1
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Meng RY, Li CS, Hu D, Kwon SG, Jin H, Chai OH, Lee JS, Kim SM. Inhibition of the interaction between Hippo/YAP and Akt signaling with ursolic acid and 3'3-diindolylmethane suppresses esophageal cancer tumorigenesis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:493-511. [PMID: 37641811 PMCID: PMC10466072 DOI: 10.4196/kjpp.2023.27.5.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3β signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Cong Shan Li
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Dan Hu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Soon-Gu Kwon
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ok Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
3
|
Kudryashova TV, Dabral S, Nayakanti S, Ray A, Goncharov DA, Avolio T, Shen Y, Rode A, Pena A, Jiang L, Lin D, Baust J, Bachman TN, Graumann J, Ruppert C, Guenther A, Schmoranzer M, Grobs Y, Lemay SE, Tremblay E, Breuils-Bonnet S, Boucherat O, Mora AL, DeLisser H, Zhao J, Zhao Y, Bonnet S, Seeger W, Pullamsetti SS, Goncharova EA. Noncanonical HIPPO/MST Signaling via BUB3 and FOXO Drives Pulmonary Vascular Cell Growth and Survival. Circ Res 2022; 130:760-778. [PMID: 35124974 PMCID: PMC8897250 DOI: 10.1161/circresaha.121.319100] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Dabral
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Sreenath Nayakanti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Arnab Ray
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry A. Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodore Avolio
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Analise Rode
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andressa Pena
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Derek Lin
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Jeffrey Baust
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy N. Bachman
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany
| | - Mario Schmoranzer
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Yann Grobs
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sarah Eve Lemay
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eve Tremblay
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | | | - Olivier Boucherat
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Ana L. Mora
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Pulmonary Vascular Disease Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jing Zhao
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yutong Zhao
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sébastien Bonnet
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Elena A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
BET protein inhibition evidently enhances sensitivity to PI3K/mTOR dual inhibition in intrahepatic cholangiocarcinoma. Cell Death Dis 2021; 12:1020. [PMID: 34716294 PMCID: PMC8556340 DOI: 10.1038/s41419-021-04305-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC), the second most common primary liver cancer, is a fatal malignancy with a poor prognosis and only very limited therapeutic options. Although molecular targeted therapy is emerged as a promising treatment strategy, resistance to molecular-targeted therapy occurs inevitably, which represents a major clinical challenge. In this study, we confirmed that mammalian target of rapamycin (mTOR) signaling is the most significantly affected pathways in ICC. As a novel phosphoinositide 3-kinase (PI3K)/mTOR dual inhibitor, BEZ235, exerts antitumour activity by effectively and specifically blocking the dysfunctional activation of the PI3K/serine/threonine kinase (AKT)/mTOR pathway. We generate the orthotopic ICC mouse model through hydrodynamic transfection of AKT and yes-associated protein (YAP) plasmids into the mouse liver. Our study confirmed that BEZ235 can suppress the proliferation, invasion and colony conformation abilities of ICC cells in vitro but cannot effectively inhibit ICC progression in vivo. Inhibition of PI3K/mTOR allowed upregulation of c-Myc and YAP through suppressed the phosphorylation of LATS1. It would be a novel mechanism that mediated resistance to PI3K/mTOR dual inhibitor. However, Bromo- and extraterminal domain (BET) inhibition by JQ1 downregulates c-Myc and YAP transcription, which could enhance the efficacy of PI3K/mTOR inhibitors. The efficacy results of combination therapy exhibited effective treatment on ICC in vitro and in vivo. Our data further confirmed that the combination of PI3K/mTOR dual inhibitor and BET inhibition induces M1 polarization and suppresses M2 polarization in macrophages by regulating the expression of HIF-1α. Our study provides a novel and efficient therapeutic strategy in treating primary ICC. ![]()
Collapse
|
5
|
Qian X, He L, Hao M, Li Y, Li X, Liu Y, Jiang H, Xu L, Li C, Wu W, Du L, Yin X, Lu Q. YAP mediates the interaction between the Hippo and PI3K/Akt pathways in mesangial cell proliferation in diabetic nephropathy. Acta Diabetol 2021; 58:47-62. [PMID: 32816106 DOI: 10.1007/s00592-020-01582-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
AIMS Glomerular mesangial cell (MC) proliferation is one of the main pathological changes in diabetic nephropathy (DN), but its mechanism needs further elaboration. The Hippo and PI3K/Akt signalling pathways are involved in the regulation of MC proliferation, but their relationship in hyperglycaemia-induced MC proliferation has not been reported. METHODS We used db/db mice and high-glucose-cultured mesangial cells to generate a diabetic nephropathy model. An MST1-knockdown plasmid was used to identify whether the PI3K/Akt pathway is linked to the Hippo pathway through MST1. LY294002 and SC79 were used to verify the role of the PI3K/Akt signalling pathway in MC cells. RNA silencing and overexpression were performed by using YAP and PTEN-expression/knockdown plasmids to investigate the function of YAP and PTEN, respectively, in the Hippo and PI3K/Akt signalling pathways. RESULTS By examining a potential feedback loop, we found decreased phosphorylation of MST1 and Lats1 and increased PI3K/Akt activation in db/db mice and high glucose-treated MCs, along with increased MC proliferation. The results of our gene silencing experiment proved PI3K/Akt-mediated intervention in the Hippo pathway and the regulatory effect of YAP on PI3K/Akt through PTEN. CONCLUSIONS The Hippo pathway is inhibited under diabetic conditions, leading to YAP activation and promoting MC proliferation. The PI3K/Akt pathway is activated through the inhibitory effect of YAP on its repressor, PTEN. Finally, activation of the PI3K/Akt pathway inhibits the Hippo pathway, resulting in nuclear YAP accumulation and accelerating MC proliferation and DN formation.
