1
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Noble A, Qubrosi R, Cariba S, Favaro K, Payne SL. Neural dependency in wound healing and regeneration. Dev Dyn 2024; 253:181-203. [PMID: 37638700 DOI: 10.1002/dvdy.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.
Collapse
Affiliation(s)
- Alexandra Noble
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rozana Qubrosi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Solsa Cariba
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Favaro
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samantha L Payne
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Lin YL, Yu L, Yan M, Zimmel K, Qureshi O, Imholt F, Li T, Ivanov I, Brunauer R, Dawson L, Muneoka K. Induced regeneration of articular cartilage - identification of a dormant regeneration program for a non-regenerative tissue. Development 2023; 150:dev201894. [PMID: 37882667 PMCID: PMC10651102 DOI: 10.1242/dev.201894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
A mouse organoid culture model was developed to regenerate articular cartilage by sequential treatment with BMP2 and BMP9 (or GDF2) that parallels induced joint regeneration at digit amputation wounds in vivo. BMP9-induced chondrogenesis was used to identify clonal cell lines for articular chondrocyte and hypertrophic chondrocyte progenitor cells from digit fibroblasts. A protocol that includes cell aggregation enhanced by BMP2 followed by BMP9-induced chondrogenesis resulted in the differentiation of organized layers of articular chondrocytes, similar to the organization of middle and deep zones of articular cartilage in situ, and retained a differentiated phenotype following transplantation. In addition, the differentiation of a non-chondrogenic connective tissue layer containing articular chondrocyte progenitor cells demonstrated that progenitor cell sequestration is coupled with articular cartilage differentiation at a clonal level. The studies identify a dormant endogenous regenerative program for a non-regenerative tissue in which fibroblast-derived progenitor cells can be induced to initiate morphogenetic and differentiative programs that include progenitor cell sequestration. The identification of dormant regenerative programs in non-regenerative tissues such as articular cartilage represents a novel strategy that integrates regeneration biology with regenerative medicine.
Collapse
Affiliation(s)
- Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongli Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay Dawson
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Avila-Martinez N, Gansevoort M, Verbakel J, Jayaprakash H, Araujo IM, Vitorino M, Tiscornia G, van Kuppevelt TH, Daamen WF. Matrisomal components involved in regenerative wound healing in axolotl and Acomys: implications for biomaterial development. Biomater Sci 2023; 11:6060-6081. [PMID: 37525590 DOI: 10.1039/d3bm00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl (Ambystoma mexicanum) are capable of regenerating whole organs and even limbs, most mammals heal their wounds via fibrotic scarring. Recently, the African spiny mouse (Acomys sp.) has been shown to be injury resistant and capable of regenerating several tissue types. A major focal point of research with Acomys has been the identification of drivers of regeneration. In this search, the matrisome components related to the extracellular matrix (ECM) are often overlooked. In this review, we compare Acomys and axolotl skin wound healing and blastema-mediated regeneration by examining their wound healing responses and comparing the expression pattern of matrisome genes, including glycosaminoglycan (GAG) related genes. The goal of this review is to identify matrisome genes that are upregulated during regeneration and could be potential candidates for inclusion in pro-regenerative biomaterials. Research papers describing transcriptomic or proteomic coverage of either skin regeneration or blastema formation in Acomys and axolotl were selected. Matrisome and GAG related genes were extracted from each dataset and the resulting lists of genes were compared. In our analysis, we found several genes that were consistently upregulated, suggesting possible involvement in regenerative processes. Most of the components have been implicated in regulation of cell behavior, extracellular matrix remodeling and wound healing. Incorporation of such pro-regenerative factors into biomaterials may help to shift pro-fibrotic processes to regenerative responses in treated wounds.
Collapse
Affiliation(s)
- Nancy Avila-Martinez
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Merel Gansevoort
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Juul Verbakel
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Haarshaadri Jayaprakash
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
| | - Ines Maria Araujo
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Marta Vitorino
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Gustavo Tiscornia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Eugin Barcelona, Balmes, 236, 08006 Barcelona, Spain
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Li C. Deer antler renewal gives insights into mammalian epimorphic regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:26. [PMID: 37490254 PMCID: PMC10368610 DOI: 10.1186/s13619-023-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Deer antlers are the only known mammalian organ that, once lost, can fully grow back naturally. Hence, the antler offers a unique opportunity to learn how nature has solved the problem of mammalian epimorphic regeneration (EpR). Comprehensive comparisons amongst different types of EpR reveal that antler renewal is fundamentally different from that in lower vertebrates such as regeneration of the newt limb. Surprisingly, antler renewal is comparable to wound healing over a stump of regeneration-incompetent digit/limb, bone fracture repair, and to a lesser extent to digit tip regeneration in mammals. Common to all these mammalian cases of reaction to the amputation/mechanical trauma is the response of the periosteal cells at the distal end/injury site with formation of a circumferential cartilaginous callus (CCC). Interestingly, whether the CCC can proceed to the next stage to transform to a blastema fully depends on the presence of an interactive partner. The actual form of the partner can vary in different cases with the nail organ in digit tip EpR, the opposing callus in bone fracture repair, and the closely associated enveloping skin in antler regeneration. Due to absence of such an interactive partner, the CCC of a mouse/rat digit/limb stump becomes involuted gradually. Based on these discoveries, we created an interactive partner for the rat digit/limb stump through surgically removal of the interposing layers of loose connective tissue and muscle between the resultant CCC and the enveloping skin after amputation and by forcefully bonding two tissue types tightly together. In so doing partial regeneration of the limb stump occurred. In summary, if EpR in humans is to be realized, then I envisage that it would be more likely in a manner akin to antler regeneration rather to that of lower vertebrates such as newt limbs.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130000, China.
| |
Collapse
|
6
|
Jou V, Lehoczky JA. Toeing the line between regeneration and fibrosis. Front Cell Dev Biol 2023; 11:1217185. [PMID: 37325560 PMCID: PMC10267333 DOI: 10.3389/fcell.2023.1217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Ketcham PD, Imholt F, Yan M, Smith HM, Asrar S, Yu L, Dolan CP, Qureshi O, Lin YL, Xia I, Hall PC, Falck AR, Sherman KM, Gaddy D, Suva LJ, Muneoka K, Brunauer R, Dawson LA. Microcomputed tomography staging of bone histolysis in the regenerating mouse digit. Wound Repair Regen 2023; 31:17-27. [PMID: 36177656 DOI: 10.1111/wrr.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
Humans and mice have the ability to regenerate the distal digit tip, the terminal phalanx (P3) in response to amputation. What distinguishes P3 regeneration from regenerative failure is formation of the blastema, a proliferative structure that undergoes morphogenesis to regenerate the amputated tissues. P3 regeneration is characterised by the phases of inflammation, tissue histolysis and expansive bone degradation with simultaneous blastema formation, wound closure and finally blastemal differentiation to restore the amputated structures. While each regenerating digit faithfully progresses through all phases of regeneration, phase progression has traditionally been delineated by time, that is, days postamputation (DPA), yet there is widespread variability in the timing of the individual phases. To diminish variability between digits during tissue histolysis and blastema formation, we have established an in-vivo method using microcomputed tomography (micro CT) scanning to identify five distinct stages of the early regeneration response based on anatomical changes of the digit stump. We report that categorising the initial phases of digit regeneration by stage rather than time greatly diminishes the variability between digits with respect to changes in bone volume and length. Also, stages correlate with the levels of cell proliferation, osteoclast recruitment and osteoprogenitor cell recruitment. Importantly, micro CT staging provides a means to estimate open versus closed digit wounds. We demonstrate two spatially distinct and stage specific bone repair/regeneration responses that occur during P3 regeneration. Collectively, these studies showcase the utility of micro CT imaging to infer the composition of radiolucent soft tissues during P3 blastema formation. Specifically, the staging system identifies the onset of cell proliferation, osteoclastogenesis, osteoprogenitor recruitment, the spatial initiation of de novo bone formation and epidermal closure.
