1
|
Liu XY, Chen B, Zhang R, Zhang MQ, Ma YY, Han Y, Jiang JD, Zhang JP. Atorvastatin-induced intracerebral hemorrhage is inhibited by berberine in zebrafish. J Appl Toxicol 2024; 44:1198-1213. [PMID: 38639436 DOI: 10.1002/jat.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 μM) and demonstrated the effects of BBR (10, 50, and 100 μM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Ma
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Han
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Chen C, Zhang H, Lan Y, Yan W, Liu S, Chen Y, Xie T, Ning J, Yan X, Shang L, Han J. Statins as a risk factor for diabetic retinopathy: a Mendelian randomization and cross-sectional observational study. J Transl Med 2024; 22:298. [PMID: 38520016 PMCID: PMC10958895 DOI: 10.1186/s12967-024-05097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the foremost cause of vision loss among the global working-age population, and statins are among the most frequently prescribed drugs for lipid management in patients with DR. The exact relationship between statins and DR has not been determined. This study sought to validate the causal association between statins usage and diabetic retinopathy. METHODS The summary-data-based Mendelian randomization (SMR) method and inverse-variance-weighted Mendelian randomization (IVW-MR) were used to identify the causal relationship between statins and DR via the use of expression quantitative trait loci (eQTL) data for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) (31,684 blood samples), low density lipoprotein cholesterol-related GWAS data (sample size: 440,546), and DR-related GWAS data (14,584 cases and 176,010 controls). Additionally, a cross-sectional observational study based on the data from the National Health and Nutrition Examination Survey (NHANES) was conducted to supplement the association between DR and statins (sample size: 106,911). The odds ratios (ORs) with corresponding 95% confidence intervals (CIs) was employed to evaluate the results. RESULTS Based on the results of the MR analysis, HMGCR inhibitors were causally connected with a noticeably greater incidence of DR (IVW: OR = 0.54, 95% CI [0.42, 0.69], p = 0.000002; SMR: OR = 0.66, 95% CI [0.52, 0.84], p = 0.00073). Subgroup analysis revealed that the results were not affected by the severity of DR. The sensitivity analysis revealed the stability and reliability of the MR analysis results. The results from the cross-sectional study based on NHANES also support the association between not taking statins and a decreased risk of DR (OR = 0.54, 95% CI [0.37, 0.79], p = 0.001). CONCLUSIONS This study revealed that a significant increase in DR risk was causally related to statins use, providing novel insights into the role of statins in DR. However, further investigations are needed to verify these findings.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Fuzong Clinical Medical College of Fujian Medical University), Fuzhou, 350025, China
| | - Huan Zhang
- Department of Gastroenterology, Air Force Medical Center, The Air Force Military Medical University, Beijing, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Weiming Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Sida Liu
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China
| | - Yixuan Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China
| | - Tingke Xie
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China.
| | - Lei Shang
- Department of Health Statistics, School of Preventive Medicine, The Air Force Military Medical University, Xi'an, 710038, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, 1 Xinsi Rd, Xi'an, 710038, China.
| |
Collapse
|
3
|
Hernández-Juárez C, Morales-Villafaña G, López-Casillas F, Jiménez-Sánchez A. Fluorescent Probe for in Vivo Partitioning into Dynamic Lipid Droplets Enables Monitoring of Water Permeability-Induced Edema. ACS Sens 2023; 8:3076-3085. [PMID: 37477354 DOI: 10.1021/acssensors.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles found in most cell types from adipocytes to cancer cells. Although recent investigations have implicated LDs in numerous diseases, the current available methods to monitor them in vertebrate models rely on static imaging using fluorescent dyes, limiting the investigation of their rapid in vivo dynamics. Here, we report a fluorophore chemistry approach to enable in vivo LD dynamic monitoring using a Nernstian partitioning mechanism. Interestingly, the effect of atorvastatin and osmotic treatments toward LDs revealed an unprecedented dynamic enhancement. Then, using a designed molecular probe with an optimized response to hydration and LD dynamics applied to Zebrafish developing pericardial and yolk-sac edema, which represents a tractable model of a human cardiovascular disease, we also provide a unique dual method to detect disease evolution and recovery.
Collapse
Affiliation(s)
- Cinthia Hernández-Juárez
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Gilberto Morales-Villafaña
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Fernando López-Casillas
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
4
|
Withers SE, Rowlands CF, Tapia VS, Hedley F, Mosneag IE, Crilly S, Rice GI, Badrock AP, Hayes A, Allan SM, Briggs TA, Kasher PR. Characterization of a mutant samhd1 zebrafish model implicates dysregulation of cholesterol biosynthesis in Aicardi-Goutières syndrome. Front Immunol 2023; 14:1100967. [PMID: 36949945 PMCID: PMC10025490 DOI: 10.3389/fimmu.2023.1100967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS1-9) is a genetically determined encephalopathy that falls under the type I interferonopathy disease class, characterized by excessive type I interferon (IFN-I) activity, coupled with upregulation of IFN-stimulated genes (ISGs), which can be explained by the vital role these proteins play in self-non-self-discrimination. To date, few mouse models fully replicate the vast clinical phenotypes observed in AGS patients. Therefore, we investigated the use of zebrafish as an alternative species for generating a clinically relevant model of AGS. Using CRISPR-cas9 technology, we generated a stable mutant zebrafish line recapitulating AGS5, which arises from recessive mutations in SAMHD1. The resulting homozygous mutant zebrafish larvae possess a number of neurological phenotypes, exemplified by variable, but increased expression of several ISGs in the head region, a significant increase in brain cell death, microcephaly and locomotion deficits. A link between IFN-I signaling and cholesterol biosynthesis has been highlighted by others, but not previously implicated in the type I interferonopathies. Through assessment of neurovascular integrity and qPCR analysis we identified a significant dysregulation of cholesterol biosynthesis in the zebrafish model. Furthermore, dysregulation of cholesterol biosynthesis gene expression was also observed through RNA sequencing analysis of AGS patient whole blood. From this novel finding, we hypothesize that cholesterol dysregulation may play a role in AGS disease pathophysiology. Further experimentation will lend critical insight into the molecular pathophysiology of AGS and the potential links involving aberrant type I IFN signaling and cholesterol dysregulation.