Collapse
Affiliation(s)
- Xuan Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linlin He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yiqi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chengcheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenya Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Esquivel AR, Douglas JC, Loughran RM, Rezendes TE, Reed KR, Cains THL, Emsley SA, Paddock WA, Videau P, Koyack MJ, Paddock BE. Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. J Exp Biol 2020; 223:jeb223867. [PMID: 33037110 DOI: 10.1242/jeb.223867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Thomas E Rezendes
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Tobias H L Cains
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - William A Paddock
- Department of Institutional Research, Arcadia University, Glenside, PA 19038 USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Brie E Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
7
|
Cui G, Yuan H, Jiang Z, Zhang J, Sun Z, Zhong G. Natural harmine negatively regulates the developmental signaling network of Drosophila melanogaster (Drosophilidae: Diptera) in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110134. [PMID: 31901541 DOI: 10.1016/j.ecoenv.2019.110134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The widely distributed β-carboline alkaloids exhibit promising psychopharmacological and biochemical effects. Harmine, a natural β-carboline, can inhibit insect growth and development with unclear mechanisms. In this study, harmine (at 0-200 mg/L) showed a dose-dependent inhibitory effect on the pupal weight, length, height, pupation rate and eclosion rate of fruit flies Drosophila melanogaster, which was similar to the inhibition induced by the well-known botanical insect growth regulator azadirachtin. Moreover, the expression levels of major regulators from the developmental signaling network were down-regulated during the pupal stage except Numb, Fringe, Yorkie and Pten. The Notch, Wnt, Hedgehog and TGF-β pathways mainly played vital roles in coping with harmine exposure in pupae stage, while the Hippo, Hedgehog and TGF-β elements were involved in the sex differences. Notch, Hippo, Hedgehog, Dpp and Armadillo were proved to be suppressed in the developmental inhibition with fly mutants, while Numb and Punt were increased by harmine. In conclusion, harmine significantly inhibited the development of Drosophila by negatively affecting their developmental signaling network during different stages. Our results establish a preliminary understanding of the developmental signaling network subjected to botanical component-induced growth inhibition and lay the groundwork for further application.
Collapse
Affiliation(s)
- Gaofeng Cui
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Haiqi Yuan
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiyan Jiang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Zhang
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhipeng Sun
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C. YAP/TAZ Inhibition Induces Metabolic and Signaling Rewiring Resulting in Targetable Vulnerabilities in NF2-Deficient Tumor Cells. Dev Cell 2020; 49:425-443.e9. [PMID: 31063758 DOI: 10.1016/j.devcel.2019.04.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023]
Abstract
Merlin/NF2 is a bona fide tumor suppressor whose mutations underlie inherited tumor syndrome neurofibromatosis type 2 (NF2), as well as various sporadic cancers including kidney cancer. Multiple Merlin/NF2 effector pathways including the Hippo-YAP/TAZ pathway have been identified. However, the molecular mechanisms underpinning the growth and survival of NF2-mutant tumors remain poorly understood. Using an inducible orthotopic kidney tumor model, we demonstrate that YAP/TAZ silencing is sufficient to induce regression of pre-established NF2-deficient tumors. Mechanistically, YAP/TAZ depletion diminishes glycolysis-dependent growth and increases mitochondrial respiration and reactive oxygen species (ROS) buildup, resulting in oxidative-stress-induced cell death when challenged by nutrient stress. Furthermore, we identify lysosome-mediated cAMP-PKA/EPAC-dependent activation of RAF-MEK-ERK signaling as a resistance mechanism to YAP/TAZ inhibition. Finally, unbiased analysis of TCGA primary kidney tumor transcriptomes confirms a positive correlation of a YAP/TAZ signature with glycolysis and inverse correlations with oxidative phosphorylation and lysosomal gene expression, supporting the clinical relevance of our findings.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Ivan Nemazanyy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cristina Di Poto
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Yang Yang
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mario Pende
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Geoffrey T Gibney
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Habtom W Ressom
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Jeffery Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelmen School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Atkins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
9
|