Collapse
Affiliation(s)
- Paulina D Ketcham
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shabistan Asrar
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,DoD-VA Extremity Trauma and Amputation Centre of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Centre, Bethesda, Maryland, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ian Xia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Patrick C Hall
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Davidian D, Levin M. Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harb Perspect Biol 2022; 14:a040782. [PMID: 34400551 PMCID: PMC9121900 DOI: 10.1101/cshperspect.a040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Limb loss due to traumatic injury or amputation is a major biomedical burden. Many vertebrates exhibit the ability to form and pattern normal limbs during embryogenesis from amorphous clusters of precursor cells, hinting that this process could perhaps be activated later in life to rebuild missing or damaged limbs. Indeed, some animals, such as salamanders, are proficient regenerators of limbs throughout their life span. Thus, research over the last century has sought to stimulate regeneration in species that do not normally regenerate their appendages. Importantly, these efforts are not only a vital aspect of regenerative medicine, but also have fundamental implications for understanding evolution and the cellular control of growth and form throughout the body. Here we review major recent advances in augmenting limb regeneration, summarizing the degree of success that has been achieved to date in frog and mammalian models using genetic, biochemical, and bioelectrical interventions. While the degree of whole limb repair in rodent models has been modest to date, a number of new technologies and approaches comprise an exciting near-term road map for basic and clinical progress in regeneration.
Collapse
Affiliation(s)
- Devon Davidian
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Epimorphic regeneration of the mouse digit tip is finite. Stem Cell Res Ther 2022; 13:62. [PMID: 35130972 PMCID: PMC8822779 DOI: 10.1186/s13287-022-02741-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Structural regeneration of amputated appendages by blastema-mediated, epimorphic regeneration is a process whose mechanisms are beginning to be employed for inducing regeneration. While epimorphic regeneration is classically studied in non-amniote vertebrates such as salamanders, mammals also possess a limited ability for epimorphic regeneration, best exemplified by the regeneration of the distal mouse digit tip. A fundamental, but still unresolved question is whether epimorphic regeneration and blastema formation is exhaustible, similar to the finite limits of stem-cell mediated tissue regeneration. Methods In this study, distal mouse digits were amputated, allowed to regenerate and then repeatedly amputated. To quantify the extent and patterning of the regenerated digit, the digit bone as the most prominent regenerating element in the mouse digit was followed by in vivo µCT. Results Analyses revealed that digit regeneration is indeed progressively attenuated, beginning after the second regeneration cycle, but that the pattern is faithfully restored until the end of the fourth regeneration cycle. Surprisingly, when unamputated digits in the vicinity of repeatedly amputated digits were themselves amputated, these new amputations also exhibited a similarly attenuated regeneration response, suggesting a systemic component to the amputation injury response. Conclusions In sum, these data suggest that epimorphic regeneration in mammals is finite and due to the exhaustion of the proliferation and differentiation capacity of the blastema cell source. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02741-2.
Collapse
|
10
|
Dolan CP, Imholt F, Yang TJ, Bokhari R, Gregory J, Yan M, Qureshi O, Zimmel K, Sherman KM, Falck A, Yu L, Leininger E, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Mouse Digit Tip Regeneration Is Mechanical Load Dependent. J Bone Miner Res 2022; 37:312-322. [PMID: 34783092 PMCID: PMC9400037 DOI: 10.1002/jbmr.4470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Amputation of the mouse digit tip results in blastema-mediated regeneration. In this model, new bone regenerates de novo to lengthen the amputated stump bone, resulting in a functional replacement of the terminal phalangeal element along with associated non-skeletal tissues. Physiological examples of bone repair, such as distraction osteogenesis and fracture repair, are well known to require mechanical loading. However, the role of mechanical loading during mammalian digit tip regeneration is unknown. In this study, we demonstrate that reducing mechanical loading inhibits blastema formation by attenuating bone resorption and wound closure, resulting in the complete inhibition of digit regeneration. Mechanical unloading effects on wound healing and regeneration are completely reversible when mechanical loading is restored. Mechanical unloading after blastema formation results in a reduced rate of de novo bone formation, demonstrating mechanical load dependence of the bone regenerative response. Moreover, enhancing the wound-healing response of mechanically unloaded digits with the cyanoacrylate tissue adhesive Dermabond improves wound closure and partially rescues digit tip regeneration. Taken together, these results demonstrate that mammalian digit tip regeneration is mechanical load-dependent. Given that human fingertip regeneration shares many characteristics with the mouse digit tip, these results identify mechanical load as a previously unappreciated requirement for de novo bone regeneration in humans. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Felisha Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Rihana Bokhari
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Joshua Gregory
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
11
|
Yu L, Lin YL, Yan M, Li T, Wu EY, Zimmel K, Qureshi O, Falck A, Sherman KM, Huggins SS, Hurtado DO, Suva LJ, Gaddy D, Cai J, Brunauer R, Dawson LA, Muneoka K. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development 2022; 149:274141. [PMID: 35005773 PMCID: PMC8917415 DOI: 10.1242/dev.200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine. Summary:In vivo articular cartilage regeneration serves as a model to develop novel approaches for engineering cartilage to repair damaged joints and identifies fibroblasts as a BMP9-inducible chondroprogenitor.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Tao Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Emily Y. Wu
- Dewpoint Therapeutics, 6 Tide Street, Suite 300, Boston, MA 02210, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Alyssa Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirby M. Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Shannon S. Huggins
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Osorio Hurtado
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - James Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Lindsay A. Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. NPJ Regen Med 2021; 6:77. [PMID: 34815400 PMCID: PMC8611001 DOI: 10.1038/s41536-021-00187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.
Collapse
|
13
|
The Potential of Nail Mini-Organ Stem Cells in Skin, Nail and Digit Tips Regeneration. Int J Mol Sci 2021; 22:ijms22062864. [PMID: 33799809 PMCID: PMC7998429 DOI: 10.3390/ijms22062864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.
Collapse
|
14
|
O'Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells. Tissue Eng Part A 2020; 27:1099-1109. [PMID: 33191853 DOI: 10.1089/ten.tea.2020.0273] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a debilitating joint disease that is characterized by pathologic changes in both cartilage and bone, potentially involving cross talk between these tissues that is complicated by extraneous factors that are difficult to study in vivo. To create a model system of these cartilage-bone interactions, we developed an osteochondral organoid from murine induced pluripotent stem cells (iPSCs). Using this approach, we grew organoids from a single cell type through time-dependent sequential exposure of growth factors, namely transforming growth factor β-3 and bone morphogenic protein 2, to mirror bone development through endochondral ossification. The result is a cartilaginous region and a calcified bony region comprising an organoid with the potential for joint disease drug screening and investigation of genetic risk in a patient or disease-specific manner. Furthermore, we also investigated the possibility of the differentiated cells within the organoid to revert to a pluripotent state. It was found that while the cells themselves maintain the capacity for reinduction of pluripotency, encapsulation in the newly formed 3D matrix prevents this process from occurring, which could have implications for future clinical use of iPSCs.