Collapse
Affiliation(s)
- Sarah E. Withers
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Charlie F. Rowlands
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Victor S. Tapia
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Frances Hedley
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Siobhan Crilly
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Gillian I. Rice
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew P. Badrock
- Medical Research Council (MRC) Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Hayes
- Genomic Technologies Core Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Stuart M. Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Tracy A. Briggs
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Paul R. Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Foundation Trust, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Chen B, Lahl K, Saban D, Lenkeit A, Rauschenbach L, Santos AN, Li Y, Schmidt B, Zhu Y, Jabbarli R, Wrede KH, Kleinschnitz C, Sure U, Dammann P. Effects of medication intake on the risk of hemorrhage in patients with sporadic cerebral cavernous malformations. Front Neurol 2023; 13:1010170. [PMID: 36686509 PMCID: PMC9847255 DOI: 10.3389/fneur.2022.1010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Objective Recurrent intracerebral hemorrhage (ICH) poses a high risk for patients with cerebral cavernous malformations (CCMs). This study aimed to assess the influence of medication intake on hemorrhage risk in sporadic CCMs. Methods From a database of 1,409 consecutive patients with CCM (2003-2021), subjects with sporadic CCMs and complete magnetic resonance imaging data were included. We evaluated the presence of ICH as a mode of presentation, the occurrence of ICH during follow-up, and medication intake, including beta blockers, statins, antithrombotic therapy, and thyroid hormones. The impact of medication intake on ICH at presentation was calculated using univariate and multivariate logistic regression with age and sex adjustment. The longitudinal cumulative 5-year risk for (re-)hemorrhage was analyzed using the Kaplan-Meier curves and the Cox regression analysis. Results A total of 1116 patients with CCM were included. Logistic regression analysis showed a significant correlation (OR: 0.520, 95% CI: 0.284-0.951, p = 0.034) between antithrombotic therapy and ICH as a mode of presentation. Cox regression analysis revealed no significant correlation between medication intake and occurrence of (re-)hemorrhage (hazard ratios: betablockers 1.270 [95% CI: 0.703-2.293], statins 0.543 [95% CI: 0.194-1.526], antithrombotic therapy 0.507 [95% CI: 0.182-1.410], and thyroid hormones 0.834 [95% CI: 0.378-1.839]). Conclusion In this observational study, antithrombotic treatment was associated with the tendency to a lower rate of ICH as a mode of presentation in a large cohort of patients with sporadic CCM. Intake of beta blockers, statins, and thyroid hormones had no effect on hemorrhage as a mode of presentation. During the 5-year follow-up period, none of the drugs affected the further risk of (re-)hemorrhage.
Collapse
Affiliation(s)
- Bixia Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,*Correspondence: Bixia Chen ✉
| | - Kirstin Lahl
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dino Saban
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annika Lenkeit
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alejandro N. Santos
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Boerge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karsten H. Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Santos AN, Rauschenbach L, Saban D, Chen B, Lenkeit A, Gull HH, Rieß C, Deuschl C, Schmidt B, Jabbarli R, Wrede KH, Zhu Y, Frank B, Sure U, Dammann P. Medication intake and hemorrhage risk in patients with familial cerebral cavernous malformations. J Neurosurg 2022; 137:1088-1094. [PMID: 35213840 DOI: 10.3171/2022.1.jns212724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to analyze the impact of medication intake on hemorrhage risk in patients with familial cerebral cavernous malformation (FCCM). METHODS The authors' institutional database was screened for patients with FCCM who had been admitted to their department between 2003 and 2020. Patients with a complete magnetic resonance imaging (MRI) data set, evidence of multiple CCMs, clinical baseline characteristics, and follow-up (FU) examination were included in the study. The authors assessed the influence of medication intake on first or recurrent intracerebral hemorrhage (ICH) using univariate and multivariate logistic regression adjusted for age and sex. The longitudinal cumulative 5-year risk of hemorrhage was calculated by applying Kaplan-Meier and Cox regression analyses adjusted for age and sex. RESULTS Two hundred five patients with FCCMs were included in the study. Multivariate Cox regression analysis revealed ICH as a predictor for recurrent hemorrhage during the 5-year FU. The authors also noted a tendency toward a decreased association with ICH during FU in patients on statin medication (HR 0.22, 95% CI 0.03-1.68, p = 0.143), although the relationship was not statistically significant. No bleeding events were observed in patients on antithrombotic therapy. Kaplan-Meier analysis and log-rank test showed a tendency toward a low risk of ICH during FU in patients on antithrombotic therapy (p = 0.085), as well as those on statin therapy (p = 0.193). The cumulative 5-year risk of bleeding was 22.82% (95% CI 17.33%-29.38%) for the entire cohort, 31.41% (95% CI 23.26%-40.83%) for patients with a history of ICH, 26.54% (95% CI 11.13%-49.7%) for individuals on beta-blocker medication, 6.25% (95% CI 0.33%-32.29%) for patients on statin medication, and 0% (95% CI 0%-30.13%) for patients on antithrombotic medication. CONCLUSIONS ICH at diagnosis was identified as a risk factor for recurrent hemorrhage. Although the relationships were not statistically significant, statin and antithrombotic medication tended to be associated with decreased bleeding events.
Collapse
Affiliation(s)
- Alejandro N Santos
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | | | - Dino Saban
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Bixia Chen
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Annika Lenkeit
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Hanah Hadice Gull
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Christoph Rieß
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Cornelius Deuschl
- 2Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen
| | - Börge Schmidt
- 3Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen; and
| | - Ramazan Jabbarli
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Karsten H Wrede
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Yuan Zhu
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Benedikt Frank
- 4Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Germany
| | - Ulrich Sure
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| | - Philipp Dammann
- 1Department of Neurosurgery and Spine Surgery, University Hospital Essen
| |
Collapse
|
7
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X, Zhang F. Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J 2022; 20:54. [PMID: 36163177 PMCID: PMC9511754 DOI: 10.1186/s12959-022-00413-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/03/2022] [Indexed: 03/09/2024] Open
Abstract
Objective Long non-coding RNA (lncRNA) essentially controls many physiological and pathological processes of deep vein thrombosis (DVT). Based on that, lncRNA taurine upregulated gene 1 (TUG1)-involved angiogenesis of endothelial progenitor cells (EPCs) and dissolution of DVT was explored. Methods In the in-vitro experiments, EPCs were engineered with mimic, inhibitor, siRNA, and plasmid, after which tube formation, proliferation, migration, and apoptosis were checked. In the in-vivo experiments, a DVT mouse model was established. Before the DVT operation, the mice were injected with agomir, antagomir, siRNA, and plasmid. Subsequently, thrombosis and damage to the femoral vein were pathologically evaluated. TUG1, miR-92a-3p, and 3-Hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression in the femoral vein was tested. The relationship between TUG1, miR-92a-3p, and Hmgcr was validated. Results DVT mice showed suppressed TUG1 and Hmgcr expression, and elevated miR-92a-3p expression. In EPCs, TUG1 overexpression or miR-92a-3p inhibition promoted cellular angiogenesis, whereas Hmgcr silencing blocked cellular angiogenesis. In DVT mice, elevated TUG1 or inhibited miR-92a-3p suppressed thrombosis and damage to the femoral vein whilst Hmgcr knockdown acted oppositely. In both cellular and animal models, TUG1 overexpression-induced effects could be mitigated by miR-92a-3p up-regulation. Mechanically, TUG1 interacted with miR-92a-3p to regulate Hmgcr expression. Conclusion Evidently, TUG1 promotes the angiogenesis of EPCs and dissolution of DVT via the interplay with miR-92a-3p and Hmgcr. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00413-y.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Bo Lei
- Anesthesia Department, Beijing Haidian Maternal & Child Health Hospital, No. 33 Haidian South Road, Haidian District, Beijing, 100080, China.