The role of translationally controlled tumor protein in proliferation of Drosophila intestinal stem cells. Proc Natl Acad Sci U S A 2019; 116:26591-26598. [PMID: 31843907 DOI: 10.1073/pnas.1910850116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein functioning in multiple cellular processes, ranging from growth to immune responses. To explore the role of TCTP in tissue maintenance and regeneration, we employed the adult Drosophila midgut, where multiple signaling pathways interact to precisely regulate stem cell division for tissue homeostasis. Tctp levels were significantly increased in stem cells and enteroblasts upon tissue damage or activation of the Hippo pathway that promotes regeneration of intestinal epithelium. Stem cells with reduced Tctp levels failed to proliferate during normal tissue homeostasis and regeneration. Mechanistically, Tctp forms a complex with multiple proteins involved in translation and genetically interacts with ribosomal subunits. In addition, Tctp increases both Akt1 protein abundance and phosphorylation in vivo. Altogether, Tctp regulates stem cell proliferation by interacting with key growth regulatory signaling pathways and the translation process in vivo.
Collapse
|
10
|
Transformation of normal cells by aberrant activation of YAP via cMyc with TEAD. Sci Rep 2019; 9:10933. [PMID: 31358774 PMCID: PMC6662713 DOI: 10.1038/s41598-019-47301-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023] Open
Abstract
YAP (also known as YAP1 or YAP65) is a transcriptional coactivator that interacts with a number of transcription factors including RUNX and TEAD and plays a pivotal role in controlling cell growth. YAP is classified as a proto-oncogene. However, the mechanism by which activated YAP induces cancerous changes is not well known. Here we demonstrate that overexpression of YAP in NIH3T3 cells was sufficient for inducing tumorigenic transformation of cells. Mechanistically, YAP exerts its function in cooperation with the TEAD transcription factor. Our data also show that cMYC is a critical factor that acts downstream of the YAP/TEAD complex. Furthermore, we also found that aberrant activation of YAP is sufficient to drive tumorigenic transformation of non-immortalized mouse embryonic fibroblasts. Together our data indicate that YAP can be categorized as a new type of proto-oncogene distinct from typical oncogenes, such as H-RAS, whose expression in non-immortalized cells is tightly linked to senescence.
Collapse
|
11
|
Liu Y, Ren H, Zhou Y, Shang L, Zhang Y, Yang F, Shi X. The hypoxia conditioned mesenchymal stem cells promote hepatocellular carcinoma progression through YAP mediated lipogenesis reprogramming. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:228. [PMID: 31142342 PMCID: PMC6540399 DOI: 10.1186/s13046-019-1219-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/08/2019] [Indexed: 12/18/2022]
Abstract
Background Tumor microenvironment (TME) plays a very important role in cancer progression. The mesenchymal stem cells (MSC), a major compartment of TME, have been shown to promote hepatocellular carcinoma (HCC) progression and metastasis. As hypoxia is a common feature of TME, it is essential to investigate the effects of hypoxia on MSC during HCC progression. Methods The effects of hypoxia on MSC mediated cell proliferation and HCC progression were measured by cell counting kit-8 (CCK-8) assay, Edu incorporation assay and xenograft model. The role of cyclooxygenase 2 (COX2) during this process was evaluated via lentivirus mediated COX2 knockdown in MSC. We also assessed the levels and localization of yes-associated protein (YAP) in HCC cells by immunofluorescence, western blot and real-time PCR, in order to detect the alterations of Hippo pathway. The changes in lipogenesis was examined by triacylglycerol (TG) levels, BODIPY staining of neutral lipid, and lipogenic enzyme levels. The alterations in AKT/mTOR/SREBP1 pathway were measured by western blot. In addition, to evaluate the role of prostaglandin E receptor 4 (EP4) in MSC mediated cell proliferation under hypoxia, we manipulated the levels of EP4 in HCC cells via small interfering RNA (siRNA), EP4 antagonist or agonist. Results We found that MSC under hypoxia condition (hypo-MSC) could promote proliferation of HCC cell lines and tumor growth in xenograft model. Hypoxia increased COX2 expression in MSC and promoted the secretion of prostaglandin E2 (PGE2), which then activated YAP in HCC cells and led to increased cell proliferation. Meanwhile, YAP activation enhanced lipogenesis in HCC cell lines by upregulating AKT/mTOR/SREBP1 pathway. Knockdown or overexpression of YAP significantly decreased or increased lipogenesis. Finally, EP4 was found to mediate the effects of hypo-MSC on YAP activation and lipogenesis of HCC cells. Conclusions Hypo-MSC can promote HCC progression by activating YAP and the YAP mediated lipogenesis through COX2/PGE2/EP4 axis. The communication between MSC and cancer cells may be a potential therapeutic target for inhibiting cancer growth. Electronic supplementary material The online version of this article (10.1186/s13046-019-1219-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Yuheng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Faji Yang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, NO.321 Zhongshan Road, Nanjing, Jiangsu, 210008, People's Republic of China.
