1
|
Greer SE, Haller SJ, Lee D, Dudley AT. N-cadherin and β1 integrin coordinately regulate growth plate cartilage architecture. Mol Biol Cell 2024; 35:ar49. [PMID: 38294852 PMCID: PMC11064670 DOI: 10.1091/mbc.e23-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/07/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spatial and temporal regulation of chondrocyte maturation in the growth plate drives growth of many bones. One essential event to generate the ordered cell array characterizing growth plate cartilage is the formation of chondrocyte columns in the proliferative zone via 90-degree rotation of daughter cells to align with the long axis of the bone. Previous studies have suggested crucial roles for cadherins and integrin β1 in column formation. The purpose of this study was to determine the relative contributions of cadherin- and integrin-mediated cell adhesion in column formation. Here we present new mechanistic insights generated by application of live time-lapse confocal microscopy of cranial base explant cultures, robust genetic mouse models, and new quantitative methods to analyze cell behavior. We show that conditional deletion of either the cell-cell adhesion molecule Cdh2 or the cell-matrix adhesion molecule Itgb1 disrupts column formation. Compound mutants were used to determine a potential reciprocal regulatory interaction between the two adhesion surfaces and identified that defective chondrocyte rotation in a N-cadherin mutant was restored by a heterozygous loss of integrin β1. Our results support a model for which integrin β1, and not N-cadherin, drives chondrocyte rotation and for which N-cadherin is a potential negative regulator of integrin β1 function.
Collapse
Affiliation(s)
- Sydney E. Greer
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Stephen J. Haller
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Donghee Lee
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| | - Andrew T. Dudley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
2
|
Embryology and anatomy of Hirschsprung disease. Semin Pediatr Surg 2022; 31:151227. [PMID: 36417785 DOI: 10.1016/j.sempedsurg.2022.151227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bowel has its own elegant nervous system - the enteric nervous system (ENS) which is a complex network of neurons and glial clones. Derived from neural crest cells (NCCs), this little brain controls muscle contraction, motility, and bowel activities in response to stimuli. Failure of developing enteric ganglia at the distal bowel results in intestinal obstruction and Hirschsprung disease (HSCR). This Review summarises the important embryological development of the ENS including proliferation, migration, and differentiation of NCCs. We address the signalling pathways which determine NCC cell fate and discuss how they are altered in the context of HSCR. Finally, we outline the anatomical defects and the mechanisms underlying gut motility in HSCR.
Collapse
|
3
|
Mueller JL, Goldstein AM. The science of Hirschsprung disease: What we know and where we are headed. Semin Pediatr Surg 2022; 31:151157. [PMID: 35690468 DOI: 10.1016/j.sempedsurg.2022.151157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The enteric nervous system (ENS) is a rich network of neurons and glial cells that comprise the gastrointestinal tract's intrinsic nervous system and are responsible for controlling numerous complex functions, including digestion, transit, secretion, barrier function, and maintenance of a healthy microbiome. Development of a functional ENS relies on the coordinated interaction between enteric neural crest-derived cells and their environment as the neural crest-derived cells migrate rostrocaudally along the embryonic gut mesenchyme. Congenital or acquired disruption of ENS development leads to various neurointestinal diseases. Hirschsprung disease is a congenital neurocristopathy, a disease of the neural crest. It is characterized by a variable length of distal colonic aganglionosis due to a failure in enteric neural crest-derived cell proliferation, migration, differentiation, and/or survival. In this review, we will review the science of Hirschsprung disease, targeting an audience of pediatric surgeons. We will discuss the basic biology of normal ENS development, as well as what goes awry in ENS development in Hirschsprung disease. We will review animal models that have been integral to studying this disease, as well as current hot topics and future research, including genetic risk profiling, stem cell therapy, non-invasive diagnostic techniques, single-cell sequencing techniques, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Massachusetts General Hospital for Children, Harvard Medical School, 55 Fruit St., WRN 1151, Boston, MA 02114, United States.