| | - Huan Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Luyuan Niu
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiangtao Li
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoyun Luo
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Fuxian Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
8
|
Crilly S, McMahon E, Kasher PR. Zebrafish for modeling stroke and their applicability for drug discovery and development. Expert Opin Drug Discov 2022; 17:559-568. [PMID: 35587689 DOI: 10.1080/17460441.2022.2072828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The global health burden of stroke is significant and few therapeutic treatment options currently exist for patients. Pre-clinical research relies heavily on rodent stroke models but the limitations associated with using these systems alone has meant translation of drug compounds to the clinic has not been greatly successful to date. Zebrafish disease modeling offers a potentially complementary platform for pre-clinical compound screening to aid the drug discovery process for translational stroke research. AREAS COVERED In this review, the authors introduce stroke and describe the issues associated with the current pre-clinical drug development pipeline and the advantages that zebrafish disease modeling can offer. Existing zebrafish models of ischemic and hemorrhagic stroke are reviewed. Examples of how zebrafish models have been utilized for drug discovery in other disease disciplines are also discussed. EXPERT OPINION Zebrafish disease modeling holds the capacity and potential to significantly enhance the stroke drug development pipeline. However, for this system to be more widely accepted and incorporated into translational stroke research, continued improvement of the existing zebrafish stroke models, as well as focussed collaboration between zebrafish and stroke researchers, is essential.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Emily McMahon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, the Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Wang HY, Yu P, Chen XS, Wei H, Cao SJ, Zhang M, Zhang Y, Tao YG, Cao DS, Qiu F, Cheng Y. Identification of HMGCR as the anticancer target of physapubenolide against melanoma cells by in silico target prediction. Acta Pharmacol Sin 2022; 43:1594-1604. [PMID: 34588618 PMCID: PMC9160031 DOI: 10.1038/s41401-021-00745-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Physapubenolide (PB), a withanolide-type compound extracted from the traditional herb Physalis minima L., has been demonstrated to exert remarkable cytotoxicity against cancer cells; however, its molecular mechanisms are still unclear. In this study, we demonstrated that PB inhibited cell proliferation and migration in melanoma cells by inducing cell apoptosis. The anticancer activity of PB was further verified in a melanoma xenograft model. To explore the mechanism underlying the anticancer effects of PB, we carried out an in silico target prediction study, which combined three approaches (chemical similarity searching, quantitative structure-activity relationship (QSAR), and molecular docking) to identify the targets of PB, and found that PB likely targets 3-hydroxy-methylglutaryl CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, which promotes cancer cell proliferation, migration, and metastasis. We further demonstrated that PB interacted with HMGCR, decreased its protein expression and inhibited the HMGCR/YAP pathway in melanoma cells. In addition, we found that PB could restore vemurafenib sensitivity in vemurafenib-resistant A-375 cells, which was correlated with the downregulation of HMGCR. In conclusion, we demonstrate that PB elicits anticancer action and enhances sensitivity to vemurafenib by targeting HMGCR.
Collapse
Affiliation(s)
- Hai-yan Wang
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Pian Yu
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Xi-sha Chen
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China ,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011 China
| | - Hui Wei
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 China
| | - Shi-jie Cao
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Meng Zhang
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yi Zhang
- grid.263761.70000 0001 0198 0694Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215031 China
| | - Yong-guang Tao
- grid.216417.70000 0001 0379 7164Key laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410078 China ,grid.216417.70000 0001 0379 7164NHC Key laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078 China
| | - Dong-sheng Cao
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008 China
| | - Feng Qiu
- grid.410648.f0000 0001 1816 6218School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Yan Cheng
- grid.452708.c0000 0004 1803 0208Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011 China ,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, 410011 China
| |
Collapse
|
10
|
Liu P, Chen H, Pang M, Liu X, Wang J, Zhang XD, Ming D. Airy-like beam-based light-sheet microscopy with improved FOV for zebrafish intracerebral hemorrhage. OPTICS EXPRESS 2022; 30:14709-14722. [PMID: 35473209 DOI: 10.1364/oe.451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Airy light-sheet microscopy is rapidly gaining importance for imaging intact biological specimens because of the rapid speed, high resolution, and wide field nature of the imaging method. However, the depth of field (DOF) of the detection objective imposes limitations on the modulation transfer function (MTF) of the light sheet, which in turn affects the size of the field of view (FOV). Here we present an optimized phase modulation model, based on 'Airy-like' beam family, to stretch the curved lobes, which brings a wider FOV while maintaining high resolution. In addition, we further develop a planar 'Airy-like' light-sheet by two-photon excitation which can avoid the deconvolution process. We validated the new imaging method by performing a real-time monitoring of the dynamic process of cerebral hemorrhage in zebrafish larva. The proposed Airy-like beam-based light-sheet microscopy has great potential to be applied to the precise screening of cerebral hemorrhage-related drugs to help precision medicine in the future.
Collapse
|
11
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Martin M, Vermeiren S, Bostaille N, Eubelen M, Spitzer D, Vermeersch M, Profaci CP, Pozuelo E, Toussay X, Raman-Nair J, Tebabi P, America M, De Groote A, Sanderson LE, Cabochette P, Germano RFV, Torres D, Boutry S, de Kerchove d'Exaerde A, Bellefroid EJ, Phoenix TN, Devraj K, Lacoste B, Daneman R, Liebner S, Vanhollebeke B. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 2022; 375:eabm4459. [PMID: 35175798 DOI: 10.1126/science.abm4459] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.
