduced Shroom3 protein expression, no differences in somatic and kidney growth were observed when compared to wild type mice. Although, rare cases of unilateral hypoplasia of the right kidney were observed at postnatal 1 month in Shroom3 heterozygotes. Yet renal histological analysis did not reveal any overt abnormalities in overall kidney structure or in glomerular and tubular organization in Shroom3 heterozygous null mice when compared to wild type mice. Analysis of the apical-basolateral orientation of the tubule epithelium demonstrated alterations in the proximal convoluted tubules and modest disorganization in the distal convoluted tubules at 3 months in Shroom3 heterozygotes. Additionally, these modest abnormalities were not accompanied by tubular injury or physiological defects in renal and cardiovascular function. Conclusion Taken together, our results describe a mild kidney disease phenotype in adult Shroom3 heterozygous null mice, suggesting that Shroom3 expression and function may be required for proper structure and maintenance of the various tubular epithelial parenchyma of the kidney.
Collapse
Affiliation(s)
- Allison Lawlor
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kristina Cunanan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joanna Cunanan
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada
| | - Amy Paul
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Hadiseh Khalili
- Toronto General Hospital Research Institute, University Health Network, Ontario, Canada
| | - Doyun Ko
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Ahsan Khan
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Thomas Drysdale
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Baldwin AT, Kim JH, Wallingford JB. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure. Dev Biol 2022; 491:105-112. [PMID: 36113571 PMCID: PMC10118288 DOI: 10.1016/j.ydbio.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
During neural tube closure, neural ectoderm cells constrict their apical surfaces to bend and fold the tissue into a tube that will become the central nervous system. Recent data from mice and humans with neural tube defects suggest that key genes required for neural tube closure can exert non-cell autonomous effects on cell behavior, but the nature of these effects remains obscure. Here, we coupled tissue-scale, high-resolution time-lapse imaging of the closing neural tube of Xenopus to multivariate regression modeling, and we show that medial actin accumulation drives apical constriction non-autonomously in neighborhoods of cells, rather than solely in individual cells. To further explore this effect, we examined mosaic crispant embryos and identified both autonomous and non-autonomous effects of the apical constriction protein Shroom3.
Collapse
Affiliation(s)
- Austin T Baldwin
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - Juliana H Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
6
|
Al-Farsi H, Al-Azwani I, Malek JA, Chouchane L, Rafii A, Halabi NM. Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes. J Transl Med 2022; 20:244. [PMID: 35619151 PMCID: PMC9134657 DOI: 10.1186/s12967-022-03440-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. METHODS We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. RESULTS We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. CONCLUSION We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.
Collapse
Affiliation(s)
| | | | - Joel A Malek
- Genomics Core, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Lotfi Chouchane
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arash Rafii
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| | - Najeeb M Halabi
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
7
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
8
|
Onouchi S, Yasuda H, Saito S, Atoji Y. Morphological features of the mouse duodenocolic fold in foetus and adult. J Anat 2022; 240:516-527. [PMID: 34590301 PMCID: PMC8819053 DOI: 10.1111/joa.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
For the mechanism of duodenojejunal flexure (DJF) morphogenesis in mice, we consider the gut tube itself and the gut mesentery as important players. In this study, we focussed on the morphological features of the gut mesentery around the mouse duodenum, especially the duodenocolic fold at embryonic day (E) 18.5 and the adult phase. The duodenocolic fold, a sheet of the mesentery, was located between the entire ascending duodenum and the descending colon. At E18.5, in the cranial area near the DJF, the duodenocolic fold joined both the mesocolon and the mesojejunal part of the root of the mesentery. In the middle and caudal areas, the duodenocolic fold joined the mesocolon. Interestingly, along with the ascending duodenum, the duodenocolic fold contained a smooth muscle bundle. The smooth muscle bundle continued from the outer muscular layer of the middle to the caudal part of the ascending duodenum. The three-dimensional imaging of the foetal duodenocolic fold revealed that the smooth muscle bundle had short and long apexes towards the proximal and distal parts of the root of the mesentery, respectively. At the adult phase, the duodenocolic fold had a much thinner connective tissue with a larger surface area in comparison with the duodenocolic fold at E18.5. The adult duodenocolic fold also contained the smooth muscle bundle which was similar to the foetal duodenocolic fold. A part of the duodenocolic fold connecting to the mesojejunal part of the root of the mesentery seemed to be homologous to the superior duodenal fold in humans, known as the duodenojejunal fold; by contrast, most of the duodenocolic fold seemed to be homologous to the inferior duodenal fold in humans, known as the duodenomesocolic fold. The smooth muscle bundle in the mouse duodenocolic fold seemed to play a role in keeping the ascending duodenum in the abdominal cavity because the duodenum in animals did not belong to a retroperitoneal organ in contrast to humans owing to the difference in the direction of gravity on the abdominal organs between mice and humans. Moreover, the smooth muscle bundle shared common and uncommon points in its location and nerve supply to the suspensory muscle of the duodenum in humans, known as the ligament of Treitz. This study had insufficient evidence that the smooth muscle bundle of the mouse duodenocolic fold was homologous to the suspensory muscle of the duodenum in humans. In conclusion, this study revealed the detailed structure of the mouse duodenocolic fold, including the relationship between the fold and other mesenteries. Particularly, the smooth muscle bundle is a specific feature of the mouse duodenocolic fold and might play several roles in DJF morphogenesis, especially the ascending duodenum and the caudal duodenal flexure during development.