| |
Collapse
|
4
|
Chevalier NR, Ammouche Y, Gomis A, Langlois L, Guilbert T, Bourdoncle P, Dufour S. A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Commun Biol 2021; 4:770. [PMID: 34162999 PMCID: PMC8222382 DOI: 10.1038/s42003-021-02333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
While the colonization of the embryonic gut by neural crest cells has been the subject of intense scrutiny over the past decades, we are only starting to grasp the morphogenetic transformations of the enteric nervous system happening in the fetal stage. Here, we show that enteric neural crest cell transit during fetal development from an isotropic cell network to a square grid comprised of circumferentially-oriented cell bodies and longitudinally-extending interganglionic fibers. We present ex-vivo dynamic time-lapse imaging of this isotropic-to-nematic phase transition and show that it occurs concomitantly with circular smooth muscle differentiation in all regions of the gastrointestinal tract. Using conditional mutant embryos with enteric neural crest cells depleted of β1-integrins, we show that cell-extracellular matrix anchorage is necessary for ganglia to properly reorient. We demonstrate by whole mount second harmonic generation imaging that fibrous, circularly-spun collagen I fibers are in direct contact with neural crest cells during the orientation transition, providing an ideal orientation template. We conclude that smooth-muscle associated extracellular matrix drives a critical reorientation transition of the enteric nervous system in the mammalian fetus.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France.
| | - Yanis Ammouche
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Lucas Langlois
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Pierre Bourdoncle
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Sylvie Dufour
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
5
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
6
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
7
|
Fu M, Barlow-Anacker AJ, Kuruvilla KP, Bowlin GL, Seidel CW, Trainor PA, Gosain A. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J 2020; 34:10931-10947. [PMID: 32592286 DOI: 10.1096/fj.202000699r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Enteric nervous system (ENS) development is governed by interactions between neural crest cells (NCC) and the extracellular matrix (ECM). Hirschsprung disease (HSCR) results from incomplete NCC migration and failure to form an appropriate ENS. Prior studies implicate abnormal ECM in NCC migration failure. We performed a comparative microarray of the embryonic distal hindgut of wild-type and EdnrBNCC-/- mice that model HSCR and identified laminin-β1 as upregulated in EdnrBNCC-/- colon. We identified decreased expression of 37/67 kDa laminin receptor (LAMR), which binds laminin-β1, in human HSCR myenteric plexus and EdnrBNCC-/- NCC. Using a combination of in vitro gut slice cultures and ex vivo organ cultures, we determined the mechanistic role of LAMR in NCC migration. We found that enteric NCC express LAMR, which is downregulated in human and murine HSCR. Binding of LAMR by the laminin-β1 analog YIGSR promotes NCC migration. Silencing of LAMR abrogated these effects. Finally, applying YIGSR to E13.5 EdnrBNCC-/- colon explants resulted in 80%-100% colonization of the hindgut. This study adds LAMR to the large list of receptors through which NCC interact with their environment during ENS development. These results should be used to inform ongoing integrative, regenerative medicine approaches to HSCR.