| |
Collapse
|
12
|
Abstract
The Hippo Pathway comprises a vast network of components that integrate diverse signals including mechanical cues and cell surface or cell-surface-associated molecules to define cellular outputs of growth, proliferation, cell fate, and cell survival on both the cellular and tissue level. Because of the importance of the regulators, core components, and targets of this pathway in human health and disease, individual components were often identified by efforts in mammalian models or for a role in a specific process such as stress response or cell death. However, multiple components were originally discovered in the Drosophila system, and the breakthrough of conceiving that these components worked together in a signaling pathway came from a series of Drosophila genetic screens and fundamental genetic and phenotypic characterization efforts. In this chapter, we will review the original discoveries leading to the conceptual framework of these components as a tumor suppressor network. We will review chronologically the early efforts that established our initial understanding of the core machinery that then launched the growing and vibrant field to be discussed throughout later chapters of this book.
Collapse
Affiliation(s)
- Rewatee Gokhale
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cathie M Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Xu W, Yang Z, Xie C, Zhu Y, Shu X, Zhang Z, Li N, Chai N, Zhang S, Wu K, Nie Y, Lu N. PTEN lipid phosphatase inactivation links the hippo and PI3K/Akt pathways to induce gastric tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:198. [PMID: 30134988 PMCID: PMC6104022 DOI: 10.1186/s13046-018-0795-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Background Phosphatase and tensin homolog (PTEN) is an important tumor suppressor gene, and its encoded protein has activities of both a protein phosphatase and a lipid phosphatase. However, the substitution effect of protein phosphatase activity remains unclear. PI3K/Akt is the most common pathway negatively regulated by PTEN. The Hippo and PI3K/Akt pathways have a joint effect in regulating cell proliferation and apoptosis. Therefore, how PTEN lipid phosphatase inactivation contributes to the occurrence and development of gastric cancer and the potential role of the Hippo and PI3K/Akt pathways in PTEN lipid phosphatase inactivation mediated gastric tumorigenesis remain to be explored. Methods Immunohistochemical staining was performed to detect the expression of p-PTEN and YAP in a gastric cancer tissue microarray. Stable cell lines expressing a wild-type or dominant-negative mutant PTEN were established. The proliferation and migration of stable cells were detected by MTT, BrdU, and colony-formation, transwell assay and high content analysis in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the Hippo and Akt signaling pathways were detected by western blot. Nuclear-cytoplasm separation, immunofluorescence and coimmunoprecipitation analyses were conducted to explore the dysregulation of Hippo in the stable cell lines. Results PTEN lipid phosphatase inactivation strongly promoted the proliferation and migration of gastric cancer cells in vitro and tumor growth in vivo. A immunohistochemical analysis of gastric cancer tissues revealed a significant correlation between phosphorylated PTEN and nuclear YAP expression, and both were determined to be independent prognostic factors for gastric cancer. Mechanistically, PTEN lipid phosphatase inactivation abolished the MOB1-LATS1/2 interaction, decreased YAP phosphorylation and finally promoted YAP nuclear translocation, which enhanced the synergistic effect of YAP-TEAD, thus inducing cell proliferation and migration. Moreover, PTEN lipid phosphatase inactivation promoted the PI3K/Akt pathway, and disruption of YAP-TEAD-driven transcription decreased the activation of Akt in a dose-dependent manner. Conclusions Taken together, our findings indicate that PTEN lipid phosphatase inactivation links the Hippo and PI3K/Akt pathways to promote gastric tumorigenesis and cancer development. Electronic supplementary material The online version of this article (10.1186/s13046-018-0795-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zhe Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Na Chai
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Song Zhang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Jeong SH, Kim HB, Kim MC, Lee JM, Lee JH, Kim JH, Kim JW, Park WY, Kim SY, Kim JB, Kim H, Kim JM, Choi HS, Lim DS. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest 2018; 128:1010-1025. [PMID: 29400692 DOI: 10.1172/jci95802] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten-/- Sav1-/- mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten-/- Sav1-/- mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.