Collapse
Affiliation(s)
- Sawa Onouchi
- Laboratory of Veterinary AnatomyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
- Laboratory of Veterinary AnatomyThe United Graduate School of Veterinary ScienceGifu UniversityGifuJapan
| | - Haruka Yasuda
- Laboratory of Veterinary AnatomyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
| | - Shouichiro Saito
- Laboratory of Veterinary AnatomyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
- Laboratory of Veterinary AnatomyThe United Graduate School of Veterinary ScienceGifu UniversityGifuJapan
| | - Yasuro Atoji
- Laboratory of Veterinary AnatomyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
| |
Collapse
|
9
|
Sanketi BD, Kurpios NA. In Ovo Gain- and Loss-of-Function Approaches to Study Gut Morphogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2438:163-181. [PMID: 35147942 DOI: 10.1007/978-1-0716-2035-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polarity of cellular components is essential for cellular shape changes, oriented cell migration, and modulating intra- and intercellular mechanical forces. However, many aspects of polarized cell behavior-especially dynamic cell shape changes during the process of morphogenesis-are almost impossible to study in cells cultured in plastic dishes. Avian embryos have always been a treasured model system to study vertebrate morphogenesis for developmental biologists. Avian embryos recapitulate human biology particularly well in the early stages due to their flat disc gastruloids. Since avian embryos can be manipulated in ovo they present paramount opportunities for highly localized targeting of genetic mechanisms during cellular and developmental processes. Here, we review the application of these methods for both gain of function and loss of function of a gene of interest at a specific developmental stage during left-right (LR) asymmetric gut morphogenesis. These tools present a powerful premise to investigate various polarized cellular activities and molecular processes in vivo in a reproducible manner.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Sanketi BD, Kurpios NA. Avian Embryos as a Model to Study Vascular Development. Methods Mol Biol 2022; 2438:183-195. [PMID: 35147943 DOI: 10.1007/978-1-0716-2035-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of live imaging is indispensable for advancing our understanding of vascular morphogenesis. Imaging fixed embryos at a series of distinct developmental time points, although valuable, does not reveal the dynamic behavior of cells, as well as their interactions with the underlying ECM. Due to the easy access of chicken embryos to manipulation and high-resolution imaging, this model has been at the origin of key discoveries. In parallel, known through its extensive use in quail-chick chimera studies, the quail embryo is equally poised to genetic manipulations and paramount to direct imaging of transgenic reporter quails. Here we describe ex ovo time-lapse confocal microscopy of transgenic quail embryo slices to image vascular development during gut morphogenesis. This technique is powerful as it allows direct observation of the dynamic endothelial cell behaviors along the left-right (LR) axis of the dorsal mesentery (DM), the major conduit for blood and lymphatic vessels that serve the gut. In combination with in ovo plasmid electroporation and quail-chick transplantation, these methods have allowed us to study the molecular mechanisms underlying blood vessel assembly during the formation of the intestine. Below we describe our protocols for the generation of embryo slices, ex ovo time-lapse imaging of fluorescently labeled cells, and quail-chick chimeras to study the early stages of gut vascular development.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Li A, Cunanan J, Khalili H, Plageman T, Ask K, Khan A, Hunjan A, Drysdale T, Bridgewater D. Shroom3, a Gene Associated with CKD, Modulates Epithelial Recovery after AKI. KIDNEY360 2021; 3:51-62. [PMID: 35368578 PMCID: PMC8967620 DOI: 10.34067/kid.0003802021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 01/12/2023]
Abstract
Background Ischemia-induced AKI resulting in tubular damage can often progress to CKD and is a common cause of nephrology consultation. After renal tubular epithelial damage, molecular and cellular mechanisms are activated to repair and regenerate the damaged epithelium. If these mechanisms are impaired, AKI can progress to CKD. Even in patients whose kidney function returns to normal baseline are more likely to develop CKD. Genome-wide association studies have provided robust evidence that genetic variants in Shroom3, which encodes an actin-associated protein, are associated with CKD and poor outcomes in transplanted kidneys. Here, we sought to further understand the associations of Shroom3 in CKD. Methods Kidney ischemia was induced in wild-type (WT) and Shroom3 heterozygous null mice (Shroom3Gt/+ ) and the mechanisms of cellular recovery and repair were examined. Results A 28-minute bilateral ischemia in Shroom3Gt/+ mice resulted in 100% mortality within 24 hours. After 22-minute ischemic injury, Shroom3Gt/+ mice had a 16% increased mortality, worsened kidney function, and significantly worse histopathology, apoptosis, proliferation, inflammation, and fibrosis after injury. The cortical tubular damage in Shroom3Gt/+ was associated with disrupted epithelial redifferentiation, disrupted Rho-kinase/myosin signaling, and disorganized apical F-actin. Analysis of MDCK cells showed the levels of Shroom3 are directly correlated to apical organization of actin and actomyosin regulators. Conclusion These findings establish that Shroom3 is required for epithelial repair and redifferentiation through the organization of actomyosin regulators, and could explain why genetic variants in Shroom3 are associated with CKD and allograft rejection.
