1
|
Okamura D, Kohara A, Chigi Y, Katayama T, Sharif J, Wu J, Ito-Matsuoka Y, Matsui Y. p38 MAPK as a gatekeeper of reprogramming in mouse migratory primordial germ cells. Front Cell Dev Biol 2024; 12:1410177. [PMID: 38911025 PMCID: PMC11191381 DOI: 10.3389/fcell.2024.1410177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
3
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
4
|
Nicholls PK, Page DC. Germ cell determination and the developmental origin of germ cell tumors. Development 2021; 148:239824. [PMID: 33913479 DOI: 10.1242/dev.198150] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.
Collapse
Affiliation(s)
- Peter K Nicholls
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Downs KM. Is extra-embryonic endoderm a source of placental blood cells? Exp Hematol 2020; 89:37-42. [PMID: 32735907 DOI: 10.1016/j.exphem.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
The extra-embryonic hypoblast/visceral endoderm of Placentalia carries out a variety of functions during gestation, including hematopoietic induction. Results of decades-old and recent experiments have provided compelling evidence that, in addition to its inducing properties, hypoblast/visceral endoderm itself is a source of placental blood cells. Those observations that highlight extra-embryonic endoderm's role as an overlooked source of placental blood cells across species are briefly discussed here, with suggestions for future exploration.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
6
|
Nicholls PK, Schorle H, Naqvi S, Hu YC, Fan Y, Carmell MA, Dobrinski I, Watson AL, Carlson DF, Fahrenkrug SC, Page DC. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc Natl Acad Sci U S A 2019; 116:25677-25687. [PMID: 31754036 PMCID: PMC6925976 DOI: 10.1073/pnas.1910733116] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.
Collapse
Affiliation(s)
| | - Hubert Schorle
- Whitehead Institute, Cambridge, MA 02142
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, 53127 Bonn, Germany
| | - Sahin Naqvi
- Whitehead Institute, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yueh-Chiang Hu
- Whitehead Institute, Cambridge, MA 02142
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Yuting Fan
- Whitehead Institute, Cambridge, MA 02142
- Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-sen University, 510655 Guangzhou, China
| | | | - Ina Dobrinski
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | - David C Page
- Whitehead Institute, Cambridge, MA 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142
| |
Collapse
|
7
|
Downs KM, Rodriguez AM. The mouse fetal-placental arterial connection: A paradigm involving the primitive streak and visceral endoderm with implications for human development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e362. [PMID: 31622045 DOI: 10.1002/wdev.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/02/2019] [Accepted: 08/24/2019] [Indexed: 01/12/2023]
Abstract
In Placentalia, the fetus depends upon an organized vascular connection with its mother for survival and development. Yet, this connection was, until recently, obscure. Here, we summarize how two unrelated tissues, the primitive streak, or body axis, and extraembryonic visceral endoderm collaborate to create and organize the fetal-placental arterial connection in the mouse gastrula. The primitive streak reaches into the extraembryonic space, where it marks the site of arterial union and creates a progenitor cell pool. Through contact with the streak, associated visceral endoderm undergoes an epithelial-to-mesenchymal transition, contributing extraembryonic mesoderm to the placental arterial vasculature, and to the allantois, or pre-umbilical tissue. In addition, visceral endoderm bifurcates into the allantois where, with the primitive streak, it organizes the nascent umbilical artery and promotes allantoic elongation to the chorion, the site of fetal-maternal exchange. Brachyury mediates streak extension and vascular patterning, while Hedgehog is involved in visceral endoderm's conversion to mesoderm. A unique CASPASE-3-positive cell separates streak- and non-streak-associated domains in visceral endoderm. Based on these new insights at the posterior embryonic-extraembryonic interface, we conclude by asking whether so-called primordial germ cells are truly antecedents to the germ line that segregate within the allantois, or whether they are placental progenitor cells. Incorporating these new working hypotheses into mutational analyses in which the placentae are affected will aid understanding a spectrum of disorders, including orphan diseases, which often include abnormalities of the umbilical cord, yolk sac, and hindgut, whose developmental relationship to each other has, until now, been poorly understood. This article is categorized under: Birth Defects > Associated with Preimplantation and Gastrulation Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