Collapse
Affiliation(s)
- Shannon K O'Connor
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Dakota B Katz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Logan Groneck
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Maturating Articular Cartilage Can Induce Ectopic Joint-Like Structures in Neonatal Mice. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Osteoarthritis is a huge health burden to our society. Seeking for potential ways to induce regeneration of articular cartilage (AC) that is intrinsically limited, we focused on the interaction between two opposing joints. To evaluate the role of the interaction of opposing regions of AC for joint maturation, we amputated digits at the distal interphalangeal level without injuring the articular surface of the intermediate phalanx (P2) and observed that the zonal organization of AC was defective. We then removed the P2 bone without injuring the articular surface of the proximal phalanx (P1), and the remaining part of the digit was amputated near the distal interphalangeal level. The distribution pattern of type II collagen and proteoglycan 4 (PRG4) suggested that maturation of AC in P1 was delayed. These two experiments suggested that an interaction between the opposing AC in a joint is necessary for maturation of the zonal organization of AC in neonatal digits. To test if an interaction of the joints is sufficient to induce articular cartilage, a proximal fragment of P2 was resected, inverted, and put back into the original location. Newly formed cartilage was induced at the interface region between the AC of the inverted graft and the cut edge of the distal part of P2. Type II collagen and PRG4 were expressed in the ectopic cartilage in a similar manner to normal AC, indicating that neonatal AC can induce ectopic joint-like structures in mice comparable with what has been reported in newts and frogs. These results suggest that the neonatal joint could be a source of inductive signals for regeneration of AC.
Lay Summary
In this study, we experimentally show that neonatal mice appear to have the capacity to regenerate articular cartilage (AC) in digits. It is already known that mice can regenerate a digit tip after amputation, but do not regenerate in response to amputations at more proximal levels. Therefore, it has been thought that mammalian joint structures are non-regenerative. However, we found that normal digit AC can induce AC-like structures in a non-joint region when it is placed next to the cut edge of a bone, suggesting that the normal AC has regenerative capacity in certain situations in neonatal mice.
Future Works
Joint disorders are a huge health problem of our society. The results of this study suggest that neonatal AC could be a potential source of inductive signals for regeneration of AC. The discovery of these inductive signals will aid in developing regenerative therapies of a joint in human.
Collapse
|
16
|
Storer MA, Miller FD. Cellular and molecular mechanisms that regulate mammalian digit tip regeneration. Open Biol 2020; 10:200194. [PMID: 32993414 PMCID: PMC7536070 DOI: 10.1098/rsob.200194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Digit tip regeneration is one of the few examples of true multi-tissue regeneration in an adult mammal. The key step in this process is the formation of the blastema, a transient proliferating cell mass that generates the different cell types of the digit to replicate the original structure. Failure to form the blastema results in a lack of regeneration and has been postulated to be the reason why mammalian limbs cannot regrow following amputation. Understanding how the blastema forms and functions will help us to determine what is required for mammalian regeneration to occur and will provide insights into potential therapies for mammalian tissue regeneration and repair. This review summarizes the cellular and molecular mechanisms that influence murine blastema formation and govern digit tip regeneration.
Collapse
Affiliation(s)
- Mekayla A Storer
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada M5G 1L7.,Department of Molecular Genetics, University of Toronto, Toronto, Canada M5G 1A8.,Department of Physiology, University of Toronto, Toronto, Canada M5G 1A8.,Institute of Medical Sciences, University of Toronto, Toronto, Canada M5G 1A8
| |
Collapse
|
17
|
Dawson LA, Schanes PP, Marrero L, Jordan K, Brunauer R, Zimmel KN, Qureshi O, Imholt FM, Falck AR, Yan M, Dolan CP, Yu L, Muneoka K. Proximal digit tip amputation initiates simultaneous blastema and transient fibrosis formation and results in partial regeneration. Wound Repair Regen 2020; 29:196-205. [PMID: 32815252 DOI: 10.1111/wrr.12856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Complete extremity regeneration in mammals is restricted to distal amputations of the digit tip, the terminal phalanx (P3). In mice, P3 regeneration is mediated via the formation of a blastema, a transient population of progenitor cells that form from the blending of periosteal and endosteal/marrow compartmentalized cells that undergo differentiation to restore the amputated structures. Compartmentalized blastema cells are formed independently, and periosteal compartment-derived cells are required for restoration of amputated skeletal length. P3 regenerative capacity is progressively attenuated at increasingly more proximal amputation levels, eventually resulting in regenerative failure. The continuum of regenerative capacity within the P3 wound milieu is a unique model to investigate mammalian blastema formation in response to distal amputation, as well as the healing response associated with regenerative failure at proximal amputation levels. We report that P3 proximal amputation healing, previously reported to result in regenerative failure, is not an example of complete regenerative failure, but instead is characterized by a limited bone regeneration response restricted to the endosteal/marrow compartment. The regeneration response is mediated by blastema formation within the endosteal/marrow compartment, and blastemal osteogenesis progresses through intramembranous ossification in a polarized proximal to distal sequence. Unlike bone regeneration following distal P3 amputation, osteogenesis within the periosteal compartment is not observed in response to proximal P3 amputation. We provide evidence that proximal P3 amputation initiates the formation of fibrotic tissue that isolates the endosteal/marrow compartment from the periosteal compartment and wound epidermis. While the fibrotic response is transient and later resolved, these studies demonstrate that blastema formation and fibrosis can occur in close proximity, with the regenerative response dominating the final outcome. Moreover, the results suggest that the attenuated proximal P3 regeneration response is associated with the absence of periosteal-compartment participation in blastema formation and bone regeneration.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Luis Marrero
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kathryn Jordan
- Department of Orthopedic Surgery, Louisiana State University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine N Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alyssa R Falck
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Makanae A, Tajika Y, Nishimura K, Saito N, Tanaka JI, Satoh A. Neural regulation in tooth regeneration of Ambystoma mexicanum. Sci Rep 2020; 10:9323. [PMID: 32518359 PMCID: PMC7283310 DOI: 10.1038/s41598-020-66142-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nerve-dependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration. The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nervedependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration.