Collapse
Affiliation(s)
- Aihua Li
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Joanna Cunanan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Hadiseh Khalili
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | | | - Kjetil Ask
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Ahsan Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ashmeet Hunjan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Thomas Drysdale
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Darren Bridgewater
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Raimo S, Zura-Miller G, Fezelinia H, Spruce LA, Zakopoulos I, Mohsen AW, Vockley J, Ischiropoulos H. Mitochondrial morphology, bioenergetics and proteomic responses in fatty acid oxidation disorders. Redox Biol 2021; 41:101923. [PMID: 33725513 PMCID: PMC7970426 DOI: 10.1016/j.redox.2021.101923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in nuclear genes encoding for mitochondrial proteins very long-chain acyl-CoA dehydrogenase (VLCAD) and trifunctional protein (TFP) cause rare autosomal recessive disorders. Studies in fibroblasts derived from patients with mutations in VLCAD and TFP exhibit mitochondrial defects. To gain insights on pathological changes that account for the mitochondrial deficits we performed quantitative proteomic, biochemical, and morphometric analyses in fibroblasts derived from subjects with three different VLCAD and three different TFP mutations. Proteomic data that was corroborated by antibody-based detection, indicated reduced levels of VLCAD and TFP protein in cells with VLCAD and TFP mutations respectively, which in part accounted for the diminished fatty acid oxidation capacity. Decreased mitochondrial respiratory capacity in cells with VLCAD and TFP mutations was quantified after glucose removal and cells with TFP mutations had lower levels of glycogen. Despite these energetic deficiencies, the cells with VLCAD and TFP mutations did not exhibit changes in mitochondria morphology, distribution, fusion and fission, quantified by either confocal or transmission electron microscopy and corroborated by proteomic and antibody-based protein analysis. Fibroblasts with VLCAD and to a lesser extend cells with TFP mutations had increased levels of mitochondrial respiratory chain proteins and proteins that facilitate the assembly of respiratory complexes. With the exception of reduced levels of catalase and glutathione S-transferase theta-1 in cells with TFP mutations, the levels of 45 proteins across all major intracellular antioxidant networks were similar between cells with VLCAD and TFP mutations and non-disease controls. Collectively the data indicate that despite the metabolic deficits, cells with VLCAD and TFP mutations maintain their proteomic integrity to preserve cellular and mitochondria architecture, support energy production and protect against oxidative stress.
Collapse
Affiliation(s)
- Serena Raimo
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriella Zura-Miller
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Fezelinia
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical Health and Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core Facility, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Iordanis Zakopoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Al-Walid Mohsen
- Division of Medical Genetics, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, Pittsburgh, PA 15261, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, Pittsburgh, PA 15261, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Division of Neonatology, Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
14
|
Babushkina A, Lwigale P. Periocular neural crest cell differentiation into corneal endothelium is influenced by signals in the nascent corneal environment. Dev Biol 2020; 465:119-129. [PMID: 32697973 PMCID: PMC7484247 DOI: 10.1016/j.ydbio.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
During ocular development, periocular neural crest cells (pNC) migrate into the region between the lens and presumptive corneal epithelium to form the corneal endothelium and stromal keratocytes. Although defects in neural crest cell development are associated with ocular dysgenesis, very little is known about the molecular mechanisms involved in this process. This study focuses on the corneal endothelium, a monolayer of specialized cells that are essential for maintaining normal hydration and transparency of the cornea. In avians, corneal endothelial cells are first to be specified from the pNC during their migration into the presumptive corneal region. To investigate the signals required for formation of the corneal endothelium, we utilized orthotopic and heterotopic injections of dissociated quail pNC into chick ocular regions. We find that pNC are multipotent and that the nascent cornea is competent to induce differentiation of ectopically injected pNC into corneal endothelium. Injected pNC downregulate expression of multipotency transcription factors and upregulate genes that are consistent with ontogenesis of the chick corneal endothelium. Importantly, we showed that TGFβ2 is expressed by the nascent lens and the corneal endothelium, and that TGFβ signaling plays a critical role in changing the molecular signature of pNC in vitro. Collectively, our results demonstrate the significance of the ocular environmental cues towards pNC differentiation, and have potential implications for clinical application of stem cells in the anterior segment.
Collapse
Affiliation(s)
- Anna Babushkina
- BioSciences, Rice University, 6100 Main Street, Houston, TX, USA
| | - Peter Lwigale
- BioSciences, Rice University, 6100 Main Street, Houston, TX, USA.
| |
Collapse
|
15
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
16
|
Durbin MD, O'Kane J, Lorentz S, Firulli AB, Ware SM. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol 2020; 464:124-136. [PMID: 32511952 DOI: 10.1016/j.ydbio.2020.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3's novel role in cardiac development and CHD.
Collapse
Affiliation(s)
- Matthew D Durbin
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James O'Kane
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel Lorentz
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony B Firulli
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
In Silico Mapping of Essential Residues in the Catalytic Domain of PDE5 Responsible for Stabilization of Its Commercial Inhibitors. Sci Pharm 2019. [DOI: 10.3390/scipharm87040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) is an important enzyme associated with the hydrolysis of cyclic guanosine monophosphate (cGMP) to guanosine monophosphate (GMP). Due to the relevant role of second messenger cGMP as a mediator in many physiological processes, efforts have been converged to find a safe pharmacological approach, seeking a specific, selective and potent inhibitor of the PDE5 enzyme. There are five commercial drugs with potential for clinical use: tadalafil, sildenafil, avanafil, udenafil and vardenafil. Here, we applied molecular modeling to obtain different profiles of protein–ligand interactions by adopting distinct PDE5 structures, specifically PDBid:1XOZ and two extracted from molecular dynamics (MD) simulations. The results generated by molecular docking showed several possibilities for inhibitor interactions with the catalytic pocket. Tadalafil, sildenafil and vardenafil were clearly stabilized by Gln817 via a well-oriented hydrogen bond. Another set of different interactions, such as polar, hydrophobic, π-stacking, metal–ligand and electrostatic, were responsible for accommodating avanafil and udenafil. All of the ligands are discussed in detail with consideration of the distinct protein structures, and a profile of the probability of residue–ligand contact is suggested, with the most frequently observed being: Tyr612, His613, Ser661, Thr723, Asp724, Asp764, Leu765, Val782 and Phe786. The molecular interactions displayed herein confirm findings achieved by previous authors and also present new contacts. In addition, the discussion can help researchers obtain a molecular basis for planning new selective PDE5 inhibitors, as well as explain an inhibitor’s experimental assays by considering the specific interactions occurring at the catalytic site.