Collapse
Affiliation(s)
- Sun-Hye Jeong
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Han-Byul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Min-Chul Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jae Ho Lee
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin-Woo Kim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Woong-Yang Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
15
|
Zhang Y, Li K, Ying Y, Chen B, Hao K, Chen B, Zheng Y, Lyu J, Tong X, Chen X, Wang Y, Zhan Z, Zhang W, Wang Z. C21 steroid-enriched fraction refined from Marsdenia tenacissima inhibits hepatocellular carcinoma through the coordination of Hippo-Yap and PTEN-PI3K/AKT signaling pathways. Oncotarget 2017; 8:110576-110591. [PMID: 29299170 PMCID: PMC5746405 DOI: 10.18632/oncotarget.22833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
Marsdenia tenacissimae extraction (MTE), a traditional herbal medicine, has exhibited anti-tumor effects on a variety of cancers. However, its effectiveness and the mechanism of action in Hepatocellular carcinoma (HCC) has not been fully understood. In the present study, we demonstrate that C21 steroid-enriched fraction from MTE, which contains five main C21 steroids (FR5) exhibits obvious pharmacological activities on HCC cells in vitro and in vivo. FR5 induces apoptosis and inhibits proliferation and migration of HepG2 and Bel7402 cells in a dose and time dependent manner. Furthermore, in HCC cells, we found that FR5 inhibits Hippo pathway, leading to inactivation of YAP and increase of PTEN. Enhanced PTEN results in the inhibition of PI3K/AKT signaling pathway, inhibiting cell proliferation by FR5 and FR5-induced apoptosis. Moreover, it was proved that FR5 treatment could inhibit tumor growth in a HCC xenograft mouse model, and immunohistochemistry results showed FR5 treatment resulted in down-regulation of Bcl-2 and YAP, and up-regulation of PTEN and PI3K. Taken together, we found that FR5 effectively inhibits proliferation and induces apoptosis of HCC cells through coordinated inhibition of YAP in the Hippo pathway and AKT in the PI3K-PTEN-mTOR pathway, and suggest FR5 as a potential therapy for HCC.
Collapse
Affiliation(s)
- Yu Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Kaiqiang Li
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Youmin Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bingyu Chen
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Boxu Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu Zheng
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jianxin Lyu
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiangming Tong
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaopan Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Ying Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhajun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Zhen Wang
- Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
16
|
Yoo G, Kim T, Chung C, Hwang DS, Lim DS. The novel YAP target gene, SGK1, upregulates TAZ activity by blocking GSK3β-mediated TAZ destabilization. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Moeller ME, Nagy S, Gerlach SU, Soegaard KC, Danielsen ET, Texada MJ, Rewitz KF. Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Curr Biol 2017; 27:1652-1659.e4. [PMID: 28528906 DOI: 10.1016/j.cub.2017.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022]
Abstract
Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
Collapse
Affiliation(s)
- Morten E Moeller
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stephan U Gerlach
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Karen C Soegaard
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kim F Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Wang C, Gu C, Jeong KJ, Zhang D, Guo W, Lu Y, Ju Z, Panupinthu N, Yang JY, Gagea MM, Ng PKS, Zhang F, Mills GB. YAP/TAZ-Mediated Upregulation of GAB2 Leads to Increased Sensitivity to Growth Factor-Induced Activation of the PI3K Pathway. Cancer Res 2017; 77:1637-1648. [PMID: 28202507 DOI: 10.1158/0008-5472.can-15-3084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 11/29/2016] [Accepted: 01/06/2017] [Indexed: 11/16/2022]
Abstract
The transcription regulators YAP and TAZ function as effectors of the HIPPO signaling cascade, critical for organismal development, cell growth, and cellular reprogramming, and YAP/TAZ is commonly misregulated in human cancers. The precise mechanism by which aberrant YAP/TAZ promotes tumor growth remains unclear. The HIPPO tumor suppressor pathway phosphorylates YAP and TAZ, resulting in cytosolic sequestration with subsequent degradation. Here, we report that the PI3K/AKT pathway, which is critically involved in the pathophysiology of endometrial cancer, interacts with the HIPPO pathway at multiple levels. Strikingly, coordinate knockdown of YAP and TAZ, mimicking activation of the HIPPO pathway, markedly decreased both constitutive and growth factor-induced PI3K pathway activation by decreasing levels of the GAB2 linker molecule in endometrial cancer lines. Furthermore, targeting YAP/TAZ decreased endometrial cancer tumor growth in vivo In addition, YAP and TAZ total and phosphoprotein levels correlated with clinical characteristics and outcomes in endometrial cancer. Thus, YAP and TAZ, which are inhibited by the HIPPO tumor suppressor pathway, modify PI3K/AKT pathway signaling in endometrial cancer. The cross-talk between these key pathways identifies potential new biomarkers and therapeutic targets in endometrial cancer. Cancer Res; 77(7); 1637-48. ©2017 AACR.