Collapse
Affiliation(s)
- Maud Martin
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Simon Vermeiren
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Naguissa Bostaille
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Marie Eubelen
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Daniel Spitzer
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Université de Mons, Gosselies B-6041, Belgium
| | - Caterina P Profaci
- Departments of Pharmacology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Elisa Pozuelo
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Xavier Toussay
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Joanna Raman-Nair
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Patricia Tebabi
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Michelle America
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Aurélie De Groote
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Leslie E Sanderson
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Pauline Cabochette
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Raoul F V Germano
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - David Torres
- Institut d'Immunologie Médicale, Université libre de Bruxelles, Gosselies, Belgium
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Université de Mons, Gosselies B-6041, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels B-1070, Belgium
| | - Eric J Bellefroid
- Laboratory of Developmental Genetics, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles, Gosselies B-6041, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
13
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
14
|
Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021; 22:5654. [PMID: 34073503 PMCID: PMC8198905 DOI: 10.3390/ijms22115654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| |
Collapse
|
15
|
Treatment with Atorvastatin During Vascular Remodeling Promotes Pericyte-Mediated Blood-Brain Barrier Maturation Following Ischemic Stroke. Transl Stroke Res 2021; 12:905-922. [PMID: 33423214 DOI: 10.1007/s12975-020-00883-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
We previously showed that newly formed vessels in ischemic rat brain have high blood-brain barrier (BBB) permeability at 3 weeks after stroke due to a lack of major endothelial tight junction proteins (TJPs), which may exacerbate edema in stroke patients. Atorvastatin was suggested a dose-dependent pro-angiogenic effect and ameliorating BBB permeability beyond its cholesterol-lowering effects. This study examined our hypothesis that, during vascular remodeling after stroke, treatment with atorvastatin could facilitate BBB maturation in remodeling vasculature in ischemic brain. Adult spontaneously hypertensive rats underwent middle cerebral artery occlusion with reperfusion (MCAO/RP). Atorvastatin, at dose of 3 mg/kg, was delivered daily starting at 14 days after MCAO/RP onset for 7 days. The rats were studied at multiple time points up to 8 weeks with multimodal-MRI, behavior tests, immunohistochemistry, and biochemistry. The delayed treatment of atorvastatin significantly reduced infarct size and BBB permeability, restored cerebral blood flow, and improved the neurological outcome at 8 weeks after MCAO/RP. Postmortem studies showed that atorvastatin promoted angiogenesis and stabilized the newly formed vessels in peri-infarct areas. Importantly, atorvastatin facilitated maturation of BBB properties in the new vessels by promoting endothelial tight junction (TJ) formation. Further in vivo and in vitro studies demonstrated that proliferating peri-vascular pericytes expressing neural-glial antigen 2 (NG2) mediated the role of atorvastatin on BBB maturation through regulating endothelial TJ strand formations. Our results suggested a therapeutic potential of atorvastatin in facilitating a full BBB integrity and functional stroke recovery, and an essential role for pericyte-mediated endothelial TJ formation in remodeling vasculature.
Collapse
|
16
|
Kingcade A, Ahuja N, Jefferson A, Schaffer PA, Ryschon H, Cadmus P, Garrity D, Ramsdell H. Morbidity and mortality in Danio rerio and Pimephales promelas exposed to antilipidemic drug mixtures (fibrates and statins) during embryogenesis: Comprehensive assessment via ante and post mortem endpoints. CHEMOSPHERE 2021; 263:127911. [PMID: 33297010 DOI: 10.1016/j.chemosphere.2020.127911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
Antilipidemic drugs are routinely detected in effluent and surface waters downstream of wastewater treatment plants. A mixture exposure study with nine environmentally relevant antilipidemic drugs was performed with zebrafish (Danio rerio, ZF) and fathead minnow (Pimephales promelas, FHM) embryos to investigate the effects on sensitive embryologic stages. Zebrafish embryos were exposed nominally to: (a) 0.005 μM, (b) 0.05 μM, or (c) 0.5 μM of each drug in the mixture. Fathead minnow embryos were exposed nominally to: (a) 0.0005 μM, (b) 0.005 μM, or (c) 0.05 μM of each drug in the mixture. Several of the individual drug concentrations were within ranges previously found in the environment. Multiple metrics demonstrate that (a) exposure of ZF and FHM embryos to antilipidemic drugs during embryonic development results in lethal and sublethal effects, (b) ZF were more sensitive than FHM based on median lethal concentration (LC50 0.02 μM and 0.05 μM, respectively), but FHM exhibited more severe abnormal sublethal morphologies than zebrafish embryos, and (c) the sublethal effects differed between the two species. This model identified novel specific endpoints for assessing sensitive, sublethal effects of pharmaceuticals in the environment. Abnormal myofiber birefringence pattern, hemorrhage, and heart rate are not included in standard evaluations but each of these metrics demonstrated a dose-dependent response in this study. Results demonstrate risk to fish development with potential repercussions at the population level, especially if environmental concentrations increase.
Collapse
Affiliation(s)
- A Kingcade
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO, USA; Now at Colorado Department of Public Health and Environment, Denver, CO, 80246, USA.
| | - N Ahuja
- Program of Cell and Molecular Biology, Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - A Jefferson
- Colorado Parks and Wildlife, Fort Collins, CO, USA
| | - P A Schaffer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO, USA
| | - H Ryschon
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO, USA
| | - P Cadmus
- Colorado Parks and Wildlife, Fort Collins, CO, USA
| | - D Garrity
- Program of Cell and Molecular Biology, Department of Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - H Ramsdell
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Withers SE, Parry-Jones AR, Allan SM, Kasher PR. A Multi-Model Pipeline for Translational Intracerebral Haemorrhage Research. Transl Stroke Res 2020; 11:1229-1242. [PMID: 32632777 PMCID: PMC7575484 DOI: 10.1007/s12975-020-00830-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Apart from acute and chronic blood pressure lowering, we have no specific medications to prevent intracerebral haemorrhage (ICH) or improve outcomes once bleeding has occurred. One reason for this may be related to particular limitations associated with the current pre-clinical models of ICH, leading to a failure to translate into the clinic. It would seem that a breakdown in the 'drug development pipeline' currently exists for translational ICH research which needs to be urgently addressed. Here, we review the most commonly used pre-clinical models of ICH and discuss their advantages and disadvantages in the context of translational studies. We propose that to increase our chances of successfully identifying new therapeutics for ICH, a bi-directional, 2- or 3-pronged approach using more than one model species/system could be useful for confirming key pre-clinical observations. Furthermore, we highlight that post-mortem/ex-vivo ICH patient material is a precious and underused resource which could play an essential role in the verification of experimental results prior to consideration for further clinical investigation. Embracing multidisciplinary collaboration between pre-clinical and clinical ICH research groups will be essential to ensure the success of this type of approach in the future.