Collapse
|
18
|
Martin JB, Muccioli M, Herman K, Finnell RH, Plageman TF. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism. Biol Open 2019; 8:8/1/bio041160. [PMID: 30670450 PMCID: PMC6361208 DOI: 10.1242/bio.041160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Folic acid supplementation can prevent neural tube defects, but the specific molecular mechanisms by which it does have not been elucidated. During neural plate morphogenesis, epithelial cell apical constriction cooperates with other events to drive tissue-bending, and when defective, can result in neural tube defects. A Rho-kinase deficient binding mutant of the apical constriction regulating protein, Shroom3 (Shroom3R1838C), is one of only a handful of mouse mutant lines with neural tube defects that can be rescued by folic acid supplementation. This provided a unique opportunity to probe the functional rescue of a protein linked to neural tube development by folic acid. Utilizing an epithelial cell culture model of apical constriction, it was observed that treatment with exogenous folic acid, as well as co-expression of the folic acid receptor Folr1, can rescue the function of the Rho-kinase binding deficient mutant of Shroom3 in vitro It was also determined that the rescuing ability of folic acid is RhoA and Rho-kinase independent but myosin light chain kinase (MLCK) and Src-kinase dependent. Inhibition of Rho-kinase-dependent apical constriction in chick embryo neural epithelium was also observed to be rescued by exogenous folic acid and that treatment with folic acid is accompanied by elevated activated myosin light chain and MLCK. Furthermore, doubly heterozygous mouse embryos lacking one copy each of Shroom3 and Folr1 exhibit a low rate of neural tube defects and also have lower levels of activated myosin light chain and MLCK. These studies suggest a novel mechanism by which folic acid modifies epithelial cell shape during morphogenesis, shedding light onto how folic acid may prevent neural tube defects.
Collapse
Affiliation(s)
- Jessica B Martin
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Maria Muccioli
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Kenneth Herman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy F Plageman
- The Ohio State University, College of Optometry, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Salehi Karlslätt K, Pettersson M, Jäntti N, Szafranski P, Wester T, Husberg B, Ullberg U, Stankiewicz P, Nordgren A, Lundin J, Lindstrand A, Nordenskjöld A. Rare copy number variants contribute pathogenic alleles in patients with intestinal malrotation. Mol Genet Genomic Med 2019; 7:e549. [PMID: 30632303 PMCID: PMC6418355 DOI: 10.1002/mgg3.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal malrotation is a potentially life-threatening congenital anomaly due to the risk of developing midgut volvulus. The reported incidence is 0.2%-1% and both apparently hereditary and sporadic cases have been reported. Intestinal malrotation is associated with a few syndromes with known genotype but the genetic contribution in isolated intestinal malrotation has not yet been reported. Rare copy number variants (CNVs) have been implicated in many congenital anomalies, and hence we sought to investigate the potential contribution of rare CNVs in intestinal malrotation. METHODS Analysis of array comparative genomic hybridization (aCGH) data from 47 patients with symptomatic intestinal malrotation was performed. RESULTS We identified six rare CNVs in five patients. Five CNVs involved syndrome loci: 7q11.23 microduplication, 16p13.11 microduplication, 18q terminal deletion, HDAC8 (Cornelia de Lange syndrome type 5 and FOXF1) as well as one intragenic deletion in GALNT14, not previously implicated in human disease. CONCLUSION In the present study, we identified rare CNVs contributing pathogenic or potentially pathogenic alleles in five patients with syndromic intestinal malrotation, suggesting that CNV screening is indicated in intestinal malrotation with associated malformations or neurological involvements. In addition, we identified intestinal malrotation in two known syndromes (Cornelia de Lange type 5 and 18q terminal deletion syndrome) that has not previously been associated with gastrointestinal malformations.
Collapse
Affiliation(s)
- Karin Salehi Karlslätt
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomas Wester
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt Husberg
- Department of General Surgery, Ersta Hospital, Stockholm, Sweden
| | - Ulla Ullberg
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Byrnes KG, McDermott K, Coffey JC. Development of mesenteric tissues. Semin Cell Dev Biol 2018; 92:55-62. [PMID: 30347243 DOI: 10.1016/j.semcdb.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Mesothelial, neurovascular, lymphatic, adipose and mesenchymal tissues make up the mesentery. These tissues are pathobiologically important for numerous reasons. Collectively, they form a continuous, discrete and substantive organ. Additionally, they maintain abdominal digestive organs in position and in continuity with other systems. Furthermore, as they occupy a central position, they mediate transmission of signals between the abdominal digestive system and the remainder of the body. Despite this physiologic centrality, mesenteric tissue development has received little investigatory focus. However, recent advances in our understanding of anatomy demonstrate continuity between all mesenteric tissues, thereby linking previously unrelated studies. In this review, we examine the development of mesenteric tissue in normality and in the setting of congenital abnormalities.