8
|
Zhao S, Xu J, Liu S, Cui K, Li Z, Liu N. Dppa3 in pluripotency maintenance of ES cells and early embryogenesis. J Cell Biochem 2018; 120:4794-4799. [PMID: 30417435 DOI: 10.1002/jcb.28063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 01/11/2023]
Abstract
Embryonic development is precisely regulated by a network of signal pathways and specific genes. Dppa3 (also known as Pgc7 or Stella) plays an important role in early embryonic development during the cleavage stage as a maternal effect gene. Dppa3 expresses in many species, and its homologous gene in human and rat genomes is located at the same chromosomal regions and have the same exon-intron structure. However, unlike mouse embryonic stem (ES) cells, in which the Dppa3 promoter maintains hypomethylation that allows a high transcription level, the DPPA3 promoter region in human ES cells is methylated, much like that of mouse epiblast stem cell. Dppa3 is essential for early embryogenesis and pluripotency maintenance; however, the precise mechanism and downstream passage remains unknown. In this review, we will summarize some important functions of Dppa3 in early embryogenesis and pluripotency maintenance of mouse ES cells.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Medicine, Nankai University, Tianjin, China.,Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Xu
- School of Medicine, Nankai University, Tianjin, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Kaige Cui
- School of Medicine, Nankai University, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Downs KM. Extragonadal primordial germ cells or placental progenitor cells? Reprod Biomed Online 2018; 36:6-11. [DOI: 10.1016/j.rbmo.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023]
|
10
|
Rodriguez AM, Downs KM. Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 2017; 432:98-124. [PMID: 28882402 PMCID: PMC5980994 DOI: 10.1016/j.ydbio.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Wolfe AD, Rodriguez AM, Downs KM. STELLA collaborates in distinct mesendodermal cell subpopulations at the fetal-placental interface in the mouse gastrula. Dev Biol 2017; 425:44-57. [PMID: 28322735 PMCID: PMC5510028 DOI: 10.1016/j.ydbio.2017.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023]
Abstract
The allantois-derived umbilical component of the chorio-allantoic placenta shuttles fetal blood to and from the chorion, thereby ensuring fetal-maternal exchange. The progenitor populations that establish and supply the fetal-umbilical interface lie, in part, within the base of the allantois, where the germ line is claimed to segregate from the soma. Results of recent studies in the mouse have reported that STELLA (DPPA-3, PGC7) co-localizes with PRDM1 (BLIMP1), the bimolecular signature of putative primordial germ cells (PGCs) throughout the fetal-placental interface. Thus, if PGCs form extragonadally within the posterior region of the mammal, they cannot be distinguished from the soma on the basis of these proteins. We used immunohistochemistry, immunofluorescence, and confocal microscopy of the mouse gastrula to co-localize STELLA with a variety of gene products, including pluripotency factor OCT-3/4, mesendoderm-associated T and MIXl1, mesendoderm- and endoderm-associated FOXa2 and hematopoietic factor Runx1. While a subpopulation of cells localizing OCT-3/4 was always found independently of STELLA, STELLA always co-localized with OCT-3/4. Despite previous reports that T is involved in specification of the germ line, co-localization of STELLA and T was detected only in a small subset of cells in the base of the allantois. Slightly later in the hindgut lip, STELLA+/(OCT-3/4+) co-localized with FOXa2, as well as with RUNX1, indicative of definitive endoderm and hemangioblasts, respectively. STELLA was never found with MIXl1. On the basis of these and previous results, we conclude that STELLA identifies at least five distinct cell subpopulations within the allantois and hindgut, where they may be involved in mesendodermal differentiation and hematopoiesis at the posterior embryonic-extraembryonic interface. These data provide a new point of departure for understanding STELLA's potential roles in building the fetal-placental connection.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, 4105 WIMR, Madison, WI 53705, United States
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, United States
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, United States
| |
Collapse
|
12
|
Rodriguez AM, Jin DX, Wolfe AD, Mikedis MM, Wierenga L, Hashmi MP, Viebahn C, Downs KM. Brachyury drives formation of a distinct vascular branchpoint critical for fetal-placental arterial union in the mouse gastrula. Dev Biol 2017; 425:208-222. [PMID: 28389228 DOI: 10.1016/j.ydbio.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 01/28/2023]