Collapse
Affiliation(s)
- Aki Makanae
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Yuki Tajika
- Gunma University, Department of Anatomy, Graduate School of Medicine 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Koki Nishimura
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Nanami Saito
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Jun-Ichi Tanaka
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Akira Satoh
- Okayama University Research Core for Interdisciplinary Sciences (RCIS), 3-1-1, Tsushimanaka, Kitaku, Okayama, 700-8530, Japan.
| |
Collapse
|
19
|
Yu Y, Cui H, Zhang C, Zhang D, Yin J, Wen G, Chai Y. Human nail bed extracellular matrix facilitates bone regeneration via macrophage polarization mediated by the JAK2/STAT3 pathway. J Mater Chem B 2020; 8:4067-4079. [PMID: 32242565 DOI: 10.1039/c9tb02910a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Critical-sized bone defects caused by trauma, tumor resection or serious infection represent one of the most challenging problems faced by orthopedic surgeons. However, the construction of bone grafts with good osteointegration and osteoinductivity is a clinical challenge. It has been elaborated that the nail bed tissue is an essential element for digit tip regeneration, suggesting that the nail bed may serve as a new material to manipulate bone regeneration. Herein, it was found that human nail bed extracellular matrix derived from amputated patients stimulates macrophage polarization toward a pro-healing phenotype and the expression of BMP2, to facilitate the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro. The in vivo osteogenic capacity of decellularized nail bed scaffolds was then confirmed using a rat model of critical-sized calvarial defects. The in-depth analysis of immune responses to implanted scaffolds revealed that macrophage polarization toward the pro-regenerative M2 phenotype directs osteogenesis, as confirmed by macrophage depletion. A combination of proteomics analysis and RNA interference verified that the JAK2/STAT3 pathway is the positive regulator of macrophage polarization initiated by the decellularized nail bed during the promoted osteogenesis process. Thus, the decellularized human nail bed scaffold developed in this work is a promising biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Muneoka K, Dawson LA. Evolution of epimorphosis in mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:165-179. [PMID: 31951104 DOI: 10.1002/jez.b.22925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Mammalian epimorphic regeneration is rare and digit tip regeneration in mice is the best-studied model for a multi-tissue regenerative event that involves blastema formation. Digit tip regeneration parallels human fingertip regeneration, thus understanding the details of this response can provide insight into developing strategies to expand the potential of human regeneration. Following amputation, the digit stump undergoes a strong histolytic response involving osteoclast-mediated bone degradation that is spatially and temporally linked to the expansion of blastema osteoprogenitor cells. Blastemal differentiation occurs via direct intramembranous ossification. Although robust, digit regeneration is imperfect: The amputated cortical bone is replaced with woven bone and there is excessive bone regeneration restricted to the dorsal-ventral axis. Ontogenetic and phylogenetic analysis of digit regeneration in amphibians and mammals raise the possibility that mammalian blastema is a product of convergent evolution and we hypothesize that digit tip regeneration evolved from a nonregenerative precondition. A model is proposed in which the mammalian blastema evolved in part from an adaptation of two bone repair strategies (the bone remodeling cycle and fracture healing) both of which are conserved across tetrapod vertebrates. The view that epimorphic regeneration evolved in mammals from a nonregenerative precondition is supported by recent studies demonstrating that complex regenerative responses can be induced from a number of different nonregenerative amputation wounds by specific modification of the healing response.
Collapse
Affiliation(s)
- Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
21
|
Yu Y, Cui H, Zhang D, Liang B, Chai Y, Wen G. Human nail bed‐derived decellularized scaffold regulates mesenchymal stem cells for nail plate regeneration. J Tissue Eng Regen Med 2019; 13:1770-1778. [PMID: 31278843 DOI: 10.1002/term.2927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/01/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Demin Zhang
- Zhejiang Province's Key Laboratory of 3D Printing and EquipmentZhejiang University Hangzhou China
| | - Bo Liang
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
22
|
Ma X, Fan C, Wang Y, Du Y, Zhu Y, Liu H, Lv L, Liu Y, Zhou Y. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J Cell Physiol 2019; 235:909-919. [PMID: 31241766 DOI: 10.1002/jcp.29006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.
Collapse
Affiliation(s)
- Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Cong Fan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
23
|
Yu L, Dawson LA, Yan M, Zimmel K, Lin YL, Dolan CP, Han M, Muneoka K. BMP9 stimulates joint regeneration at digit amputation wounds in mice. Nat Commun 2019; 10:424. [PMID: 30723209 PMCID: PMC6363752 DOI: 10.1038/s41467-018-08278-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/28/2018] [Indexed: 01/09/2023] Open
Abstract
A major goal of regenerative medicine is to stimulate tissue regeneration after traumatic injury. We previously discovered that treating digit amputation wounds with BMP2 in neonatal mice stimulates endochondral ossification to regenerate the stump bone. Here we show that treating the amputation wound with BMP9 stimulates regeneration of a synovial joint that forms an articulation with the stump bone. Regenerated structures include a skeletal element lined with articular cartilage and a synovial cavity, and we demonstrate that this response requires the Prg4 gene. Combining BMP2 and BMP9 treatments in sequence stimulates the regeneration of bone and joint. These studies provide evidence that treatment of growth factors can be used to engineer a regeneration response from a non-regenerating amputation wound. Mammalian joints have poor regenerative capacity following amputation. Here, the authors show that in mice, stimulation of the amputation wound with BMP2 and BMP9 stimulates regeneration of a synovial joint that includes bone, cartilage and a synovial cavity.
Collapse
Affiliation(s)
- Ling Yu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Lieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Manjong Han
- Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA. .,Department of Cell & Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
24
|
Digit Tip Injuries: Current Treatment and Future Regenerative Paradigms. Stem Cells Int 2019; 2019:9619080. [PMID: 30805012 PMCID: PMC6360566 DOI: 10.1155/2019/9619080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Over the past several decades there has been a profound increase in the understanding of tissue regeneration, driven largely by the observance of the tremendous regenerative capacity in lower order life forms, such as hydra and urodeles. However, it is known that humans and other mammals retain the ability to regenerate the distal phalanges of the digits after amputation. Despite the increased knowledge base on model organisms regarding regenerative paradigms, there is a lack of application of regenerative medicine techniques in clinical practice in regard to digit tip injury. Here, we review the current understanding of digit tip regeneration and discuss gaps that remain in translating regenerative medicine into clinical treatment of digit amputation.
Collapse
|
25
|
Galkin F, Zhang B, Dmitriev SE, Gladyshev VN. Reversibility of irreversible aging. Ageing Res Rev 2019; 49:104-114. [PMID: 30513346 DOI: 10.1016/j.arr.2018.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Most multicellular organisms are known to age, due to accumulation of damage and other deleterious changes over time. These changes are often irreversible, as organisms, humans included, evolved fully differentiated, irreplaceable cells (e.g. neurons) and structures (e.g. skeleton). Hence, deterioration or loss of at least some cells and structures should lead to inevitable aging of these organisms. Yet, some cells may escape this fate: adult somatic cells may be converted to partially reprogrammed cells or induced pluripotent stem cells (iPSCs). By their nature, iPSCs are the cells representing the early stages of life, indicating a possibility of reversing the age of cells within the organism. Reprogramming strategies may be accomplished both in vitro and in vivo, offering opportunities for rejuvenation in the context of whole organisms. Similarly, older organs may be replaced with the younger ones prepared ex vivo, or grown within other organisms or even other species. How could the irreversibility of aging of some parts of the organism be reconciled with the putative reversal of aging of the other parts of the same organism? Resolution of this question holds promise for dramatically extending lifespan, which is currently not possible with traditional genetic, dietary and pharmacological approaches. Critical issues in this challenge are the nature of aging, relationship between aging of an organism and aging of its parts, relationship between cell dedifferentiation and rejuvenation, and increased risk of cancer that goes hand in hand with rejuvenation approaches.