Collapse
Affiliation(s)
- Kevin Gerard Byrnes
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Kieran McDermott
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - John Calvin Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
21
|
Mesothelial-mesenchymal transitions in embryogenesis. Semin Cell Dev Biol 2018; 92:37-44. [PMID: 30243860 DOI: 10.1016/j.semcdb.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Most animals develop coelomic cavities lined by an epithelial cell layer called the mesothelium. Embryonic mesothelial cells have the ability to transform into mesenchymal cells which populate many developing organs contributing to their connective and vascular tissues, and also to organ-specific cell types. Furthermore, embryonic mesothelium and mesothelial-derived cells produce essential signals for visceral morphogenesis. We review the most relevant literature about the mechanisms regulating the embryonic mesothelial-mesenchymal transition, the developmental fate of the mesothelial-derived cells and other functions of the embryonic mesothelium, such as its contribution to the establishment of left-right visceral asymmetries or its role in limb morphogenesis.
Collapse
|
22
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
23
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
24
|
López-Escobar B, Caro-Vega JM, Vijayraghavan DS, Plageman TF, Sanchez-Alcazar JA, Moreno RC, Savery D, Márquez-Rivas J, Davidson LA, Ybot-González P. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development 2018; 145:dev.157487. [PMID: 29636380 DOI: 10.1242/dev.157487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells.
Collapse
Affiliation(s)
- Beatriz López-Escobar
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - José Manuel Caro-Vega
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | | | | | - José A Sanchez-Alcazar
- Centro Andaluz de Biología del Desarrollo (CABD), and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
| | - Roberto Carlos Moreno
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Javier Márquez-Rivas
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain .,Unidad de Gestión Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| |
Collapse
|
25
|
Yano T, Kanoh H, Tamura A, Tsukita S. Apical cytoskeletons and junctional complexes as a combined system in epithelial cell sheets. Ann N Y Acad Sci 2017; 1405:32-43. [DOI: 10.1111/nyas.13432] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hatsuho Kanoh
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
- Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine; Osaka University; Osaka Japan
| |
Collapse
|
26
|
Zalewski JK, Mo JH, Heber S, Heroux A, Gardner RG, Hildebrand JD, VanDemark AP. Structure of the Shroom-Rho Kinase Complex Reveals a Binding Interface with Monomeric Shroom That Regulates Cell Morphology and Stimulates Kinase Activity. J Biol Chem 2016; 291:25364-25374. [PMID: 27758857 DOI: 10.1074/jbc.m116.738559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation of interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. Additionally, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.
Collapse
Affiliation(s)
- Jenna K Zalewski
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joshua H Mo
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Simone Heber
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Annie Heroux
- the Department of Biology, Brookhaven National Laboratory, Upton, New York 11973, and
| | - Richard G Gardner
- the Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Jeffrey D Hildebrand
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew P VanDemark
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
27
|
MT1-MMP and its potential role in the vertebrate intestinal morphogenesis. Acta Histochem 2016; 118:729-735. [PMID: 27640084 DOI: 10.1016/j.acthis.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/14/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP) is involved in numerous biological processes, including morphogenesis. However, the role of MT1-MMP in the development of the vertebrate intestine is poorly understood. This study aimed to evaluate the expression of MT1-MMP in the intestine of rats and chickens along the embryonic and postnatal periods using immunohistochemistry. Results revealed a remarkable spatiotemporal correlation between MT1-MMP expression and intestinal villi morphogenesis in both vertebrates. However, the villi morphogenesis process was found to be different in chickens to that of rats. Moreover, extensive MT1-MMP labeling was observed in the entire villus epithelium from birth until the complete maturation of the small intestinal mucosa in both vertebrates. From these results, we suggest that MT1-MMP contributes to intestinal development, particularly to villi morphogenesis, in both vertebrates. However, further studies are necessary to confirm the role of MT1-MMP in this cellular process. In addition, we performed validation of the primary antibody against human MT1-MMP for adult chickens.
Collapse
|
28
|
Liao R, Zhang X, Chen Q, Wang Z, Wang Q, Yang C, Pan Y. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet 2016; 47:588-96. [PMID: 27166871 DOI: 10.1111/age.12456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
This study was designed to investigate the genetic basis of growth and egg traits in Dongxiang blue-shelled chickens and White Leghorn chickens. In this study, we employed a reduced representation sequencing approach called genotyping by genome reducing and sequencing to detect genome-wide SNPs in 252 Dongxiang blue-shelled chickens and 252 White Leghorn chickens. The Dongxiang blue-shelled chicken breed has many specific traits and is characterized by blue-shelled eggs, black plumage, black skin, black bone and black organs. The White Leghorn chicken is an egg-type breed with high productivity. As multibreed genome-wide association studies (GWASs) can improve precision due to less linkage disequilibrium across breeds, a multibreed GWAS was performed with 156 575 SNPs to identify the associated variants underlying growth and egg traits within the two chicken breeds. The analysis revealed 32 SNPs exhibiting a significant genome-wide association with growth and egg traits. Some of the significant SNPs are located in genes that are known to impact growth and egg traits, but nearly half of the significant SNPs are located in genes with unclear functions in chickens. To our knowledge, this is the first multibreed genome-wide report for the genetics of growth and egg traits in the Dongxiang blue-shelled and White Leghorn chickens.
Collapse
Affiliation(s)
- R Liao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Animal Husbandry and Veterinary Research, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - X Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, China
| | - Q Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650093, Yunnan, China
| | - Z Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Q Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, China
| | - C Yang
- Institute of Animal Husbandry and Veterinary Research, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Y Pan
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, China.
| |
Collapse
|
29
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
30
|
McGreevy EM, Vijayraghavan D, Davidson LA, Hildebrand JD. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure. Biol Open 2015; 4:186-96. [PMID: 25596276 PMCID: PMC4365487 DOI: 10.1242/bio.20149589] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock), to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP) pathway, to direct the polarized cellular behaviors that drive convergent extension (CE) movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs.