Collapse
Affiliation(s)
- Sarah E Withers
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adrian R Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Stott Lane, Salford, M6 8HD, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
18
|
Nakamura S, Saito Y, Gouda T, Imai T, Shimazawa M, Nishimura Y, Hara H. Therapeutic Effects of Iron Chelation in Atorvastatin-Induced Intracranial Hemorrhage of Zebrafish Larvae. J Stroke Cerebrovasc Dis 2020; 29:105215. [PMID: 33066911 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Intracranial hemorrhage (ICH) catastrophically damages the cerebral vasculature, and severely compromises blood-brain barrier (BBB) function. The prognosis of ICH is poor due to the drastic and rapid progression of its pathology, and the lack of effective treatments presents a significant unmet clinical need. The present paper provides several evidences about the relationship between ICH bleeding status and mortality and the potential therapeutic effects of an iron chelator for ICH. METHODS Zebrafish are a highly transparent animal model, allowing live imaging of the complex cerebral vasculature. Thus, to further elucidate ATV-induced ICH, we investigated the concentration- and time-dependent phenotypes of ATV-induced ICH with zebrafish larvae. RESULTS The effects of ATV on mortality and ICH incidence in zebrafish larvae were concentration-dependent. Further, ATV treatment decreased vascular density of the hindbrain in a concentration-dependent manner, and hematoma volume was inversely correlated with ATV concentration. The number of cranial TUNEL-positive apoptotic cells was markedly increased 3 days post-fertilization. Importantly, the iron chelator deferasirox (DFR) decreased the incidence of ATV-induced ICH in zebrafish larvae. CONCLUSION These findings provided insight into the pathology and regulatory mechanism of ATV-induced ICH, and demonstrated the therapeutic effects of iron chelators.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | - Yuichi Saito
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | - Takumi Gouda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| |
Collapse
|
19
|
Jiao XF, Li HL, Jiao XY, Guo YC, Zhang C, Yang CS, Zeng LN, Bo ZY, Chen Z, Song HB, Zhang LL. Ovary and uterus related adverse events associated with statin use: an analysis of the FDA Adverse Event Reporting System. Sci Rep 2020; 10:11955. [PMID: 32686733 PMCID: PMC7371681 DOI: 10.1038/s41598-020-68906-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Experimental studies have demonstrated statin-induced toxicity for ovary and uterus. However, the safety of statins on the functions of ovary and uterus in real-world clinical settings remains unknown. The aim of this study was to identify ovary and uterus related adverse events (AEs) associated with statin use by analyzing data from FDA Adverse Event Reporting System (FAERS). We used OpenVigil 2.1 to query FAERS database. Ovary and uterus related AEs were defined by 383 Preferred Terms, which could be classified into ten aspects. Disproportionality analysis was performed to assess the association between AEs and statin use. Our results suggest that statin use may be associated with a series of ovary and uterus related AEs. These AEs are involved in ovarian cysts and neoplasms, uterine neoplasms, cervix neoplasms, uterine disorders (excl neoplasms), cervix disorders (excl neoplasms), endocrine disorders of gonadal function, menstrual cycle and uterine bleeding disorders, menopause related conditions, and sexual function disorders. Moreover, there are variabilities in the types and signal strengths of ovary and uterus related AEs across individual statins. According to our findings, the potential ovary and uterus related AEs of statins should attract enough attention and be closely monitored in future clinical practice.
Collapse
Affiliation(s)
- Xue-Feng Jiao
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.,West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hai-Long Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Xue-Yan Jiao
- Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yuan-Chao Guo
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Chuan Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Chun-Song Yang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Li-Nan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Zhen-Yan Bo
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Zhe Chen
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Hai-Bo Song
- Center for Drug Reevaluation, National Medical Products Administration, Beijing, 100000, China.
| | - Ling-Li Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
20
|
de Araújo Boleti AP, de Oliveira Flores TM, Moreno SE, Anjos LD, Mortari MR, Migliolo L. Neuroinflammation: An overview of neurodegenerative and metabolic diseases and of biotechnological studies. Neurochem Int 2020; 136:104714. [PMID: 32165170 DOI: 10.1016/j.neuint.2020.104714] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Neuroinflammation is an important factor contributing to cognitive impairment and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), ischemic injury, and multiple sclerosis (MS). These diseases are characterized by inexorable progressive injury of neuron cells, and loss of motor or cognitive functions. Microglia, which are the resident macrophages in the brain, play an important role in both physiological and pathological conditions. In this review, we provide an updated discussion on the role of ROS and metabolic disease in the pathological mechanisms of activation of the microglial cells and release of cytotoxins, leading to the neurodegenerative process. In addition, we also discuss in vivo models, such as zebrafish and Caenorhabditis elegans, and provide new insights into therapeutics bioinspired by neuropeptides from venomous animals, supporting high throughput drug screening in the near future, searching for a complementary approach to elucidating crucial mechanisms associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Ana Paula de Araújo Boleti
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Taylla Michelle de Oliveira Flores
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Susana Elisa Moreno
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil
| | - Lilian Dos Anjos
- Laboratório de Neurofarmacologia, Departmento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil
| | - Márcia Renata Mortari
- Laboratório de Neurofarmacologia, Departmento Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brazil
| | - Ludovico Migliolo
- S-InovaBiotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900, Campo Grande, MS, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
21
|
Barros S, Coimbra AM, Alves N, Pinheiro M, Quintana JB, Santos MM, Neuparth T. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:113-125. [PMID: 32116137 DOI: 10.1080/15287394.2020.1733722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic drug belonging to the statins group, is a widely prescribed pharmaceutical for prevention of cardiovascular diseases. Several studies showed that lipophilic statins, as SIM, cross the blood-brain barrier and interfere with the energy metabolism of the central nervous system in humans and mammalian models. In fish and other aquatic organisms, the effects of SIM on the brain energy metabolism are unknown, particularly following exposure to low environmentally relevant concentrations. Therefore, the present study aimed at investigating the influence of SIM on gene signaling pathways involved in brain energy metabolism of adult zebrafish (Danio rerio) following chronic exposure (90 days) to environmentally relevant SIM concentrations ranging from 8 ng/L to 1000 ng/L. Real-time PCR was used to determine the transcript levels of several genes involved in different pathways of the brain energy metabolism (glut1b, gapdh, acadm, accα, fasn, idh3a, cox4i1, and cox5aa). The findings here reported integrated well with ecological and biochemical responses obtained in a parallel study. Data demonstrated that SIM modulates transcription of key genes involved in the mitochondrial electron transport chain, in glucose transport and metabolism, in fatty acid synthesis and β-oxidation. Further, SIM exposure led to a sex-dependent transcription profile for some of the studied genes. Overall, the present study demonstrated, for the first time, that SIM modulates gene regulation of key pathways involved in the energy metabolism in fish brain at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Nélson Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - Marlene Pinheiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade De Santiago De Compostela, Santiago De Compostela, Spain
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- FCUP, Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| |
Collapse
|
22
|
Shenkar R, Peiper A, Pardo H, Moore T, Lightle R, Girard R, Hobson N, Polster SP, Koskimäki J, Zhang D, Lyne SB, Cao Y, Chaudagar K, Saadat L, Gallione C, Pytel P, Liao JK, Marchuk D, Awad IA. Rho Kinase Inhibition Blunts Lesion Development and Hemorrhage in Murine Models of Aggressive Pdcd10/Ccm3 Disease. Stroke 2019; 50:738-744. [PMID: 30744543 DOI: 10.1161/strokeaha.118.024058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background and Purpose- Previously, murine models Krit1 +/- Msh2 -/ - and Ccm2 +/ - Trp53 -/ - showed a reduction or no effect on cerebral cavernous malformation (CCM) burden and favorable effects on lesional hemorrhage by the robust Rock (Rho-associated protein kinase) inhibitor fasudil and by simvastatin (a weak pleiotropic inhibitor of Rock). Herein, we concurrently investigated treatment of the more aggressive Pdcd10/Ccm3 model with fasudil, simvastatin, and higher dose atorvastatin to determined effectiveness of Rock inhibition. Methods- The murine models, Pdcd10 +/ - Trp53 -/ - and Pdcd10 +/ - Msh2 -/ -, were contemporaneously treated from weaning to 5 months of age with fasudil (100 mg/kg per day in drinking water, n=9), simvastatin (40 mg/kg per day in chow, n=11), atorvastatin (80 mg/kg per day in chow, n=10), or with placebo (n=16). We assessed CCM volume in mouse brains by microcomputed tomography. Lesion burden was calculated as lesion volume normalized to total brain volume. We analyzed chronic hemorrhage in CCM lesions by quantitative intensity of Perls staining in brain sections. Results- The Pdcd10 +/ - Trp53 -/ - /Msh2 -/ - models showed a mean CCM lesion burden per mouse reduction from 0.0091 in placebos to 0.0042 ( P=0.027) by fasudil, and to 0.0047 ( P=0.025) by atorvastatin treatment, but was not changed significantly by simvastatin. Hemorrhage intensity per brain was commensurately decreased by Rock inhibition. Conclusions- These results support the exploration of proof of concept effect of high-dose atorvastatin on human CCM disease for potential therapeutic testing.