Collapse
Affiliation(s)
- Fedor Galkin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia; Insilico Medicine, Rockville, Maryland 20850, United States
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Dawson LA, Schanes PP, Kim P, Imholt FM, Qureshi O, Dolan CP, Yu L, Yan M, Zimmel KN, Falck AR, Muneoka K. Blastema formation and periosteal ossification in the regenerating adult mouse digit. Wound Repair Regen 2018; 26:263-273. [PMID: 30120800 DOI: 10.1111/wrr.12666] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 08/07/2018] [Indexed: 01/25/2023]
Abstract
While mammals cannot regenerate amputated limbs, mice and humans have regenerative ability restricted to amputations transecting the digit tip, including the terminal phalanx (P3). In mice, the regeneration process is epimorphic and mediated by the formation of a blastema comprised of undifferentiated proliferating cells that differentiate to regenerate the amputated structures. Blastema formation distinguishes the regenerative response from a scar-forming healing response. The mouse digit tip serves as a preclinical model to investigate mammalian blastema formation and endogenous regenerative capabilities. We report that P3 blastema formation initiates prior to epidermal closure and concurrent with the bone histolytic response. In this early healing response, proliferation and cells entering the early stages of osteogenesis are localized to the periosteal and endosteal bone compartments. After the completion of stump bone histolysis, epidermal closure is completed and cells associated with the periosteal and endosteal compartments blend to form the blastema proper. Osteogenesis associated with the periosteum occurs as a polarized progressive wave of new bone formation that extends from the amputated stump and restores skeletal length. Bone patterning is restored along the proximal-distal and medial digit axes, but is imperfect in the dorsal-ventral axis with the regeneration of excessive new bone that accounts for the enhanced regenerated bone volume noted in previous studies. Periosteum depletion studies show that this compartment is required for the regeneration of new bone distal to the original amputation plane. These studies provide evidence that blastema formation initiates early in the healing response and that the periosteum is an essential tissue for successful epimorphic regeneration in mammals.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Paula P Schanes
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Patrick Kim
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Felisha M Imholt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Osama Qureshi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Connor P Dolan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ling Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Mingquan Yan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katherine N Zimmel
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Alyssa R Falck
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Ken Muneoka
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
27
|
Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, Alini M, Eslaminejad MB. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med 2018; 12:1925-1943. [PMID: 30011424 DOI: 10.1002/term.2727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl Med 2018; 7:262-270. [PMID: 29405625 PMCID: PMC5827737 DOI: 10.1002/sctm.17-0236] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
29
|
Brunauer R, Muneoka K. The Impact of Aging on Mechanisms of Mammalian Epimorphic Regeneration. Gerontology 2018; 64:300-308. [DOI: 10.1159/000485320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023] Open
Abstract
Aging is associated with a significant decline of tissue repair and regeneration, ultimately resulting in tissue dysfunction, multimorbidity, and death. Salamanders possess remarkable regenerative abilities and have been studied with the prospect of inducing regeneration in humans and counteracting regenerative decline with aging. However, epimorphic regeneration, the full replacement of amputated structures, also occurs in mammals. One of the best studied models is digit tip regeneration, which is described for mice, and occurs in humans in a comparable manner. To accomplish regeneration, the amputated digit tip has to undergo three interdependent, overlapping steps: (i) wound healing without formation of a scar; (ii) formation of a blastema, a highly proliferative cell mass; and (iii) spatiotemporally regulated differentiation to generate a pattern similar to the original structure. Aging likely interferes with each of these steps. In this article, we provide an overview of the critical signaling pathways for regeneration, as revealed by investigating mammalian digit regeneration, the possible impact of aging on these pathways, and approaches to induce regeneration in the elderly. We hypothesize that with aging, increased Wnt signaling, NF-κB and tumor suppressor activity, and loss of positional information hampers regeneration. Knowledge about the impact of aging on regenerative mechanisms will enable us to safely activate endogenous regeneration in the elderly, and to generate a regeneration-permissive environment for cell therapies.
Collapse
|
30
|
The blastema and epimorphic regeneration in mammals. Dev Biol 2017; 433:190-199. [PMID: 29291973 DOI: 10.1016/j.ydbio.2017.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 08/04/2017] [Indexed: 01/02/2023]
Abstract
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration.
Collapse
|
31
|
Simkin J, Seifert AW. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path? Stem Cells Transl Med 2017; 7:220-231. [PMID: 29271610 PMCID: PMC5788874 DOI: 10.1002/sctm.17-0213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine2018;7:220–231
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Chen Y, Xu H, Lin G. Generation of iPSC-derived limb progenitor-like cells for stimulating phalange regeneration in the adult mouse. Cell Discov 2017; 3:17046. [PMID: 29263795 PMCID: PMC5735367 DOI: 10.1038/celldisc.2017.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023] Open
Abstract
The capacity of digit tip regeneration observed both in rodents and humans establishes a foundation for promoting robust regeneration in mammals. However, stimulating regeneration at more proximal levels, such as the middle phalanges (P2) of the adult mouse, remains challenging. Having shown the effectiveness of transplantation of limb progenitor cells in stimulating limb regeneration in Xenopus, we are now applying the cell transplantation approach to the adult mouse. Here we report that both embryonic and induced pluripotent stem cell (iPSC)-derived limb progenitor-like cells can promote adult mouse P2 regeneration. We have established a simple and efficient protocol for deriving limb progenitor-like cells from mouse iPSCs. iPSCs are cultured as three-dimensional fibrin bodies, followed by treatment with combinations of Fgf8, CHIR99021, Purmorphamine and SB43542 during differentiation. These iPSC-derived limb progenitor-like cells resemble embryonic limb mesenchyme cells in their expression of limb-related genes. After transplantation, the limb progenitor-like cells can promote adult mouse P2 regeneration, as embryonic limb bud cells do. Our results provide a basis for further developing progenitor cell-based approaches for improving regeneration in the adult mouse limbs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Genetics Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hanqian Xu
- Research Centre for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Department of Genetics Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Research Centre for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Taghiyar L, Hosseini S, Hesaraki M, Azam Sayahpour F, Aghdami N, Baghaban Eslaminejad M. Isolation, Characterization and Osteogenic Potential of Mouse Digit Tip Blastema Cells in Comparison with Bone Marrow-Derived Mesenchymal Stem Cells In Vitro. CELL JOURNAL 2017; 19:585-598. [PMID: 29105393 PMCID: PMC5672097 DOI: 10.22074/cellj.2018.4710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022]
Abstract
Objective Limb regeneration mediated by blastema cells (BlCs) in mammals is limited to the digit tips of neonates.
Due to the lack of access to BlCs in adults and the difficulty in isolating and expanding BlCs from neonates, the use
of a cellular population with similar features of BlCs would be a valuable strategy to direct a non-regenerative wound
towards regeneration. In this study, we have initially isolated and cultured BlCs, and explored their characteristics in
vitro. Next, we compared the capability of bone marrow-derived mesenchymal stem cells (BM-MSCs) as an alternative
accessible cell source to BlCs for regeneration of appendages.
Materials and Methods In this experimental study, BM-MSCs were isolated from BM and we obtained BlCs from the
neonatal regenerating digit tip of C57B/6 mice. The cells were characterized for expressions of cell surface markers by
flow cytometry. Quantitative-reverse transcription polymerase chain reaction (qRT-PCR) and lineage-specific staining
were used to assess their ability to differentiate into skeletal cell lineages. The colony forming ability, proliferation,
alkaline phosphatase (ALP) activity, calcium content, and osteogenic gene expression were evaluated in both BM-
MSCs and BlCs cultures at days 7, 14, and 21.
Results qRT-PCR analysis revealed that the cells from both sources readily differentiated into mesodermal lineages. There
was significantly higher colony forming ability in BM-MSCs compared to BlCs (P<0.05). Alizarin red staining (ARS), calcium,
and the ALP assay showed the same degree of mineral deposition in both BlCs and BM-MSCs. Gene expression levels of
osteblastic markers indicated similar bone differentiation capacity for both BlCs and BM-MSCs at all time-points.