Abstract
How the fetal-placental arterial connection is made and positioned relative to the embryonic body axis, thereby ensuring efficient and directed blood flow to and from the mother during gestation, is not known. Here we use a combination of genetics, timed pharmacological inhibition in living mouse embryos, and three-dimensional modeling to link two novel architectural features that, at present, have no status in embryological atlases. The allantoic core domain (ACD) is the extraembryonic extension of the primitive streak into the allantois, or pre-umbilical tissue; the vessel of confluence (VOC), situated adjacent to the ACD, is an extraembryonic vessel that marks the site of fetal-placental arterial union. We show that genesis of the fetal-placental connection involves the ACD and VOC in a series of steps, each one dependent upon the last. In the first, Brachyury (T) ensures adequate extension of the primitive streak into the allantois, which in turn designates the allantoic-yolk sac junction. Next, the streak-derived ACD organizes allantoic angioblasts to the axial junction; upon signaling from Fibroblast Growth Factor Receptor-1 (FGFR1), these endothelialize and branch, forming a sprouting VOC that unites the umbilical and omphalomesenteric arteries with the fetal dorsal aortae. Arterial union is followed by the appearance of the medial umbilical roots within the VOC, which in turn designate the correct axial placement of the lateral umbilical roots/common iliac arteries. In addition, we show that the ACD and VOC are conserved across Placentalia, including humans, underscoring their fundamental importance in mammalian biology. We conclude that T is required for correct axial positioning of the VOC via the primitive streak/ACD, while FGFR1, through its role in endothelialization and branching, further patterns it. Together, these genetic, molecular and structural elements safeguard the fetus against adverse outcomes that can result from vascular mispatterning of the fetal-placental arterial connection.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Dexter X Jin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lauren Wierenga
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Maleka P Hashmi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
13
|
Hassan W, Viebahn C. A correlative study of the allantois in pig and rabbit highlighting the diversity of extraembryonic tissues in four mammalian species, including mouse and man. J Morphol 2017; 278:600-620. [PMID: 28165148 DOI: 10.1002/jmor.20657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
Despite its conserved role in placenta and umbilical cord formation, the mammalian allantois shows remarkable diversity in size and form as well as in the timing of its appearance and attachment to the chorion. In the mouse, the common allantoic diverticulum is lacking; instead, the allantoic core domain is defined as a progenitor center for allantoic development. In this study, the allantoises of the pig and the rabbit as two nonrodent mammals of increasing significance in biomedical research are compared (1) morphologically using high resolution light and electron microscopy and (2) molecularly using brachyury mRNA expression as a mesodermal marker. Multiple small allantoic diverticula in the rabbit contrast with a single large cavity filling the entire allantois of the pig, but neither pig nor rabbit allantois expresses brachyury. The mesothelium on the allantois surface shows regional variability of cell contacts and microvilli, while blood vessels appear randomly around the allantoic diverticula in a mesodermal layer of variable thickness. Primordial germ cell-like cells are found in the allantois of the pig but not of the rabbit. To understand further the relevance of this developmental and morphological diversity, we compare the allantois development of pig and rabbit with early developmental landmarks of mouse and man. Our findings suggest that (1) tissue interaction between endoderm and mesoderm is important for allantoic development and vascular differentiation in species with a rudimentary allantoic diverticulum, (2) allantoic mesothelium plays a specific role in chorioallantoic attachment, allantoic differentiation and vascularization, and (3) there is a pronounced diversity in the extraembryonic migratory pathways of primordial germ cells among mammals. Finally, the phylogenetically basal characteristics of the pig allantois are suggestive of a functional similarity in mammals with a large allantois before placentation and in (aplacental) sauropsids with a chorioallantoic membrane well-adjusted to material exchange function.