Collapse
Affiliation(s)
- Ming Fu
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Amanda J Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Korah P Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | | | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Leonard CE, Taneyhill LA. The road best traveled: Neural crest migration upon the extracellular matrix. Semin Cell Dev Biol 2020; 100:177-185. [PMID: 31727473 PMCID: PMC7071992 DOI: 10.1016/j.semcdb.2019.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Neural crest cells have the extraordinary task of building much of the vertebrate body plan, including the craniofacial cartilage and skeleton, melanocytes, portions of the heart, and the peripheral nervous system. To execute these developmental programs, stationary premigratory neural crest cells first acquire the capacity to migrate through an extensive process known as the epithelial-to-mesenchymal transition. Once motile, neural crest cells must traverse a complex environment consisting of other cells and the protein-rich extracellular matrix in order to get to their final destinations. Herein, we will highlight some of the main molecular machinery that allow neural crest cells to first exit the neuroepithelium and then later successfully navigate this intricate in vivo milieu. Collectively, these extracellular and intracellular factors mediate the appropriate migration of neural crest cells and allow for the proper development of the vertebrate embryo.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
9
|
Hao MM, Bergner AJ, Nguyen HTH, Dissanayake P, Burnett LE, Hopkins CD, Zeng K, Young HM, Stamp LA. Role of JNK, MEK and adenylyl cyclase signalling in speed and directionality of enteric neural crest-derived cells. Dev Biol 2019; 455:362-368. [PMID: 31306639 DOI: 10.1016/j.ydbio.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells derived from the neural crest colonize the developing gut and give rise to the enteric nervous system. The rate at which the ENCC population advances along the bowel will be affected by both the speed and directionality of individual ENCCs. The aim of the study was to use time-lapse imaging and pharmacological activators and inhibitors to examine the role of several intracellular signalling pathways in both the speed and the directionality of individual enteric neural crest-derived cells in intact explants of E12.5 mouse gut. Drugs that activate or inhibit intracellular components proposed to be involved in GDNF-RET and EDN3-ETB signalling in ENCCs were used. FINDINGS Pharmacological inhibition of JNK significantly reduced ENCC speed but did not affect ENCC directionality. MEK inhibition did not affect ENCC speed or directionality. Pharmacological activation of adenylyl cyclase or PKA (a downstream cAMP-dependent kinase) resulted in a significant decrease in ENCC speed and an increase in caudal directionality of ENCCs. In addition, adenylyl cyclase activation also resulted in reduced cell-cell contact between ENCCs, however this was not observed following PKA activation, suggesting that the effects of cAMP on adhesion are not mediated by PKA. CONCLUSIONS JNK is required for normal ENCC migration speed, but not directionality, while cAMP signalling appears to regulate ENCC migration speed, directionality and adhesion. Collectively, our data demonstrate that intracellular signalling pathways can differentially affect the speed and directionality of migrating ENCCs.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Huynh T H Nguyen
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Paige Dissanayake
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Laura E Burnett
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - C Danielle Hopkins
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Kevin Zeng
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Beaune G, Duclos G, Khalifat N, Stirbat TV, Vignjevic DM, Brochard-Wyart F. Reentrant wetting transition in the spreading of cellular aggregates. SOFT MATTER 2017; 13:8474-8482. [PMID: 29091088 DOI: 10.1039/c7sm00768j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study spreading on soft substrates of cellular aggregates using CT26 cells that produce an extracellular matrix (ECM). Compared to our previous work on the spreading of S180 cellular aggregates, which did not secrete ECMs, we found that the spreading velocity of the precursor film is also maximal for intermediate rigidities, but new striking features show up. First, we observed a cascade of liquid-gas-liquid (L/G/L) transitions of the precursor film as the substrate rigidity is decreased. We attribute the L/G transition to a decrease of cell/cell adhesion resulting from the weakening of the cell/substrate adhesion. We attribute the reentrant liquid phase (G/L) observed on soft substrates to the slow spreading of the aggregates on ultra-soft substrates, which gives time to the cells to secrete more ECM proteins and stick together. Second, a nematic order appears in the cohesive (liquid) states of the precursor film, attributed to the gradient of cell's velocities.
Collapse
Affiliation(s)
- Grégory Beaune
- UPMC Univ Paris 06, UMR 168, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
11
|
Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell 2017; 43:463-479.e5. [PMID: 29103954 DOI: 10.1016/j.devcel.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Cell migration plays a pivotal role in morphogenetic and pathogenetic processes. To achieve directional migration, cells must establish a front-to-rear axis of polarity. Here we show that components of the cadherin-catenin complex function to stabilize this front-rear polarity. Neural crest and glioblastoma cells undergo directional migration in vivo or in vitro. During this process, αE-catenin accumulated at lamellipodial membranes and then moved toward the rear with the support of a tyrosine-phosphorylated β-catenin. This relocating αE-catenin bound to p115RhoGEF, leading to gathering of active RhoA in front of the nucleus where myosin-IIB arcs assemble. When catenins or p115RhoGEF were removed, cells lost the polarized myosin-IIB assembly, as well as the capability for directional movement. These results suggest that, apart from its well-known function in cell adhesion, the β-catenin/αE-catenin complex regulates directional cell migration by restricting active RhoA to perinuclear regions and controlling myosin-IIB dynamics at these sites.