Conclusion Characteristics of BlCs in vitro appear to be similar to BM-MSCs. Therefore, they could be considered as a
substitute for BlCs for a regenerative approach with potential use in future clinical settings for regenerating human appendages.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
34
|
Ritenour AM, Dickie R. Inhibition of Vascular Endothelial Growth Factor Receptor Decreases Regenerative Angiogenesis in Axolotls. Anat Rec (Hoboken) 2017; 300:2273-2280. [PMID: 28921926 DOI: 10.1002/ar.23689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 03/24/2017] [Accepted: 04/01/2017] [Indexed: 12/14/2022]
Abstract
Angiogenesis is crucial for tissue growth and repair in mammals, and is chiefly regulated by vascular endothelial growth factor (VEGF) signaling. We evaluated the effect of chemical inhibition of VEGF receptor signaling in animals with superior regenerative ability, axolotl salamanders, to determine the impact on vascularization and regenerative outgrowth. Following tail amputation, treated animals (100 nM PTK787) and controls were examined microscopically and measured over the month-long period of regeneration. Treatment with VEGFR inhibitor decreased regenerative angiogenesis; drug-treated animals had lower vascular densities in the regenerating tail than untreated animals. This decrease in neovascularization, however, was not associated with a decrease in regenerative outgrowth or with morphological abnormalities in the regrown tail. Avascular but otherwise anatomically normal regenerative outgrowth over 1 mm beyond the amputation plane was observed. The results suggest that in this highly regenerative species, significant early tissue regeneration is possible in the absence of a well-developed vasculature. This research sets the groundwork for establishing a system for the chemical manipulation of angiogenesis within the highly regenerative axolotl model, contributing to a better understanding of the role of the microvasculature within strongly proliferative yet well-regulated environments. Anat Rec, 300:2273-2280, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela M Ritenour
- Department of Biological Sciences, Towson University, 7800 York Road, Towson, Madison
| | - Renee Dickie
- Department of Biological Sciences, Towson University, 7800 York Road, Towson, Madison
| |
Collapse
|
35
|
Dawson LA, Yu L, Yan M, Marrero L, Schanes PP, Dolan C, Pela M, Petersen B, Han M, Muneoka K. The periosteal requirement and temporal dynamics of BMP2-induced middle phalanx regeneration in the adult mouse. ACTA ACUST UNITED AC 2017; 4:140-150. [PMID: 28975034 PMCID: PMC5617898 DOI: 10.1002/reg2.81] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
Abstract
Regeneration of mammalian limbs is restricted to amputation of the distal digit tip, the terminal phalanx (P3). The adjacent skeletal element, the middle phalanx (P2), has emerged as a model system to investigate regenerative failure and as a site to test approaches aimed at enhancing regeneration. We report that exogenous application of bone morphogenetic protein 2 (BMP2) stimulates the formation of a transient cartilaginous callus distal to the amputation plane that mediates the regeneration of the amputated P2 bone. BMP2 initiates a significant regeneration response during the periosteal‐derived cartilaginous healing phase of P2 bone repair, yet fails to induce regeneration in the absence of periosteal tissue, or after boney callus formation. We provide evidence that a temporal component exists in the induced regeneration of P2 that we define as the “regeneration window.” In this window, cells are transiently responsive to BMP2 after the amputation injury. Simple re‐injury of the healed P2 stump acts to reinitiate endogenous bone repair, complete with periosteal chondrogenesis, thus reopening the “regeneration window” and thereby recreating a regeneration‐permissive environment that is responsive to exogenous BMP2 treatment.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station TX USA.,Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Ling Yu
- Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station TX USA.,Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Mingquan Yan
- Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station TX USA.,Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Luis Marrero
- Department of Medicine Louisiana State University Health Sciences Center New Orleans LA USA
| | - Paula P Schanes
- Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Connor Dolan
- Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station TX USA
| | - Maegan Pela
- Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Britta Petersen
- Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Manjong Han
- Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| | - Ken Muneoka
- Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station TX USA.,Cell and Molecular Biology Tulane University 2000 Percival Stern Hall, 6400 Freret St New Orleans LA USA
| |
Collapse
|
36
|
Stocum DL. Mechanisms of urodele limb regeneration. REGENERATION (OXFORD, ENGLAND) 2017; 4:159-200. [PMID: 29299322 PMCID: PMC5743758 DOI: 10.1002/reg2.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
This review explores the historical and current state of our knowledge about urodele limb regeneration. Topics discussed are (1) blastema formation by the proteolytic histolysis of limb tissues to release resident stem cells and mononucleate cells that undergo dedifferentiation, cell cycle entry and accumulation under the apical epidermal cap. (2) The origin, phenotypic memory, and positional memory of blastema cells. (3) The role played by macrophages in the early events of regeneration. (4) The role of neural and AEC factors and interaction between blastema cells in mitosis and distalization. (5) Models of pattern formation based on the results of axial reversal experiments, experiments on the regeneration of half and double half limbs, and experiments using retinoic acid to alter positional identity of blastema cells. (6) Possible mechanisms of distalization during normal and intercalary regeneration. (7) Is pattern formation is a self-organizing property of the blastema or dictated by chemical signals from adjacent tissues? (8) What is the future for regenerating a human limb?
Collapse
Affiliation(s)
- David L. Stocum
- Department of BiologyIndiana University−Purdue University Indianapolis723 W. Michigan StIndianapolisIN 46202USA
| |
Collapse
|
37
|
Berebichez-Fridman R, Montero-Olvera P, Gómez-García R, Berebichez-Fastlicht E. An intramedullary nail coated with antibiotic and growth factor nanoparticles: An individualized state-of-the-art treatment for chronic osteomyelitis with bone defects. Med Hypotheses 2017; 105:63-68. [DOI: 10.1016/j.mehy.2017.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/15/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
|
38
|
Taghiyar L, Hesaraki M, Sayahpour FA, Satarian L, Hosseini S, Aghdami N, Baghaban Eslaminejad M. Msh homeobox 1 ( Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice. J Biol Chem 2017; 292:10520-10533. [PMID: 28461333 DOI: 10.1074/jbc.m116.774265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/29/2017] [Indexed: 01/23/2023] Open
Abstract
Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox (Msx) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx-regulated genes (Bmp4, Fgf8, and keratin 14 (K14)) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx-overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8, and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx-transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and.,the Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Mahdi Hesaraki
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| | - Forough Azam Sayahpour
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| | - Leila Satarian
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| | - Samaneh Hosseini
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| | - Naser Aghdami
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| | - Mohamadreza Baghaban Eslaminejad
- From the Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran 1665659911, Iran and
| |
Collapse
|
39
|
Ahrens LAJ, Vonwil D, Christensen J, Shastri VP. Gelatin device for the delivery of growth factors involved in endochondral ossification. PLoS One 2017; 12:e0175095. [PMID: 28380024 PMCID: PMC5381949 DOI: 10.1371/journal.pone.0175095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo.