Collapse
Affiliation(s)
- Waad Hassan
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Mikedis MM, Downs KM. PRDM1/BLIMP1 is widely distributed to the nascent fetal-placental interface in the mouse gastrula. Dev Dyn 2016; 246:50-71. [PMID: 27696611 DOI: 10.1002/dvdy.24461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/11/2016] [Accepted: 09/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND PRDM1 is a transcriptional repressor that contributes to primordial germ cell (PGC) development. During early gastrulation, epiblast-derived PRDM1 is thought to be restricted to a lineage-segregated germ line in the allantois. However, given recent findings that PGCs overlap an allantoic progenitor pool that contributes widely to the fetal-umbilical interface, posterior PRDM1 may also contribute to soma. RESULTS Within the posterior mouse gastrula (early streak, 12-s stages, embryonic days ∼6.75-9.0), PRDM1 localized to all tissues containing putative PGCs; however, PRDM1 was also found in all three primary germ layers, their derivatives, and two presumptive growth centers, the allantoic core domain and ventral ectodermal ridge. While PRDM1 and STELLA colocalized predominantly within the hindgut, where putative PGCs reside, other colocalizing cells were found in non-PGC sites. Additional PRDM1 and STELLA cells were found independent of each other throughout the posterior region, including the hindgut. The Prdm1-Cre-driven reporter supported PRDM1 localization in the majority of sites; however, some Prdm1 descendants were found in sites independent of PRDM1 protein, including allantoic mesothelium and hindgut endoderm. CONCLUSIONS Posterior PRDM1 contributes more broadly to the developing fetal-maternal connection than previously recognized, and PRDM1 and STELLA, while overlapping in putative PGCs, also co-localize in several other tissues. Developmental Dynamics 246:50-71, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
15
|
Li PZ, Yan GY, Han L, Pang J, Zhong BS, Zhang GM, Wang F, Zhang YL. Overexpression of STRA8, BOULE, and DAZL Genes Promotes Goat Bone Marrow–Derived Mesenchymal Stem Cells In Vitro Transdifferentiation Toward Putative Male Germ Cells. Reprod Sci 2016; 24:300-312. [DOI: 10.1177/1933719116654990] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pei-zhen Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guang-yao Yan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bu-shuai Zhong
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guo-min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yan-li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
De Felici M. The Formation and Migration of Primordial Germ Cells in Mouse and Man. Results Probl Cell Differ 2016; 58:23-46. [DOI: 10.1007/978-3-319-31973-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
17
|
Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life. J Pregnancy 2015; 2015:715735. [PMID: 26697222 PMCID: PMC4678088 DOI: 10.1155/2015/715735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/29/2015] [Indexed: 12/27/2022] Open
Abstract
The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman's lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine-metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum. This review offers a summary of pivotal aspects concerning the physiologic course of female reproductive function.
Collapse
|
18
|
Scaldaferri ML, Klinger FG, Farini D, Di Carlo A, Carsetti R, Giorda E, De Felici M. Hematopoietic activity in putative mouse primordial germ cell populations. Mech Dev 2015; 136:53-63. [PMID: 25684074 DOI: 10.1016/j.mod.2015.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
In the present paper, starting from the observation of heterogeneous expression of the GOF-18ΔPE-GFP Pou5f1 (Oct3/4) transgene in putative mouse PGC populations settled in the aorta-gonad-mesonephros (AGM) region, we identified various OCT3/4 positive populations showing distinct expression of PGC markers (BLIMP-1, AP, TG-1, STELLA) and co-expressing several proteins (CD-34, CD-41, FLK-1) and genes (Brachyury, Hox-B4, Scl/Tal-1 and Gata-2) of hematopoietic precursors. Moreover, we found that Oct3/4-GFP(weak) CD-34(weak/high) cells possess robust hematopoietic colony forming activity (CFU) in vitro. These data indicate that the cell population usually considered PGCs moving toward the gonadal ridges encompasses a subset of cells co-expressing several germ cell and hematopoietic markers and possessing hematopoietic activity. These results are discussed within of the current model of germline segregation.