Collapse
Affiliation(s)
- Chao Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China. .,Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chao Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kang Jin Jeong
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Zhang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Guo
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yiling Lu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nattapon Panupinthu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ji Yeon Yang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Mike Gagea
- Department of Veterinary Medicine & Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Kwok Shing Ng
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Zhang
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
20
|
Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs. Proc Natl Acad Sci U S A 2016; 113:E6993-E7002. [PMID: 27791132 DOI: 10.1073/pnas.1610565113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endocytosis of ligand-receptor complexes regulates signal transduction during development. In particular, clathrin and dynamin-dependent endocytosis has been well studied in the context of patterning of the Drosophila wing disc, wherein apically secreted Wingless (Wg) encounters its receptor, DFrizzled2 (DFz2), resulting in a distinctive dorso-ventral pattern of signaling outputs. Here, we directly track the endocytosis of Wg and DFz2 in the wing disc and demonstrate that Wg is endocytosed from the apical surface devoid of DFz2 via a dynamin-independent CLIC/GEEC pathway, regulated by Arf1, Garz, and class I PI3K. Subsequently, Wg containing CLIC/GEEC endosomes fuse with DFz2-containing vesicles derived from the clathrin and dynamin-dependent endocytic pathway, which results in a low pH-dependent transfer of Wg to DFz2 within the merged and acidified endosome to initiate Wg signaling. The employment of two distinct endocytic pathways exemplifies a mechanism wherein cells in tissues leverage multiple endocytic pathways to spatially regulate signaling.
Collapse
|
21
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Ali M, Raghunathan V, Li JY, Murphy CJ, Thomasy SM. Biomechanical relationships between the corneal endothelium and Descemet's membrane. Exp Eye Res 2016; 152:57-70. [PMID: 27639516 DOI: 10.1016/j.exer.2016.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
The posterior face of the cornea consists of the corneal endothelium, a monolayer of cuboidal cells that secrete and attach to Descemet's membrane, an exaggerated basement membrane. Dysfunction of the endothelium compromises the barrier and pump functions of this layer that maintain corneal deturgesence. A large number of corneal endothelial dystrophies feature irregularities in Descemet's membrane, suggesting that cells create and respond to the biophysical signals offered by their underlying matrix. This review provides an overview of the bidirectional relationship between Descemet's membrane and the corneal endothelium. Several experimental methods have characterized a richly topographic and compliant biophysical microenvironment presented by the posterior surface of Descemet's membrane, as well as the ultrastructure and composition of the membrane as it builds during a lifetime. We highlight the signaling pathways involved in the mechanotransduction of biophysical cues that influence cell behavior. We present the specific example of Fuchs' corneal endothelial dystrophy as a condition in which a dysregulated Descemet's membrane may influence the progression of disease. Finally, we discuss some disease models and regenerative strategies that may facilitate improved treatments for corneal dystrophies.
Collapse
Affiliation(s)
- Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - VijayKrishna Raghunathan
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, 77204, USA.
| | - Jennifer Y Li
- Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
23
|
Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation. Sci Rep 2016; 6:28132. [PMID: 27324437 PMCID: PMC4914995 DOI: 10.1038/srep28132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/01/2016] [Indexed: 12/16/2022] Open
Abstract
Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation.
Collapse
|
24
|
Fischer M, Rikeit P, Knaus P, Coirault C. YAP-Mediated Mechanotransduction in Skeletal Muscle. Front Physiol 2016; 7:41. [PMID: 26909043 PMCID: PMC4754448 DOI: 10.3389/fphys.2016.00041] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is not only translating chemical energy into mechanical work, it is also a highly adaptive and regenerative tissue whose architecture and functionality is determined by its mechanical and physical environment. Processing intra- and extracellular mechanical signaling cues contributes to the regulation of cell growth, survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional coactivator downstream of the Hippo pathway and its paralog, the transcriptional co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ modulate myogenesis and muscle regeneration and abnormal YAP activity has been reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the current knowledge of mechanosensing and -signaling in striated muscle. We highlight the role of YAP signaling and discuss the different routes and hypotheses of its regulation in the context of mechanotransduction.