Collapse
Affiliation(s)
- Lucas A. J. Ahrens
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel Vonwil
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
| | - Jon Christensen
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
40
|
|
41
|
Montoro DT, Muhonen EG, Longaker MT. Getting nervous about regeneration. Stem Cell Investig 2016; 3:71. [PMID: 27868053 DOI: 10.21037/sci.2016.10.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel T Montoro
- Harvard Medical School, Boston, MA, USA;; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA;; Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA;; Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
42
|
Abstract
Although fin regeneration following an amputation procedure has been well characterized, little is known about the impact of prolonged tissue damage on the execution of the regenerative programme in the zebrafish appendages. To induce histolytic processes in the caudal fin, we developed a new cryolesion model that combines the detrimental effects of freezing/thawing and ischemia. In contrast to the common transection model, the damaged part of the fin was spontaneously shed within two days after cryoinjury. The remaining stump contained a distorted margin with a mixture of dead material and healthy cells that concomitantly induced two opposing processes of tissue debris degradation and cellular proliferation, respectively. Between two and seven days after cryoinjury, this reparative/proliferative phase was morphologically featured by displaced fragments of broken bones. A blastemal marker msxB was induced in the intact mesenchyme below the damaged stump margin. Live imaging of epithelial and osteoblastic transgenic reporter lines revealed that the tissue-specific regenerative programmes were initiated after the clearance of damaged material. Despite histolytic perturbation during the first week after cryoinjury, the fin regeneration resumed and was completed without further alteration in comparison to the simple amputation model. This model reveals the powerful ability of the zebrafish to restore the original appendage architecture after the extended histolysis of the stump. Summary: Fin cryolesion resulted in histolysis and a delayed tissue loss. Despite prolonged destruction of the stump architecture, fin regeneration resumed and was normally completed, revealing robustness of the regenerative capacity.
Collapse
Affiliation(s)
- Bérénice Chassot
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - David Pury
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg 1700, Switzerland
| |
Collapse
|
43
|
Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci 2016; 10:238. [PMID: 27378832 PMCID: PMC4908136 DOI: 10.3389/fnins.2016.00238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
44
|
Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:251-62. [PMID: 26603349 PMCID: PMC4892205 DOI: 10.1089/ten.teb.2015.0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Approximately 2 million people have had limb amputations in the United States due to disease or injury, with more than 185,000 new amputations every year. The ability to promote epimorphic regeneration, or the regrowth of a biologically based digit or limb, would radically change the prognosis for amputees. This ambitious goal includes the regrowth of a large number of tissues that need to be properly assembled and patterned to create a fully functional structure. We have yet to even identify, let alone address, all the obstacles along the extended progression that limit epimorphic regeneration in humans. This review aims to present introductory fundamentals in epimorphic regeneration to facilitate design and conduct of research from a tissue engineering and regenerative medicine perspective. We describe the clinical scenario of human digit healing, featuring published reports of regenerative potential. We then broadly delineate the processes of epimorphic regeneration in nonmammalian systems and describe a few mammalian regeneration models. We give particular focus to the murine digit tip, which allows for comparative studies of regeneration-competent and regeneration-incompetent outcomes in the same animal. Finally, we describe a few forward-thinking opportunities for promoting epimorphic regeneration in humans.
Collapse
Affiliation(s)
- Lina M. Quijano
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Kristen M. Lynch
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Christopher H. Allan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
45
|
Dawson LA, Simkin J, Sauque M, Pela M, Palkowski T, Muneoka K. Analogous cellular contribution and healing mechanisms following digit amputation and phalangeal fracture in mice. ACTA ACUST UNITED AC 2016; 3:39-51. [PMID: 27499878 PMCID: PMC4857751 DOI: 10.1002/reg2.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
Abstract
Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration‐incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening. We show that cells of the periosteum respond to amputation and fracture by contributing both chondrocytes and osteoblasts to the endochondral ossification response. Based on our studies, we suggest that the amputation response represents an attempt at regeneration that ultimately fails due to the lack of a distal organizing influence that is present in fracture healing.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| | - Jennifer Simkin
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Biology University of Kentucky Lexington Kentucky 40506 USA
| | - Michelle Sauque
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Orthopedics University of Colorado Denver Aurora Colorado 80010 USA
| | - Maegan Pela
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Teresa Palkowski
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
46
|
Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015; 5:18353. [PMID: 26678416 PMCID: PMC4683620 DOI: 10.1038/srep18353] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/17/2015] [Indexed: 11/09/2022] Open
Abstract
Limb loss is a devastating disability and while current treatments provide aesthetic and functional restoration, they are associated with complications and risks. The optimal solution would be to harness the body's regenerative capabilities to regrow new limbs. Several methods have been tried to regrow limbs in mammals, but none have succeeded. One such attempt, in the early 1970s, used electrical stimulation and demonstrated partial limb regeneration. Several researchers reproduced these findings, applying low voltage DC electrical stimulation to the stumps of amputated rat forelimbs reporting "blastema, and new bone, bone marrow, cartilage, nerve, skin, muscle and epiphyseal plate formation". In spite of these encouraging results this research was discontinued. Recently there has been renewed interest in studying electrical stimulation, primarily at a cellular and subcellular level, and studies have demonstrated changes in stem cell behavior with increased proliferation, differentiation, matrix formation and migration, all important in tissue regeneration. We applied electrical stimulation, in vivo, to the stumps of amputated rat limbs and observed significant new bone, cartilage and vessel formation and prevention of neuroma formation. These findings demonstrate that electricity stimulates tissue regeneration and form the basis for further research leading to possible new treatments for regenerating limbs.
Collapse
Affiliation(s)
- Liudmila P Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dara Froemel
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Andrei Slavici
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany.,Department of Orthopedics, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Zachri N Ovadia
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Lukasz Hudak
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Friedrichsheim gGmbH, Marienburgstraße 2, Frankfurt/Main, 60528, Germany
| |
Collapse
|
47
|
Guo F, Han X, Wu Z, Cheng Z, Hu Q, Zhao Y, Wang Y, Liu C. ATF6a, a Runx2-activable transcription factor, is a new regulator of chondrocyte hypertrophy. J Cell Sci 2015; 129:717-28. [PMID: 26527399 DOI: 10.1242/jcs.169623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
Our previous research has shown that the spliced isoform of XBP1 (XBP1s) is an important downstream mediator of BMP2 and is involved in BMP2-stimulated chondrocyte differentiation. Herein, we report that ATF6 and its cleaved N-terminal cytoplasmic domain (known as ATF6a) are expressed in growth plate chondrocytes. We find that these proteins are differentially induced during BMP2-triggered chondrocyte differentiation. This differential expression probably results from the activation of the ATF6 gene by Runx2 and its repression by the Sox6 transcription factor. Runx2 and Sox6 act through their respective binding elements on the ATF6 gene. When overexpressed, ATF6 and ATF6a intensify chondrogenesis; our studies demonstrate that under the stimulation of ATF6 and ATF6a, chondrocytes tend to be hypertrophied and mineralized, a process leading to bone formation. By contrast, lowering expression of ATF6a by use of its specific siRNA suppresses chondrocyte differentiation. Moreover, ATF6a interacts with Runx2 and augments the Runx2-mediated hypertrophication of chondrocytes. Importantly, overexpression and knockdown of ATF6a during the chondrocyte hypertrophy process also led to altered expressions of IHH and PTHrP (also known as PTHLH). Taken together, these findings indicate that ATF6a favorably controls chondrogenesis and bone formation (1) by acting as a co-factor of Runx2 and enhancing Runx2-incited hypertrophic chondrocyte differentiation, and (2) by affecting IHH and PTHrP signaling.