Collapse
|
12
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
13
|
Nagy N, Goldstein AM. Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66:94-106. [PMID: 28087321 DOI: 10.1016/j.semcdb.2017.01.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
14
|
Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Sci Rep 2016; 6:37877. [PMID: 27905407 PMCID: PMC5131347 DOI: 10.1038/srep37877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-3 (EDN3) and β1-integrins are required for the colonization of the embryonic gut by enteric neural crest cells (ENCCs) to form the enteric nervous system (ENS). β1-integrin-null ENCCs exhibit migratory defects in a region of the gut enriched in EDN3 and in specific extracellular matrix (ECM) proteins. We investigated the putative role of EDN3 on ENCC adhesion properties and its functional interaction with β1-integrins during ENS development. We show that EDN3 stimulates ENCC adhesion to various ECM components in vitro. It induces rapid changes in ENCC shape and protrusion dynamics favouring sustained growth and stabilization of lamellipodia, a process coincident with the increase in the number of focal adhesions and activated β1-integrins. In vivo studies and ex-vivo live imaging revealed that double mutants for Itgb1 and Edn3 displayed a more severe enteric phenotype than either of the single mutants demonstrated by alteration of the ENS network due to severe migratory defects of mutant ENCCs taking place early during the ENS development. Altogether, our results highlight the interplay between the EDN3 and β1-integrin signalling pathways during ENS ontogenesis and the role of EDN3 in ENCC adhesion.
Collapse
|
15
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
17
|
Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin. Dev Biol 2016; 414:85-99. [PMID: 27041467 PMCID: PMC4937886 DOI: 10.1016/j.ydbio.2016.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.
Collapse
|
18
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Müller O, Apfel J, Reischmann P, Rajendran S, Sfriso R, Gasparella M, Parnigotto PP, Conconi MT, Schäfer KH. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G337-46. [PMID: 26767983 DOI: 10.1152/ajpgi.00191.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/29/2015] [Indexed: 01/31/2023]
Abstract
In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy;
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Oliver Müller
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Johanna Apfel
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Patricia Reischmann
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Senthilkumar Rajendran
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Riccardo Sfriso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marco Gasparella
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Tissue Engineering and Signaling-Onlus, Caselle di Selvazzano Dentro, Padova, Italy; and
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; Medical Faculty Mannheim, Department of Pediatric Surgery, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
19
|
Chevalier N, Gazguez E, Bidault L, Guilbert T, Vias C, Vian E, Watanabe Y, Muller L, Germain S, Bondurand N, Dufour S, Fleury V. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration. Sci Rep 2016; 6:20927. [PMID: 26887292 PMCID: PMC4757826 DOI: 10.1038/srep20927] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.
Collapse
Affiliation(s)
- N.R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - E. Gazguez
- UMR144, CNRS-Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - L. Bidault
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - T. Guilbert
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C. Vias
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - E. Vian
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Y. Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France
| | - L. Muller
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - S. Germain
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris, F-75005, France
- INSERM, U1050, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | | | - S. Dufour
- UMR144, CNRS-Institut Curie, 26, rue d’Ulm, 75248 Paris cedex 05, France
| | - V. Fleury
- Laboratoire Matière et Systèmes Complexes, Université Paris-Diderot/CNRS UMR 7057, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
20
|
Rollo BN, Zhang D, Simkin JE, Menheniott TR, Newgreen DF. Why are enteric ganglia so small? Role of differential adhesion of enteric neurons and enteric neural crest cells. F1000Res 2015; 4:113. [PMID: 26064478 PMCID: PMC4448751 DOI: 10.12688/f1000research.6370.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
The avian enteric nervous system (ENS) consists of a vast number of unusually small ganglia compared to other peripheral ganglia. Each ENS ganglion at mid-gestation has a core of neurons and a shell of mesenchymal precursor/glia-like enteric neural crest (ENC) cells. To study ENS cell ganglionation we isolated midgut ENS cells by HNK-1 fluorescence-activated cell sorting (FACS) from E5 and E8 quail embryos, and from E9 chick embryos. We performed cell-cell aggregation assays which revealed a developmentally regulated functional increase in ENS cell adhesive function, requiring both Ca
2+ -dependent and independent adhesion. This was consistent with N-cadherin and NCAM labelling. Neurons sorted to the core of aggregates, surrounded by outer ENC cells, showing that neurons had higher adhesion than ENC cells. The outer surface of aggregates became relatively non-adhesive, correlating with low levels of NCAM and N-cadherin on this surface of the outer non-neuronal ENC cells. Aggregation assays showed that ENS cells FACS selected for NCAM-high and enriched for enteric neurons formed larger and more coherent aggregates than unsorted ENS cells. In contrast, ENS cells of the NCAM-low FACS fraction formed small, disorganised aggregates. This suggests a novel mechanism for control of ENS ganglion morphogenesis where i) differential adhesion of ENS neurons and ENC cells controls the core/shell ganglionic structure and ii) the ratio of neurons to ENC cells dictates the equilibrium ganglion size by generation of an outer non-adhesive surface.