Collapse
Affiliation(s)
- Maria Lucia Scaldaferri
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Di Carlo
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy
| | - Rita Carsetti
- Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Laboratory of Flow-Cytometry and B Cell Development, Rome, Italy
| | - Ezio Giorda
- Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Laboratory of Flow-Cytometry and B Cell Development, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
19
|
Abstract
Current dogma is that mouse primordial germ cells (PGCs) segregate within the allantois, or source of the umbilical cord, and translocate to the gonads, differentiating there into sperm and eggs. In light of emerging data on the posterior embryonic-extraembryonic interface, and the poorly studied but vital fetal-umbilical connection, we have reviewed the past century of experiments on mammalian PGCs and their relation to the allantois. We demonstrate that, despite best efforts and valuable data on the pluripotent state, what is and is not a PGC in vivo is obscure. Furthermore, sufficient experimental evidence has yet to be provided either for an extragonadal origin of mammalian PGCs or for their segregation within the posterior region. Rather, most evidence points to an alternative hypothesis that PGCs in the mouse allantois are part of a stem/progenitor cell pool that exhibits all known PGC "markers" and that builds/reinforces the fetal-umbilical interface, common to amniotes. We conclude by suggesting experiments to distinguish the mammalian germ line from the soma.
Collapse
|
20
|
Wolfe AD, Downs KM. Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expr Patterns 2014; 15:8-20. [PMID: 24632399 DOI: 10.1016/j.gep.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Abstract
Mixl1 is thought to play important roles in formation of mesoderm and endoderm. Previously, Mixl1 expression was reported in the posterior primitive streak and allantois, but the precise spatiotemporal whereabouts of Mixl1 protein throughout gastrulation have not been elucidated. To localize Mixl1 protein, immunohistochemistry was carried out at 2-4 h intervals on mouse gastrulae between primitive streak and 16-somite pair (s) stages (~E6.5-9.5). Mixl1 localized to the entire primitive streak early in gastrulation. However, by headfold stages (~E7.75-8.0), Mixl1 diminished within the mid-streak but remained concentrated at either end of the streak, and localized throughout midline posterior visceral endoderm. At the streak's anterior end, Mixl1 was confined to the posterior crown cells of Hensen's node, which contribute to dorsal hindgut endoderm, and the posterior notochord. In the posterior streak, Mixl1 localized to the Allantoic Core Domain (ACD), which is the source of most of the allantois and contributes to the posterior embryonic-extraembryonic interface. In addition, Mix1 co-localized with the early hematopoietic marker, Runx1, in the allantois and visceral yolk sac blood islands. During hindgut invagination (4-16s, ~E8.5-9.5), Mixl1 localized to the hindgut lip, becoming concentrated within the midline anastomosis of the splanchnopleure, which appears to create the ventral component of the hindgut and omphalomesenteric artery. Surrounding the distal hindgut, Mixl1 identified midline cells within tailbud mesoderm. Mixl1 was also found in the posterior notochord. These findings provide a critical systematic, and tissue-level understanding of embryonic Mixl1 localization, and support its role in regulation of crucial posterior axial mesendodermal stem cell niches during embryogenesis.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, 4105 WIMR, Madison, WI 53705, United States
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, United States
| |
Collapse
|
21
|
Jorgensen JS. Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle. Mol Reprod Dev 2013; 80:960-76. [PMID: 24105719 PMCID: PMC3980676 DOI: 10.1002/mrd.22232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023]
Abstract
The ovary functions to chaperone the most precious cargo for female individuals, the oocyte, thereby allowing the passage of genetic material to subsequent generations. Within the ovary, single oocytes are surrounded by a legion of granulosa cells inside each follicle. These two cell types depend upon one another to support follicle formation and oocyte survival. The infrastructure and events that work together to ultimately form these functional follicles within the ovary are unprecedented, given that the oocyte originates as a cell like all other neighboring cells within the embryo prior to gastrulation. This review discusses the journey of the germ cell in the context of the developing female mouse embryo, with a focus on specific signaling events and cell-cell interactions that escort the primordial germ cell as it is specified into the germ cell fate, migrates through the hindgut into the gonad, differentiates into an oocyte, and culminates upon formation of the primordial and then primary follicle.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