Collapse
Affiliation(s)
- Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhimeng Wu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Cheng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qin Hu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing, 400016 China
| | - Chuanju Liu
- Departments of Orthopaedic Surgery and Cell Biology, New York University School of Medicine, New York, 10016 NY, USA
| |
Collapse
|
48
|
Kisch T, Klemens JM, Hofmann K, Liodaki E, Gierloff M, Moellmeier D, Stang F, Mailaender P, Habermann J, Brandenburger M. Collection of Wound Exudate From Human Digit Tip Amputations Does Not Impair Regenerative Healing: A Randomized Trial. Medicine (Baltimore) 2015; 94:e1764. [PMID: 26469916 PMCID: PMC4616794 DOI: 10.1097/md.0000000000001764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The regrowth of amputated digit tips represents a unique regenerative healing in mammals with subcutaneous volume regrowth, restoration of dactylogram, and suppression of scar formation. Although factor analysis in amphibians and even in mice is easy to obtain, safety of harvesting biomaterial from human digit tip amputations for analysis has not yet been described.The aim of this study was to evaluate if recovering wound exudate does hamper clinical outcome or influence microbiologic or inflammation status.A predefined cohort of 18 patients with fresh digit tip amputations was randomly assigned to receive standard therapy (debridement, occlusive dressing) with (n = 9) or without (n = 9) collection of the whole wound exudate in every dressing change. Primary endpoint (lengthening) and secondary endpoints (regeneration of dactylogram, nail bed and bone healing, time to complete wound closure, scar formation, 2-point discrimination, microbiologic analysis, inflammatory factors interleukin (IL)-1α, tumor necrosis factor-α, IL-4, and IL-6) were determined by an independent, blinded observer.Patients' characteristics showed no significant differences between the groups. All patients completed the study to the end of 3 months follow-up. Exudate collection did not influence primary and secondary endpoints. Furthermore, positive microbiologic findings as well as pus- and necrosis-like appearance neither impaired tissue restoration nor influenced inflammatory factor release.Here, the authors developed an easy and safe protocol for harvesting wound exudate from human digit tip amputations. For the first time, it was shown that harvesting does not impair regenerative healing. Using this method, further studies can be conducted to analyze regeneration associated factors in the human digit tip.DRKS.de Identifier: DRKS00006882 (UTN: U1111-1166-5723).
Collapse
Affiliation(s)
- Tobias Kisch
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Schleswig-Holstein Campus Lübeck, University of Lübeck (TK, EL, MG, DM, FS, PM); Fraunhofer Research Institution for Marine Biotechnology EMB (JMK, KH, MB); and Department of Surgery, Section for Translational Surgical Oncology and Biobanking, University Hospital Schleswig-Holstein Campus Lübeck, University of Lübeck, Lübeck, Germany (JH)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lynch KM, Ahsan T. Correlating the effects of bone morphogenic protein to secreted soluble factors from fibroblasts and mesenchymal stem cells in regulating regenerative processes in vitro. Tissue Eng Part A 2015; 20:3122-9. [PMID: 24851900 DOI: 10.1089/ten.tea.2014.0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The capacity to regenerate complex tissue structures after amputation in humans is limited to the digit tip. In a comparable mouse digit model, which includes both distal regeneration-competent and proximal regeneration-incompetent regions, successful regeneration involves precise orchestration of complex microenvironmental cues, including paracrine signaling via heterogeneous cell-cell interactions. Initial cellular processes, such as proliferation and migration, are critical in the formation of an initial stable cell mass and the ultimate regenerative outcome. Hence, the objective of these in vitro studies was to investigate the effect of soluble factors secreted by fibroblasts and mesenchymal stem cells (MSCs) on the proliferation and migration of cells from the regeneration-competent (P3) and -incompetent (P2) regions of the mouse digit tip. We found that P2 and P3 cells were more responsive to fibroblasts than MSCs and that the effects were mediated by bi-directional communication. To initiate understanding of the specific soluble factors that may be involved in the fibroblast-mediated changes in migration of P2 and P3 cells, bone morphogenic protein 2 (BMP2) was exogenously added to the medium. We found that changes in migration of P3 cells were similar when exposed to BMP2 or co-cultured with fibroblasts, indicating that BMP signaling may be responsible for the migratory response of P3 cells to the presence of fibroblasts. Furthermore, BMP2 expression in fibroblasts was shown to be responsive to tensile strain, as is present during wound closure. Therefore, these in vitro studies indicate that regenerative processes may be regulated by fibroblast-secreted soluble factors, which, in turn, are modulated by both cross-talk between heterogeneous phenotypes and the physical microenvironment of the healing site.
Collapse
Affiliation(s)
- Kristen M Lynch
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | | |
Collapse
|
50
|
Xiong Z, Jiang R, Zhang P, Han X, Guo FJ. Transmission of ER stress response by ATF6 promotes endochondral bone growth. J Orthop Surg Res 2015; 10:141. [PMID: 26374329 PMCID: PMC4571128 DOI: 10.1186/s13018-015-0284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023] Open
Abstract
Background We reported earlier that X-box binding protein1 spliced (XBP1S), a key regulator of the unfolded protein response (UPR), as a bone morphogenetic protein 2 (BMP2)-inducible transcription factor, positively regulates endochondral bone formation by activating granulin-epithelin precursor (GEP) chondrogenic growth factor. Under the stress of misfolded or unfolded proteins in the endoplasmic reticulum (ER), the cells can be protected by the mammalian UPR. However, the influence of activating transcription factor 6 (ATF6), another transcriptional arm of UPR, in BMP2-induced chondrocyte differentiation has not yet been elucidated. In the current study, we investigate and explore the role of ATF6 in endochondral bone formation, focus on associated molecules of hypertrophic chondrocyte differentiation, as well as the molecular events underlying this process. Methods High-cell-density micromass cultures were used to induce ATDC5 and C3H10T1/2 cell differentiation into chondrocytes. Quantitative real-time PCR, immunoblotting analysis, and immunohistochemistry were performed to examine (1) the expression of ATF6, ATF6α, collagen II, collagen X, and matrix metalloproteinase-13 (MMP13) and (2) whether ATF6 stimulates chondrogenesis and whether ATF6 enhances runt-related transcription factor 2 (Runx2)-mediated chondrocyte hypertrophy. Culture of fetal mouse bone explants was to detect whether ATF6 stimulates chondrocyte hypertrophy, mineralization, and endochondral bone growth. Coimmunoprecipitation was employed to determine whether ATF6 associates with Runx2 in chondrocyte differentiation. Results ATF6 is differentially expressed in the course of BMP2-triggered chondrocyte differentiation. Overexpression of ATF6 accelerates chondrocyte differentiation, and the ex vivo studies reveal that ATF6 is a potent stimulator of chondrocyte hypertrophy, mineralization, and endochondral bone growth. Knockdown of ATF6 via a siRNA approach inhibits chondrogenesis. Furthermore, ATF6 associates with Runx2 and enhances Runx2-induced chondrocyte hypertrophy. And, the stimulation effect of ATF6 is reduced during inhibition of Runx2 via a siRNA approach, suggesting that the promoting effect is required for Runx2. Conclusions Our observations demonstrate that ATF6 positively regulates chondrocyte hypertrophy and endochondral bone formation through activating Runx2-mediated hypertrophic chondrocyte differentiation.
Collapse
Affiliation(s)
- Zhangyuan Xiong
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaofeng Han
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Feng-Jin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|