Collapse
Affiliation(s)
- Martina Fischer
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06Paris, France; Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Paul Rikeit
- Institute of Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Catherine Coirault
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Center for Research in Myology, Sorbonne Universités Université Pierre et Marie Curie University Paris 06 Paris, France
| |
Collapse
|
25
|
Critical role for Fat/Hippo and IIS/Akt pathways downstream of Ultrabithorax during haltere specification in Drosophila. Mech Dev 2015; 138 Pt 2:198-209. [DOI: 10.1016/j.mod.2015.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022]
|
26
|
Choo A, O'Keefe LV, Lee CS, Gregory SL, Shaukat Z, Colella A, Lee K, Denton D, Richards RI. Tumor suppressor WWOX moderates the mitochondrial respiratory complex. Genes Chromosomes Cancer 2015; 54:745-61. [PMID: 26390919 DOI: 10.1002/gcc.22286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Fragile site FRA16D exhibits DNA instability in cancer, resulting in diminished levels of protein from the WWOX gene that spans it. WWOX suppresses tumor growth by an undefined mechanism. WWOX participates in pathways involving aerobic metabolism and reactive oxygen species. WWOX comprises two WW domains as well as a short-chain dehydrogenase/reductase enzyme. Herein is described an in vivo genetic analysis in Drosophila melanogaster to identify functional interactions between WWOX and metabolic pathways. Altered WWOX levels modulate variable cellular outgrowths caused by genetic deficiencies of components of the mitochondrial respiratory complexes. This modulation requires the enzyme active site of WWOX, and the defective respiratory complex-induced cellular outgrowths are mediated by reactive oxygen species, dependent upon the Akt pathway and sensitive to levels of autophagy and hypoxia-inducible factor. WWOX is known to contribute to homeostasis by regulating the balance between oxidative phosphorylation and glycolysis. Reduction of WWOX levels results in diminished ability to respond to metabolic perturbation of normal cell growth. Thus, the ability of WWOX to facilitate escape from mitochondrial damage-induced glycolysis (Warburg effect) is, therefore, a plausible mechanism for its tumor suppressor activity.
Collapse
Affiliation(s)
- Amanda Choo
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Louise V O'Keefe
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen L Gregory
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zeeshan Shaukat
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Colella
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kristie Lee
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Donna Denton
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert I Richards
- Department of Genetics and Evolution and Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
27
|
Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev Cell 2015; 33:36-46. [PMID: 25850671 DOI: 10.1016/j.devcel.2015.02.012] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022]
Abstract
Organ wasting, related to changes in nutrition and metabolic activity of cells and tissues, is observed under conditions of starvation and in the context of diseases, including cancers. We have developed a model for organ wasting in adult Drosophila, whereby overproliferation induced by activation of Yorkie, the Yap1 oncogene ortholog, in intestinal stem cells leads to wasting of the ovary, fat body, and muscle. These organ-wasting phenotypes are associated with a reduction in systemic insulin/IGF signaling due to increased expression of the secreted insulin/IGF antagonist ImpL2 from the overproliferating gut. Strikingly, expression of rate-limiting glycolytic enzymes and central components of the insulin/IGF pathway is upregulated with activation of Yorkie in the gut, which may provide a mechanism for this overproliferating tissue to evade the effect of ImpL2. Altogether, our study provides insights into the mechanisms underlying organ-wasting phenotypes in Drosophila and how overproliferating tissues adapt to global changes in metabolism.
Collapse
Affiliation(s)
- Young Kwon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ilia A Droujinine
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Zhang Y, Xia H, Ge X, Chen Q, Yuan D, Chen Q, Leng W, Chen L, Tang Q, Bi F. CD44 acts through RhoA to regulate YAP signaling. Cell Signal 2014; 26:2504-13. [DOI: 10.1016/j.cellsig.2014.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/13/2014] [Accepted: 07/28/2014] [Indexed: 01/08/2023]
|
29
|
Hao J, Zhang Y, Jing D, Li Y, Li J, Zhao Z. Role of Hippo signaling in cancer stem cells. J Cell Physiol 2014; 229:266-70. [PMID: 24037831 DOI: 10.1002/jcp.24455] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/15/2013] [Indexed: 02/05/2023]
Abstract
Cancer stem cells (CSCs) have been proposed and evidenced as the initiator of tumor formation and the seeds of metastases. Thereby, the molecular mechanisms regarding modulation of CSCs have been widely explored, aimed to improve treatment for cancer patients. Recent progress has highlighted the effects of Hippo signaling in tumorigenesis and cancer development, including its crucial role in CSC regulation. Although the kernel Hippo signaling cascade has been well studied, its upstream inputs and downstream transcriptional regulation still remain elusive. In this review, we summarize the current understanding of the mechanism and regulatory function of Hippo signaling in CSCs, with emphasis on its possible roles in regulation of CSC self-renewal, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Jin Hao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
30
|