Collapse
Affiliation(s)
- Benjamin N Rollo
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Dongcheng Zhang
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Johanna E Simkin
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Trevelyan R Menheniott
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| | - Donald F Newgreen
- Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia
| |
Collapse
|
21
|
Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR, Enomoto H. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 2014; 12:23. [PMID: 24670214 PMCID: PMC4101823 DOI: 10.1186/1741-7007-12-23] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analyzed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behavior of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne 3010 VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Lake JI, Tusheva OA, Graham BL, Heuckeroth RO. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest 2014; 123:4875-87. [PMID: 24216510 DOI: 10.1172/jci69781] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/12/2013] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR) is a partially penetrant oligogenic birth defect that occurs when enteric nervous system (ENS) precursors fail to colonize the distal bowel during early pregnancy. Genetic defects underlie HSCR, but much of the variability in the occurrence and severity of the birth defect remain unexplained. We hypothesized that nongenetic factors might contribute to disease development. Here we found that mycophenolate, an inhibitor of de novo guanine nucleotide biosynthesis, and 8 other drugs identified in a zebrafish screen impaired ENS development. In mice, mycophenolate treatment selectively impaired ENS precursor proliferation, delayed precursor migration, and induced bowel aganglionosis. In 2 different mouse models of HSCR, addition of mycophenolate increased the penetrance and severity of Hirschsprung-like pathology. Mycophenolate treatment also reduced ENS precursor migration as well as lamellipodia formation, proliferation, and survival in cultured enteric neural crest–derived cells. Using X-inactivation mosaicism for the purine salvage gene Hprt, we found that reduced ENS precursor proliferation most likely causes mycophenolate-induced migration defects and aganglionosis. To the best of our knowledge, mycophenolate is the first medicine identified that causes major ENS malformations and Hirschsprung-like pathology in a mammalian model. These studies demonstrate a critical role for de novo guanine nucleotide biosynthesis in ENS development and suggest that some cases of HSCR may be preventable.
Collapse
|
23
|
Delalande JM, Natarajan D, Vernay B, Finlay M, Ruhrberg C, Thapar N, Burns AJ. Vascularisation is not necessary for gut colonisation by enteric neural crest cells. Dev Biol 2013; 385:220-9. [PMID: 24262984 PMCID: PMC3928993 DOI: 10.1016/j.ydbio.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 12/20/2022]
Abstract
The vasculature and nervous system share striking similarities in their networked, tree-like architecture and in the way they are super-imposed in mature organs. It has previously been suggested that the intestinal microvasculature network directs the migration of enteric neural crest cells (ENCC) along the gut to promote the formation of the enteric nervous system (ENS). To investigate the inter-relationship of migrating ENCC, ENS formation and gut vascular development we combined fate-mapping of ENCC with immunolabelling and intravascular dye injection to visualise nascent blood vessel networks. We found that the enteric and vascular networks initially had very distinct patterns of development. In the foregut, ENCC migrated through areas devoid of established vascular networks. In vessel-rich areas, such as the midgut and hindgut, the distribution of migrating ENCC did not support the idea that these cells followed a pre-established vascular network. Moreover, when gut vascular development was impaired, either genetically in Vegfa(120/120) or Tie2-Cre;Nrp1(fl/-) mice or using an in vitro Wnt1-Cre;Rosa26(Yfp/+) mouse model of ENS development, ENCC still colonised the entire length of the gut, including the terminal hindgut. These results demonstrate that blood vessel networks are not necessary to guide migrating ENCC during ENS development. Conversely, in miRet(51) mice, which lack ENS in the hindgut, the vascular network in this region appeared to be normal suggesting that in early development both networks form independently of each other.