Collapse
Affiliation(s)
- Robert Shenkar
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Amy Peiper
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (A.P., H.P., C.G., D.M.)
| | - Heidy Pardo
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (A.P., H.P., C.G., D.M.)
| | - Thomas Moore
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Rhonda Lightle
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Romuald Girard
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Nicholas Hobson
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Sean P Polster
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Janne Koskimäki
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Dongdong Zhang
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Seán B Lyne
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Ying Cao
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Kiranj Chaudagar
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Laleh Saadat
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| | - Carol Gallione
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (A.P., H.P., C.G., D.M.)
| | - Peter Pytel
- Department of Pathology (P.P.), Biological Sciences Division, University of Chicago, IL
| | - James K Liao
- Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL
| | - Douglas Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (A.P., H.P., C.G., D.M.)
| | - Issam A Awad
- From the Section of Neurosurgery (R.S., T.M., R.L., R.G., N.H., S.P.P., J.K., D.Z., S.B.L., Y.C., K.C., L.S., I.A.A.), Biological Sciences Division, University of Chicago, IL
| |
Collapse
|
23
|
Stuhlmüller B, Schneider U, González-González JB, Feist E. Disease Specific Autoantibodies in Idiopathic Inflammatory Myopathies. Front Neurol 2019; 10:438. [PMID: 31139133 PMCID: PMC6519140 DOI: 10.3389/fneur.2019.00438] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 01/21/2023] Open
Abstract
Idiopathic inflammatory myopathies represent still a diagnostic and therapeutic challenge in different disciplines including neurology, rheumatology, and dermatology. In recent years, the spectrum of idiopathic inflammatory myopathies has been significantly extended and the different manifestations were described in more detail leading to new classification criteria. A major breakthrough has also occurred with respect to new biomarkers especially with the characterization of new autoantibody-antigen systems, which can be separated in myositis specific antibodies and myositis associated antibodies. These markers are detectable in approximately 80% of patients and facilitate not only the diagnostic procedures, but provide also important information on stratification of patients with respect to organ involvement, risk of cancer and overall prognosis of disease. Therefore, it is not only of importance to know the significance of these markers and to be familiar with the optimal diagnostic tests, but also with potential limitations in detection. This article focuses mainly on antibodies which are specific for myositis providing an overview on the targeted antigens, the available detection procedures and clinical association. As major tasks for the near future, the need of an international standardization is discussed for detection methods of autoantibodies in idiopathic inflammatory myopathies. Furthermore, additional investigations are required to improve stratification of patients with idiopathic inflammatory myopathies according to their antibody profile with respect to response to different treatment options.
Collapse
Affiliation(s)
- Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - José-B González-González
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany.,Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
24
|
Hernandez JA, Castro VL, Reyes-Nava N, Montes LP, Quintana AM. Mutations in the zebrafish hmgcs1 gene reveal a novel function for isoprenoids during red blood cell development. Blood Adv 2019; 3:1244-1254. [PMID: 30987969 PMCID: PMC6482358 DOI: 10.1182/bloodadvances.2018024539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of GATA1 are not completely characterized. Cholesterol is 1 potential upstream mediator of GATA1 expression because previously published studies suggest that defects in cholesterol synthesis disrupt RBC differentiation. Here we characterize RBC development in a zebrafish harboring a single missense mutation in the hmgcs1 gene (Vu57 allele). hmgcs1 encodes the first enzyme in the cholesterol synthesis pathway and mutation of hmgcs1 inhibits cholesterol synthesis. We analyzed the number of RBCs in hmgcs1 mutants and their wild-type siblings. Mutation of hmgcs1 resulted in a decrease in the number of mature RBCs, which coincides with reduced gata1a expression. We combined these experiments with pharmacological inhibition and confirmed that cholesterol and isoprenoid synthesis are essential for RBC differentiation, but that gata1a expression is isoprenoid dependent. Collectively, our results reveal 2 novel upstream regulators of RBC development and suggest that appropriate cholesterol homeostasis is critical for primitive erythropoiesis.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Nayeli Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Laura P Montes
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
25
|
Crilly S, Njegic A, Laurie SE, Fotiou E, Hudson G, Barrington J, Webb K, Young HL, Badrock AP, Hurlstone A, Rivers-Auty J, Parry-Jones AR, Allan SM, Kasher PR. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res 2018; 7:1617. [PMID: 30473780 PMCID: PMC6234746 DOI: 10.12688/f1000research.16473.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Alexandra Njegic
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sarah E. Laurie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Elisavet Fotiou
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Georgina Hudson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Barrington
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kirsty Webb
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Helen L. Young
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew P. Badrock
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adam Hurlstone
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adrian R. Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R. Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
26
|
Crilly S, Njegic A, Laurie SE, Fotiou E, Hudson G, Barrington J, Webb K, Young HL, Badrock AP, Hurlstone A, Rivers-Auty J, Parry-Jones AR, Allan SM, Kasher PR. Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res 2018; 7:1617. [PMID: 30473780 PMCID: PMC6234746 DOI: 10.12688/f1000research.16473.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 12/12/2024] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology.