Collapse
Affiliation(s)
- Erica M McGreevy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
31
|
Chaffee BR, Shang F, Chang ML, Clement TM, Eddy EM, Wagner BD, Nakahara M, Nagata S, Robinson ML, Taylor A. Nuclear removal during terminal lens fiber cell differentiation requires CDK1 activity: appropriating mitosis-related nuclear disassembly. Development 2014; 141:3388-98. [PMID: 25139855 DOI: 10.1242/dev.106005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lens epithelial cells and early lens fiber cells contain the typical complement of intracellular organelles. However, as lens fiber cells mature they must destroy their organelles, including nuclei, in a process that has remained enigmatic for over a century, but which is crucial for the formation of the organelle-free zone in the center of the lens that assures clarity and function to transmit light. Nuclear degradation in lens fiber cells requires the nuclease DNase IIβ (DLAD) but the mechanism by which DLAD gains access to nuclear DNA remains unknown. In eukaryotic cells, cyclin-dependent kinase 1 (CDK1), in combination with either activator cyclins A or B, stimulates mitotic entry, in part, by phosphorylating the nuclear lamin proteins leading to the disassembly of the nuclear lamina and subsequent nuclear envelope breakdown. Although most post-mitotic cells lack CDK1 and cyclins, lens fiber cells maintain these proteins. Here, we show that loss of CDK1 from the lens inhibited the phosphorylation of nuclear lamins A and C, prevented the entry of DLAD into the nucleus, and resulted in abnormal retention of nuclei. In the presence of CDK1, a single focus of the phosphonuclear mitotic apparatus is observed, but it is not focused in CDK1-deficient lenses. CDK1 deficiency inhibited mitosis, but did not prevent DNA replication, resulting in an overall reduction of lens epithelial cells, with the remaining cells possessing an abnormally large nucleus. These observations suggest that CDK1-dependent phosphorylations required for the initiation of nuclear membrane disassembly during mitosis are adapted for removal of nuclei during fiber cell differentiation.
Collapse
Affiliation(s)
- Blake R Chaffee
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA
| | - Min-Lee Chang
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA
| | - Tracy M Clement
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Edward M Eddy
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Brad D Wagner
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Masaki Nakahara
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigekazu Nagata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Allen Taylor
- Laboratory for Nutrition and Vision Research, Human Nutrition Research Center on Aging, Nutrition &Vision Res-USDA-HNRCA, Tufts University, Boston 02111, MA, USA Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol Open 2014; 3:850-60. [PMID: 25171888 PMCID: PMC4163662 DOI: 10.1242/bio.20147450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jenna K Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Lang RA, Herman K, Reynolds AB, Hildebrand JD, Plageman TF. p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis. Development 2014; 141:3177-87. [PMID: 25038041 DOI: 10.1242/dev.107433] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape, which can facilitate morphogenetic movements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them toward the middle of the cell, effectively reducing the apical circumference. A current challenge is to determine whether these mechanisms are conserved in vertebrates and to identify the molecules responsible for linking apical junctions with the AC machinery. Utilizing the developing mouse eye as a model, we have uncovered evidence that lens placode AC may be partially dependent on apically positioned myosin-containing filaments associated with the zonula adherens. In addition we found that, among several junctional components, p120-catenin genetically interacts with Shroom3, a protein required for AC during embryonic morphogenesis. Further analysis revealed that, similar to Shroom3, p120-catenin is required for AC of lens cells. Finally, we determined that p120-catenin functions by recruiting Shroom3 to adherens junctions. Together, these data identify a novel role for p120-catenin during AC and further define the mechanisms required for vertebrate AC.
Collapse
Affiliation(s)
- Richard A Lang
- The Visual System Group, Division of Pediatric Ophthalmology and Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ken Herman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 2014; 15:397-410. [PMID: 24824068 DOI: 10.1038/nrm3802] [Citation(s) in RCA: 403] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial cells display dynamic behaviours, such as rearrangement, movement and shape changes, particularly during embryonic development and in equivalent processes in adults. Accumulating evidence suggests that the remodelling of cell junctions, especially adherens junctions (AJs), has major roles in controlling these behaviours. AJs comprise cadherin adhesion receptors and cytoplasmic proteins that associate with them, including catenins and actin filaments, and exhibit various forms, such as linear or punctate. Remodelling of AJs induces epithelial reshaping in various ways, including by planar-polarized apical constriction that is driven by the contraction of AJ-associated actomyosin and that occurs during neural plate bending and germband extension. RHO GTPases and their effectors regulate actin polymerization and actomyosin contraction at AJs during the epithelial reshaping processes.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
35
|
Mohan S, Das D, Bauer RJ, Heroux A, Zalewski JK, Heber S, Dosunmu-Ogunbi AM, Trakselis MA, Hildebrand JD, VanDemark AP. Structure of a highly conserved domain of Rock1 required for Shroom-mediated regulation of cell morphology. PLoS One 2013; 8:e81075. [PMID: 24349032 PMCID: PMC3857177 DOI: 10.1371/journal.pone.0081075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology.