Li XJ, Leem SH, Park MH, Kim SM. Regulation of YAP through an Akt-dependent process by 3, 3'-diindolylmethane in human colon cancer cells. Int J Oncol 2013; 43:1992-8. [PMID: 24100865 DOI: 10.3892/ijo.2013.2121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
Cancer development is a complex process governed by the interaction of several signaling pathways. The Hippo and PI3K/Akt pathways have been shown to play a critical role in controlling tissue growth involved in the regulation of cell proliferation. 3, 3'-diindolylmethane (DIM) is a natural compound that selectively kills cancer cells without causing toxicity to normal cells. This study aims to investigate whether DIM has an effect on the Hippo signaling pathway mediated via the PI3K/Akt signaling pathway in colon cancer cells. Our study provides new insights into the mechanisms of crosstalk between Hippo signaling and the Akt pathway controlling cell proliferation by PI3K inhibitor and DIM treatment in colon cancer cells. DIM strongly potentiates the lethality of LY294002 in HCT116 cells and inhibits proliferation of colon cancer cells via inactivation of Akt and YAP. Thus, DIM has dramatic therapeutic effects when it is combined with the PI3K inhibitor in the treatment of colon cancer cells. These findings highlight the potential usefulness of DIM and can help develop therapeutic strategies for the prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Xiu Juan Li
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Mob as tumor suppressor is regulated by bantam microRNA through a feedback loop for tissue growth control. Biochem Biophys Res Commun 2013; 439:438-42. [PMID: 24016667 DOI: 10.1016/j.bbrc.2013.08.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
Abstract
The evolutionarily conserved Hippo signaling pathway plays an important role in regulating normal development as well as tumorigenesis in animals. How this growth-inhibitory signaling is maintained at an appropriate level through feedback mechanisms is less understood. In this report, we show that bantam microRNA functions to increase the level of the Mob as tumor suppressor protein Mats, a core component of the Hippo pathway, but does not regulate mats at the transcript level. Genetic analysis also supports that bantam plays a positive role in regulating mats function for tissue growth control. Our data support a model that bantam up-regulates Mats expression through an unidentified factor that may control Mats stability.
Collapse
|
32
|
Andersen DS, Colombani J, Léopold P. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol 2013; 23:336-44. [PMID: 23587490 DOI: 10.1016/j.tcb.2013.03.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/07/2023]
Abstract
In animal species undergoing determinate growth, the making of a full-size adult body requires a series of coordinated growth events culminating in the cessation of growth that precedes sexual maturation. The merger between physiology and genetics now coming to pass in the Drosophila model allows us to decipher these growth events with an unsurpassed level of sophistication. Here, we review several coordination mechanisms that represent fundamental aspects of growth control: adaptation of growth to environmental cues, interorgan coordination, and the coordination of growth with developmental transitions. The view is emerging of an integrated process where organ-autonomous growth is coordinated with both developmental and environmental cues to define final body size.
Collapse
Affiliation(s)
- D S Andersen
- University of Nice-Sophia Antipolis, CNRS, and INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | | | | |
Collapse
|
33
|
Abstract
Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
34
|
Abstract
Regulation of organ size is achieved through the action of the mTOR and Hippo signalling pathways, which control cell proliferation and cell growth in response to extracellular cues. A link between these pathways is revealed by the finding that YAP downregulates PTEN to promote cell growth and tissue hyperplasia.
Collapse
Affiliation(s)
- Alfred Csibi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Tumaneng K, Schlegelmilch K, Russell RC, Yimlamai D, Basnet H, Mahadevan N, Fitamant J, Bardeesy N, Camargo FD, Guan KL. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 2013; 14:1322-9. [PMID: 23143395 DOI: 10.1038/ncb2615] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/05/2012] [Indexed: 02/07/2023]
Abstract
Organ development is a complex process governed by the interplay of several signalling pathways that have critical functions in the regulation of cell growth and proliferation. Over the past years, the Hippo pathway has emerged as a key regulator of organ size. Perturbation of this pathway has been shown to play important roles in tumorigenesis. YAP, the main downstream target of the mammalian Hippo pathway, promotes organ growth, yet the underlying molecular mechanism of this regulation remains unclear. Here we provide evidence that YAP activates the mammalian target of rapamycin (mTOR), a major regulator of cell growth. We have identified the tumour suppressor PTEN, an upstream negative regulator of mTOR, as a critical mediator of YAP in mTOR regulation. We demonstrate that YAP downregulates PTEN by inducing miR-29 to inhibit PTEN translation. Last, we show that PI(3)K–mTOR is a pathway modulated by YAP to regulate cell size, tissue growth and hyperplasia. Our studies reveal a functional link between Hippo and PI(3)K–mTOR, providing a molecular basis for the coordination of these two pathways in organ size regulation.
Collapse
Affiliation(s)
- Karen Tumaneng
- Department of Pharmacology and Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84. [PMID: 22898666 DOI: 10.1016/j.semcdb.2012.07.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
Abstract
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Collapse
|