Collapse
Affiliation(s)
- Jean-Marie Delalande
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Dipa Natarajan
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Bertrand Vernay
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Malcolm Finlay
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | - Nikhil Thapar
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Alan J Burns
- Neural Development Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Department of Clinical Genetics, The Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Taneyhill LA, Schiffmacher AT. Cadherin dynamics during neural crest cell ontogeny. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:291-315. [PMID: 23481200 DOI: 10.1016/b978-0-12-394311-8.00013-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cell membrane-associated junctional complexes mediate cell-cell adhesion, intercellular interactions, and other fundamental processes required for proper embryo morphogenesis. Cadherins are calcium-dependent transmembrane proteins at the core of adherens junctions and are expressed in distinct spatiotemporal patterns throughout the development of an important vertebrate cell type, the neural crest. Multipotent neural crest cells arise from the ectoderm as epithelial cells under the influence of inductive cues, undergo an epithelial-to-mesenchymal transition, migrate throughout the embryonic body, and then differentiate into multiple derivatives at predetermined destinations. Neural crest cells change their expressed cadherin repertoires as they undergo each new morphogenetic transition, providing insight into distinct functions of expressed cadherins that are essential for proper completion of each specific stage. Cadherins modulate neural crest cell morphology, segregation, migration, and tissue formation. This chapter reviews the knowledge base of cadherin regulation, expression, and function during the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, 1405 Animal Sciences Center, College Park, Maryland, USA
| | | |
Collapse
|
25
|
Mohr R, Neckel P, Zhang Y, Stachon S, Nothelfer K, Schaeferhoff K, Obermayr F, Bonin M, Just L. Molecular and cell biological effects of 3,5,3′-triiodothyronine on progenitor cells of the enteric nervous system in vitro. Stem Cell Res 2013; 11:1191-205. [DOI: 10.1016/j.scr.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023] Open
|
26
|
Newgreen DF, Dufour S, Howard MJ, Landman KA. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Dev Biol 2013; 382:305-19. [PMID: 23838398 PMCID: PMC4694584 DOI: 10.1016/j.ydbio.2013.06.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins.
Collapse
Affiliation(s)
- Donald F Newgreen
- The Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | |
Collapse
|
27
|
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24. [PMID: 23639815 PMCID: PMC3725693 DOI: 10.1152/ajpgi.00452.2012] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.
Collapse
Affiliation(s)
- Jonathan I. Lake
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and ,2Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Simkin JE, Zhang D, Rollo BN, Newgreen DF. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut. PLoS One 2013; 8:e64077. [PMID: 23717535 PMCID: PMC3661488 DOI: 10.1371/journal.pone.0064077] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022] Open
Abstract
Vagal neural crest cells (VNCCs) arise in the hindbrain, and at (avian) embryonic day (E) 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1–2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC) which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs) in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.