Collapse
Affiliation(s)
- Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert J. Bauer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Annie Heroux
- Department of Biology, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Jenna K. Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simone Heber
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Atinuke M. Dosunmu-Ogunbi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael A. Trakselis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey D. Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JDH); (AV)
| | - Andrew P. VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JDH); (AV)
| |
Collapse
|
36
|
Abstract
Transcriptional factor Pitx2 is a key regulator of left-right asymmetry in the developing gut. In this issue of Developmental Cell, Welsh et al. (2013) identify the formin Daam2, an effector of Wnt signaling, as a key cellular target of Pitx2 required for morphogenetic events during asymmetric gut formation.
Collapse
Affiliation(s)
- Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
37
|
Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, Kurpios NA. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 2013; 26:629-44. [PMID: 24091014 PMCID: PMC3965270 DOI: 10.1016/j.devcel.2013.07.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023]
Abstract
A critical aspect of gut morphogenesis is initiation of a leftward tilt, and failure to do so leads to gut malrotation and volvulus. The direction of tilt is specified by asymmetric cell behaviors within the dorsal mesentery (DM), which suspends the gut tube, and is downstream of Pitx2, the key transcription factor responsible for the transfer of left-right (L-R) information from early gastrulation to morphogenesis. Although Pitx2 is a master regulator of L-R organ development, its cellular targets that drive asymmetric morphogenesis are not known. Using laser microdissection and targeted gene misexpression in the chicken DM, we show that Pitx2-specific effectors mediate Wnt signaling to activate the formin Daam2, a key Wnt effector and itself a Pitx2 target, linking actin dynamics to cadherin-based junctions to ultimately generate asymmetric cell behaviors. Our work highlights how integration of two conserved cascades may be the ultimate force through which Pitx2 sculpts L-R organs.
Collapse
Affiliation(s)
- Ian C. Welsh
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael Thomsen
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - David W. Gludish
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Catalina Alfonso-Parra
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yan Bai
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F. Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natasza A. Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Onouchi S, Ichii O, Otsuka S, Hashimoto Y, Kon Y. Analysis of duodenojejunal flexure formation in mice: implications for understanding the genetic basis for gastrointestinal morphology in mammals. J Anat 2013; 223:385-98. [PMID: 23961897 DOI: 10.1111/joa.12093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/18/2022] Open
Abstract
The mammalian gut undergoes morphological changes during development. We studied the developing mouse duodenojejunal flexure (DJF) to elucidate the mechanism of formation. During embryonic days 10.75-13.75, DJF formation was morphologically classified into three stages: the expansion stage, flexure formation stage, and flexure elongation stage. From the expansion to the flexure formation stages, the DJF wall showed asymmetric morphology and proliferation along the left-right intestinal axis. From the flexure formation to the flexure elongation stage, the DJF started to bend dorsally with counterclockwise rotation along the antero-caudal intestinal axis, indicating that the original right side of the duodenum was rotated towards the dorsal body wall during development of the DJF. The direction of attachment of the dorsal mesentery to the DJF did not correspond to the bending direction of the DJF during flexure formation, and this finding indicated that the dorsal mesentery contributed very little to DJF formation. During DJF formation, Aldh1a2 and hedgehog mRNAs were detected at the DJF, and their expression levels differed along the bending axis. In conclusion, DJF formation might be triggered by asymmetric morphology and proliferation along the left-right intestinal axis under the control of retinoic acid and hedgehog signaling.
Collapse
Affiliation(s)
- Sawa Onouchi
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
39
|
DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 2013; 22:1239-51. [PMID: 23637064 PMCID: PMC3704223 DOI: 10.1158/1055-9965.epi-12-1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants. METHODS We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single-nucleotide variants (SNV) predicted to be benign. RESULTS We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or noncoding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively. CONCLUSIONS Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in CRC susceptibility. IMPACT Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shanaka R. Gunawardena
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sumit Middha
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Yan W Asmann
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Daniel J. Schaid
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shannon K. McDonnell
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shaun M. Riska
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel J. Serie
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - William R. Bamlet
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mine S. Cicek
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria 3010, Australia
| | - David J. Duggan
- Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel Buchanan
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Mark Clendenning
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| | | | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John D. Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Polly A. Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii, Honolulu, HI, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Ellen L. Goode
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
40
|
Madakashira BP, Kobrinski DA, Hancher AD, Arneman EC, Wagner BD, Wang F, Shin H, Lovicu FJ, Reneker LW, Robinson ML. Frs2α enhances fibroblast growth factor-mediated survival and differentiation in lens development. Development 2012; 139:4601-12. [PMID: 23136392 DOI: 10.1242/dev.081737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most growth factor receptor tyrosine kinases (RTKs) signal through similar intracellular pathways, but they often have divergent biological effects. Therefore, elucidating the mechanism of channeling the intracellular effect of RTK stimulation to facilitate specific biological responses represents a fundamental biological challenge. Lens epithelial cells express numerous RTKs with the ability to initiate the phosphorylation (activation) of Erk1/2 and PI3-K/Akt signaling. However, only Fgfr stimulation leads to lens fiber cell differentiation in the developing mammalian embryo. Additionally, within the lens, only Fgfrs activate the signal transduction molecule Frs2α. Loss of Frs2α in the lens significantly increases apoptosis and decreases phosphorylation of both Erk1/2 and Akt. Also, Frs2α deficiency decreases the expression of several proteins characteristic of lens fiber cell differentiation, including Prox1, p57(KIP2), aquaporin 0 and β-crystallins. Although not normally expressed in the lens, the RTK TrkC phosphorylates Frs2α in response to binding the ligand NT3. Transgenic lens epithelial cells expressing both TrkC and NT3 exhibit several features characteristic of lens fiber cells. These include elongation, increased Erk1/2 and Akt phosphorylation, and the expression of β-crystallins. All these characteristics of NT3-TrkC transgenic lens epithelial cells depend on Frs2α. Therefore, tyrosine phosphorylation of Frs2α mediates Fgfr-dependent lens cell survival and provides a mechanistic basis for the unique fiber-differentiating capacity of Fgfs on mammalian lens epithelial cells.