Collapse
Affiliation(s)
- Siobhan Crilly
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Alexandra Njegic
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Sarah E. Laurie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Elisavet Fotiou
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Georgina Hudson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Barrington
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kirsty Webb
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Helen L. Young
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew P. Badrock
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adam Hurlstone
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Adrian R. Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R. Kasher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
27
|
Zhou ZY, Huang B, Li S, Huang XH, Tang JY, Kwan YW, Hoi PM, Lee SMY. Sodium tanshinone IIA sulfonate promotes endothelial integrity via regulating VE-cadherin dynamics and RhoA/ROCK-mediated cellular contractility and prevents atorvastatin-induced intracerebral hemorrhage in zebrafish. Toxicol Appl Pharmacol 2018; 350:32-42. [PMID: 29730311 DOI: 10.1016/j.taap.2018.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Impaired vascular integrity leads to serious cerebral vascular diseases such as intracerebral hemorrhage (ICH). In addition, high-dose statin therapy is suggested to cause increased ICH risk due to unclear effects of general inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) on the vascular system. Here we evaluated the protective effects of sodium tanshinone IIA sulfonate (STS), which has high efficacy and safety in clinical studies of ischemic stroke, by using atorvastatin (Ator) induced ICH zebrafish embryos and human umbilical vein endothelial cells (HUVECs). By using double transgenic Tg(fli1a:EGFP)y1 & Tg(gata1a:dsRed)sd2 zebrafish, we demonstrated that STS effectively reduced the occurrence and area of hemorrhage induced by Ator in zebrafish and restored impairment in motor function. We further demonstrated that Ator-induced disruption in VE-cadherin (VEC)-containing cell-cell adherens junctions (AJs) in HUVECs by enhancing Src-induced VEC internalization and RhoA/ROCK-mediated cellular contraction. STS inhibited Ator-induced Src activation and subsequent VEC internalization and actin depolymerization near cell borders, reducing lesions between neighboring cells and increasing barrier functions. STS also inhibited the Ator-induced RhoA/ROCK-mediated cellular contraction by regulating downstream LIMK/cofilin and MYPT1/MLC phosphatase signaling. These results showed that STS significantly promoted the stability of cell junctions and vascular integrity. Moreover, we observed that regulations of both Src and RhoA/ROCK are required for the maintenance of vascular integrity, and Src inhibitor (PP2) or ROCK inhibitors (fasudil and H1152) alone could not reduce the occurrence Ator-induced ICH. Taken together, we investigated the underlying mechanisms of Ator-induced endothelial instability, and provided scientific evidences of STS as potential ICH therapeutics by promoting vascular integrity.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Hui Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing-Yi Tang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
28
|
Huang B, Zhou ZY, Li S, Huang XH, Tang JY, Hoi MPM, Lee SMY. Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell–cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility. Pharmacol Res 2018; 128:389-398. [DOI: 10.1016/j.phrs.2017.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
|
29
|
Discovery of a ROCK inhibitor, FPND, which prevents cerebral hemorrhage through maintaining vascular integrity by interference with VE-cadherin. Cell Death Discov 2017; 3:17051. [PMID: 28845297 PMCID: PMC5563523 DOI: 10.1038/cddiscovery.2017.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic stroke occurs when a weakened vessel ruptures and bleeds into the surrounding brain, leading to high rates of death and disability worldwide. A series of complex pathophysiological cascades contribute to the risk of hemorrhagic stroke, and no therapies have proven effective to prevent hemorrhagic stroke. Stabilization of vascular integrity has been considered as a potential therapeutic target for hemorrhagic stroke. ROCKs, which belong to the serine/threonine protein kinase family and participate in the organization of actin cytoskeleton, have become attractive targets for the treatment of strokes. In this study, in vitro enzyme-based assays revealed that a new compound (FPND) with a novel scaffold identified by docking-based virtual screening could inhibit ROCK1 specifically at low micromolar concentration. Molecular modeling showed that FPND preferentially interacted with ROCK1, and the difference between the binding affinity of FPND toward ROCK1 and ROCK2 primarily resulted from non-polar contributions. Furthermore, FPND significantly prevented statin-induced cerebral hemorrhage in a zebrafish model. In addition, in vitro studies using the xCELLigence RTCA system, immunofluorescence and western blotting revealed that FPND prevented statin-induced cerebral hemorrhage by enhancing endothelial cell–cell junctions through inhibiting the ROCK-mediated VE-cadherin signaling pathway. As indicated by the extremely low toxicity of FPND against mice, it is safe and can potentially prevent vascular integrity loss-related diseases, such as hemorrhagic stroke.
Collapse
|
30
|
Pasha R, Moon TW. Coenzyme Q10 protects against statin-induced myotoxicity in zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:150-160. [PMID: 28414942 DOI: 10.1016/j.etap.2017.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme of the mevalonic acid pathway and is required for cholesterol biosynthesis and the synthesis of Coenzyme Q10 (CoQ10). Statins inhibit HMGCR, thus inhibiting the downstream products of this pathway including the biosynthesis of decaprenyl-pyrophosphate that is critical for the synthesis of Coenzyme Q10 (CoQ10). We show that zebrafish (Danio rerio) larvae treated in tank water with Atorvastatin (ATV; Lipitor) exhibited movement alterations and reduced whole body tissue metabolism. The ATV-inhibition of HMGCR function altered transcript abundance of muscle atrophy markers (atrogen-1, murf) and the mitochondrial biogenesis marker (pgc-1α). Furthermore, ATV-induced reduction in larval response to tactile stimuli was reversed with treatment of CoQ10. Together, the implication of our results contributes to the understanding of the mechanisms of action of the statin-induced damage in this model fish species.
Collapse
Affiliation(s)
- Rand Pasha
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
31
|
El-Rass S, Eisa-Beygi S, Khong E, Brand-Arzamendi K, Mauro A, Zhang H, Clark KJ, Ekker SC, Wen XY. Disruption of pdgfra alters endocardial and myocardial fusion during zebrafish cardiac assembly. Biol Open 2017; 6:348-357. [PMID: 28167492 PMCID: PMC5374395 DOI: 10.1242/bio.021212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac development in vertebrates is a finely tuned process regulated by a set
of conserved signaling pathways. Perturbations of these processes are often
associated with congenital cardiac malformations. Platelet-derived growth factor
receptor α (PDGFRα) is a highly conserved tyrosine kinase
receptor, which is essential for development and organogenesis. Disruption of
Pdgfrα function in murine models is embryonic lethal
due to severe cardiovascular defects, suggesting a role in cardiac development,
thus necessitating the use of alternative models to explore its precise
function. In this study, we generated a zebrafish pdgfra mutant
line by gene trapping, in which the Pdgfra protein is truncated and fused with
mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants
have defects in cardiac morphology as a result of abnormal fusion of myocardial
precursors. Expression analysis of the developing heart at later stages
suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination
of the endocardium in pdgfra mutants revealed defective
endocardial migration to the midline, where cardiac fusion eventually occurs.