22
|
Mikedis MM, Downs KM. Widespread but tissue-specific patterns of interferon-induced transmembrane protein 3 (IFITM3, FRAGILIS, MIL-1) in the mouse gastrula. Gene Expr Patterns 2013; 13:225-39. [PMID: 23639725 DOI: 10.1016/j.gep.2013.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3; FRAGILIS; MIL-1) is part of a larger family of important small interferon-induced transmembrane genes and proteins involved in early development, cell adhesion, and cell proliferation, and which also play a major role in response to bacterial and viral infections and, more recently, in pronounced malignancies. IFITM3, together with tissue-nonspecific alkaline phosphatase (TNAP), PRDM1, and STELLA, has been claimed to be a hallmark of segregated primordial germ cells (PGCs) (Saitou et al., 2002). However, whether IFITM3, like STELLA, is part of a broader stem/progenitor pool that builds the posterior region of the mouse conceptus (Mikedis and Downs, 2012) is obscure. To discover the whereabouts of IFITM3 during mouse gastrulation (~E6.5-9.0), systematic immunohistochemical analysis was carried out at closely spaced 2-4-h intervals. Results revealed diverse, yet consistent, profiles of IFITM3 localization throughout the gastrula. Within the putative PGC trajectory and surrounding posterior tissues, IFITM3 localized as a large cytoplasmic spot with or without staining in the plasma membrane. IFITM3, like STELLA, was also found in the ventral ectodermal ridge (VER), a posterior progenitor pool that builds the tailbud. The large cytoplasmic spot with plasma membrane staining was exclusive to the posterior region; the visceral yolk sac, non-posterior tissues, and epithelial tissues exhibited spots of IFITM3 without cell surface staining. Colocalization of the intracellular IFITM3 spot with the endoplasmic reticulum, Golgi apparatus, or endolysosomes was not observed. That relatively high levels of IFITM3 were found throughout the posterior primitive streak and its derivatives is consistent with evidence that IFITM3, like STELLA, is part of a larger stem/progenitor cell pool at the posterior end of the primitive streak that forms the base of the allantois and builds the fetal-umbilical connection, thus further obfuscating practical phenotypic distinctions between so-called PGCs and surrounding soma.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Abstract
When amniotes appeared during evolution, embryos freed themselves from intracellular nutrition; development slowed, the mid-blastula transition was lost and maternal components became less important for polarity. Extra-embryonic tissues emerged to provide nutrition and other innovations. One such tissue, the hypoblast (visceral endoderm in mouse), acquired a role in fixing the body plan: it controls epiblast cell movements leading to primitive streak formation, generating bilateral symmetry. It also transiently induces expression of pre-neural markers in the epiblast, which also contributes to delay streak formation. After gastrulation, the hypoblast might protect prospective forebrain cells from caudalizing signals. These functions separate mesendodermal and neuroectodermal domains by protecting cells against being caught up in the movements of gastrulation.
Collapse
Affiliation(s)
- Claudio D Stern
- Department of Cell and Developmental Biology, University College London, GowerStreet (Anatomy Building), London WC1E 6BT, UK.
| | | |
Collapse
|
24
|
Rhee JM, Iannaccone PM. Mapping mouse hemangioblast maturation from headfold stages. Dev Biol 2012; 365:1-13. [PMID: 22426104 DOI: 10.1016/j.ydbio.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/18/2022]
Abstract
The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5 dpc-8 dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonad-mesonephros (AGM) and the fetal liver at 10.5-11.5 dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions.
Collapse
Affiliation(s)
- Jerry M Rhee
- Children's Memorial Research Center, Department of Pediatrics, Developmental Biology Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|