Collapse
|
41
|
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012; 139:3257-62. [PMID: 22912409 DOI: 10.1242/dev.061606] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The left-right (LR) asymmetry of visceral organs is fundamental to their function and position within the body. Over the past decade or so, the molecular mechanisms underlying the establishment of such LR asymmetry have been revealed in many vertebrate and invertebrate model organisms. These studies have identified a gene network that contributes to this process and is highly conserved from sea urchin to mouse. By contrast, some specific steps of the process, such as the symmetry-breaking event and situs-specific organogenesis, appear to have diverged during evolution. Here, we summarize the common and divergent mechanisms by which LR asymmetry is established in vertebrates.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | | |
Collapse
|
42
|
Suzuki M, Morita H, Ueno N. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev Growth Differ 2012; 54:266-76. [DOI: 10.1111/j.1440-169x.2012.01346.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Hitoshi Morita
- Division of Morphogenesis; Department of Developmental Biology; National Institute for Basic Biology; Nishigonaka 38, Myodaiji; Okazaki; 444-8585; Aichi; Japan
| | | |
Collapse
|
43
|
Mohan S, Rizaldy R, Das D, Bauer RJ, Heroux A, Trakselis MA, Hildebrand JD, VanDemark AP. Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction. Mol Biol Cell 2012; 23:2131-42. [PMID: 22493320 PMCID: PMC3364177 DOI: 10.1091/mbc.e11-11-0937] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Shroom (Shrm) proteins are essential regulators of cell shape and tissue morpho-logy during animal development that function by interacting directly with the coiled-coil region of Rho kinase (Rock). The Shrm-Rock interaction is sufficient to direct Rock subcellular localization and the subsequent assembly of contractile actomyosin networks in defined subcellular locales. However, it is unclear how the Shrm-Rock interaction is regulated at the molecular level. To begin investigating this issue, we present the structure of Shrm domain 2 (SD2), which mediates the interaction with Rock and is required for Shrm function. SD2 is a unique three-segmented dimer with internal symmetry, and we identify conserved residues on the surface and within the dimerization interface that are required for the Rock-Shrm interaction and Shrm activity in vivo. We further show that these residues are critical in both vertebrate and invertebrate Shroom proteins, indicating that the Shrm-Rock signaling module has been functionally and molecularly conserved. The structure and biochemical analysis of Shrm SD2 indicate that it is distinct from other Rock activators such as RhoA and establishes a new paradigm for the Rock-mediated assembly of contractile actomyosin networks.
Collapse
Affiliation(s)
- Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kuroda J, Nakamura M, Yoshida M, Yamamoto H, Maeda T, Taniguchi K, Nakazawa N, Hatori R, Ishio A, Ozaki A, Shimaoka S, Ito T, Iida H, Okumura T, Maeda R, Matsuno K. Canonical Wnt signaling in the visceral muscle is required for left-right asymmetric development of the Drosophila midgut. Mech Dev 2011; 128:625-39. [PMID: 22198363 DOI: 10.1016/j.mod.2011.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/24/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022]
Abstract
Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.
Collapse
Affiliation(s)
- Junpei Kuroda
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tariq M, Belmont JW, Lalani S, Smolarek T, Ware SM. SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing. Genome Biol 2011; 12:R91. [PMID: 21936905 PMCID: PMC3308054 DOI: 10.1186/gb-2011-12-9-r91] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 01/14/2023] Open
Abstract
Background Heterotaxy-spectrum cardiovascular disorders are challenging for traditional genetic analyses because of clinical and genetic heterogeneity, variable expressivity, and non-penetrance. In this study, high-resolution SNP genotyping and exon-targeted array comparative genomic hybridization platforms were coupled to whole-exome sequencing to identify a novel disease candidate gene. Results SNP genotyping identified absence-of-heterozygosity regions in the heterotaxy proband on chromosomes 1, 4, 7, 13, 15, 18, consistent with parental consanguinity. Subsequently, whole-exome sequencing of the proband identified 26,065 coding variants, including 18 non-synonymous homozygous changes not present in dbSNP132 or 1000 Genomes. Of these 18, only 4 - one each in CXCL2, SHROOM3, CTSO, RXFP1 - were mapped to the absence-of-heterozygosity regions, each of which was flanked by more than 50 homozygous SNPs, confirming recessive segregation of mutant alleles. Sanger sequencing confirmed the SHROOM3 homozygous missense mutation and it was predicted as pathogenic by four bioinformatic tools. SHROOM3 has been identified as a central regulator of morphogenetic cell shape changes necessary for organogenesis and can physically bind ROCK2, a rho kinase protein required for left-right patterning. Screening 96 sporadic heterotaxy patients identified four additional patients with rare variants in SHROOM3. Conclusions Using whole exome sequencing, we identify a recessive missense mutation in SHROOM3 associated with heterotaxy syndrome and identify rare variants in subsequent screening of a heterotaxy cohort, suggesting SHROOM3 as a novel target for the control of left-right patterning. This study reveals the value of SNP genotyping coupled with high-throughput sequencing for identification of high yield candidates for rare disorders with genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Muhammad Tariq
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|