Collapse
Affiliation(s)
- Johanna E. Simkin
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Dongcheng Zhang
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Benjamin N. Rollo
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
| | - Donald F. Newgreen
- Embryology Laboratory, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville VIC, Australia
- * E-mail:
| |
Collapse
|
29
|
Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 2013; 379:92-106. [PMID: 23608456 DOI: 10.1016/j.ydbio.2013.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/11/2023]
Abstract
SOX10 involvement in syndromic form of Hirschsprung disease (intestinal aganglionosis, HSCR) in humans as well as developmental defects in animal models highlight the importance of this transcription factor in control of the pool of enteric progenitors and their differentiation. Here, we characterized the role of SOX10 in cell migration and its interactions with β1-integrins. To this end, we crossed the Sox10(lacZ/+) mice with the conditional Ht-PA::Cre; beta1(neo/+) and beta1(fl/fl) mice and compared the phenotype of embryos of different genotypes during enteric nervous system (ENS) development. The Sox10(lacZ/+); Ht-PA::Cre; beta1(neo/fl) double mutant embryos presented with increased intestinal aganglionosis length and more severe neuronal network disorganization compared to single mutants. These defects, detected by E11.5, are not compensated after birth, showing that a coordinated and balanced interaction between these two genes is required for normal ENS development. Use of video-microscopy revealed that defects observed result from reduced migration speed and altered directionality of enteric neural crest cells. Expression of β1-integrins upon SOX10 overexpression or in Sox10(lacZ/+) mice was also analyzed. The modulation of SOX10 expression altered β1-integrins, suggesting that SOX10 levels are critical for proper expression and function of this adhesion molecule. Together with previous studies, our results strongly indicate that SOX10 mediates ENCC adhesion and migration, and contribute to the understanding of the molecular and cellular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 mutations.
Collapse
Affiliation(s)
- Yuli Watanabe
- INSERM U955, Equipe 11, F-94000 Créteil, France; Université Paris-Est, UMR_S955, UPEC, F-94000 Créteil, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
31
|
Radice GL. N-cadherin-mediated adhesion and signaling from development to disease: lessons from mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:263-89. [PMID: 23481199 PMCID: PMC6047516 DOI: 10.1016/b978-0-12-394311-8.00012-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of the 20 classical cadherin subtypes identified in mammals, the functions of the two initially identified family members E- (epithelial) and N- (neural) cadherin have been most extensively studied. E- and N-Cadherin have mostly mutually exclusive expression patterns, with E-cadherin expressed primarily in epithelial cells, whereas N-cadherin is found in a variety of cells, including neural, muscle, and mesenchymal cells. N-Cadherin function, in particular, appears to be cell context-dependent, as it can mediate strong cell-cell adhesion in the heart but induces changes in cell behavior in favor of a migratory phenotype in the context of epithelial-mesenchymal transition (EMT). The ability of tumor cells to alter their cadherin expression profile, for example, E- to N-cadherin, is critical for malignant progression. Recent advances in mouse molecular genetics, and specifically tissue-specific knockout and knockin alleles of N-cadherin, have provided some unexpected results. This chapter highlights some of the genetic studies that explored the complex role of N-cadherin in embryonic development and disease.
Collapse
Affiliation(s)
- Glenn L Radice
- Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2012; 373:244-57. [PMID: 23123967 DOI: 10.1016/j.ydbio.2012.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Neural crest cells are highly migratory cells that give rise to many derivatives including peripheral ganglia, craniofacial structures and melanocytes. Neural crest cells migrate along defined pathways to their target sites, interacting with each other and their environment as they migrate. Cell adhesion molecules are critical during this process. In this review we discuss the expression and function of cell adhesion molecules during the process of neural crest migration, in particular cadherins, integrins, members of the immunoglobulin superfamily of cell adhesion molecules, and the proteolytic enzymes that cleave these cell adhesion molecules. The expression and function of these cell adhesion molecules and proteases are compared across neural crest emigrating from different axial levels, and across different species of vertebrates.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia.
| | | | | |
Collapse
|
33
|
Theveneau E, Mayor R. Cadherins in collective cell migration of mesenchymal cells. Curr Opin Cell Biol 2012; 24:677-84. [PMID: 22944726 PMCID: PMC4902125 DOI: 10.1016/j.ceb.2012.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/07/2012] [Accepted: 08/16/2012] [Indexed: 12/27/2022]
Abstract
Immunity, embryogenesis and tissue repair rely heavily on cell migration. Cells can be seen migrating as individuals or large groups. In the latter case, collectiveness emerges via cell-cell interactions. In migratory epithelial cell sheets, classic Cadherins are critical to maintain tissue integrity, to promote coordination and establish cell polarity. However, recent evidence indicates that mesenchymal cells, migrating in streams such as neural crest or cancer cells, also exhibit collective migration. Here we will explore the idea that Cadherins play an essential role during collective migration of mesenchymal cells.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|