Together, our data suggests that pdgfra is required for proper
medial migration of both endocardial and myocardial precursors, an essential
step required for cardiac assembly and development. Summary: The molecular mechanisms regulating cardiac fusion are not
well understood. Here, we show that platelet-derived growth factor receptor
alpha is essential for normal endocardial and myocardial fusion during zebrafish
development.
Collapse
Affiliation(s)
- Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center. Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Edbert Khong
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - Antonio Mauro
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Haibo Zhang
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2.,Department of Medicine & Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8 .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Collaborative Program in Cardiovascular Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2.,Department of Medicine & Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
32
|
Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:87-96. [DOI: 10.1016/j.cbpb.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
|
33
|
Signore IA, Jerez C, Figueroa D, Suazo J, Marcelain K, Cerda O, Colombo Flores A. Inhibition of the 3-hydroxy-3-methyl-glutaryl-CoA reductase induces orofacial defects in zebrafish. ACTA ACUST UNITED AC 2016; 106:814-830. [PMID: 27488927 DOI: 10.1002/bdra.23546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Orofacial clefts (OFCs) are common birth defects, which include a range of disorders with a complex etiology affecting formation of craniofacial structures. Some forms of syndromic OFCs are produced by defects in the cholesterol pathway. The principal enzyme of the cholesterol pathway is the 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Our aim is to study whether defects of HMGCR function would produce orofacial malformation similar to those found in disorders of cholesterol synthesis. METHODS We used zebrafish hmgcrb mutants and HMGCR inhibition assay using atorvastatin during early and late stages of orofacial morphogenesis in zebrafish. To describe craniofacial phenotypes, we stained cartilage and bone and performed in situ hybridization using known craniofacial markers. Also, we visualized neural crest cell migration in a transgenic fish. RESULTS Our results showed that mutants displayed loss of cartilage and diminished orofacial outgrowth, and in some cases palatal cleft. Late treatments with statin show a similar phenotype. Affected-siblings displayed a moderate phenotype, whereas early-treated embryos had a minor cleft. We found reduced expression of the downstream component of Sonic Hedgehog-signaling gli1 in ventral brain, oral ectoderm, and pharyngeal endoderm in mutants and in late atorvastatin-treated embryos. CONCLUSION Our results suggest that HMGCR loss-of-function primarily affects postmigratory cranial neural crest cells through abnormal Sonic Hedgehog signaling, probably induced by reduction in metabolites of the cholesterol pathway. Malformation severity correlates with the grade of HMGCR inhibition, developmental stage of its disruption, and probably with availability of maternal lipids. Together, our results might help to understand the spectrum of orofacial phenotypes found in cholesterol synthesis disorders. Birth Defects Research (Part A) 106:814-830, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Iskra A Signore
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Filosofía y Ciencias de la Complejidad (IFICC), Santiago, Chile
| | - Carolina Jerez
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Figueroa
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - José Suazo
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Katherine Marcelain
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alicia Colombo Flores
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago, Chile.
| |
Collapse
|
34
|
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
35
|
Eisa-Beygi S, El-Rass S. Statins and Intracerebral Hemorrhage: Potential Mechanisms. J Stroke Cerebrovasc Dis 2015; 25:496. [PMID: 26698641 DOI: 10.1016/j.jstrokecerebrovasdis.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Suzan El-Rass
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Massarsky A, Jayasundara N, Bailey JM, Oliveri AN, Levin ED, Prasad GL, Di Giulio RT. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine. Neurotoxicol Teratol 2015; 51:77-88. [PMID: 26391568 PMCID: PMC4821439 DOI: 10.1016/j.ntt.2015.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents.
Collapse
Affiliation(s)
- Andrey Massarsky
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| | - Jordan M Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Anthony N Oliveri
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - G L Prasad
- R&D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102, USA.
| | | |
Collapse
|
37
|
Yi R, Xiao-Ping G, Hui L. Atorvastatin prevents angiotensin II-induced high permeability of human arterial endothelial cell monolayers via ROCK signaling pathway. Biochem Biophys Res Commun 2015; 459:94-9. [PMID: 25712521 DOI: 10.1016/j.bbrc.2015.02.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
Abstract
Intracranial aneurysm, as a common cause of cerebral hemorrhage, is often discovered when the aneurysm ruptures, causing subarachnoid hemorrhage. Unfortunately, the formation of cerebral aneurysm, which is associated with endothelial damage and macrophage migration, still cannot be prevented now. Tight junctions (TJs) open due to the disappearance of TJ proteins occludin and zona occludens-1 (ZO-1) in damaged endothelia, thus allowing macrophage migration and forming cerebral aneurysm. Therefore, cerebral aneurysm formation can be prevented by increasing TJs of the artery endothelium. Interestingly, statin, which can reduce saccular aneurysm, may prevent aneurysm formation through acting on different steps, but the underlying mechanism remains unclear. In this study, angiotensin II (Ang II) significantly increased the permeability of human arterial endothelial cell (HAEC). Moreover, the distribution of ZO-1 in cell-cell junction area and the total expression in HAECs were significantly decreased by Ang II treatment. However, the abnormal distribution and decreased expression of ZO-1 and hyperpermeability of HAECs were significantly reversed by pretreatment with atorvastatin. Furthermore, Ang II-induced phosphorylations of MYPT1, LIMK and MLC2 were significantly inhibited with atorvastatin or Rho kinase (ROCK) inhibitor (H1152) pretreatment. Knockdown of ROCK-II probably abolished Ang II-induced abnormal ZO-1 distribution and expression deficiency and hyperpermeability of HAECs. In conclusion, atorvastatin prevented Ang II-induced rupture of HAEC monolayers by suppressing the ROCK signaling pathway. Our results may explain, at least in part, some beneficial effects of statins on cardiovascular diseases such as intracranial aneurysm.
Collapse
Affiliation(s)
- Ren Yi
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China
| | - Gao Xiao-Ping
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China.
| | - Liang Hui
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China
| |
Collapse
|
38
|
O'Hare EA, Wang X, Montasser ME, Chang YPC, Mitchell BD, Zaghloul NA. Disruption of ldlr causes increased LDL-c and vascular lipid accumulation in a zebrafish model of hypercholesterolemia. J Lipid Res 2014; 55:2242-53. [PMID: 25201834 DOI: 10.1194/jlr.m046540] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hyperlipidemia and arterial cholesterol accumulation are primary causes of cardiovascular events. Monogenic forms of hyperlipidemia and recent genome-wide association studies indicate that genetics plays an important role. Zebrafish are a useful model for studying the genetic susceptibility to hyperlipidemia owing to conservation of many components of lipoprotein metabolism, including those related to LDL, ease of genetic manipulation, and in vivo observation of lipid transport and vascular calcification. We sought to develop a genetic model for lipid metabolism in zebrafish, capitalizing on one well-understood player in LDL cholesterol (LDL-c) transport, the LDL receptor (ldlr), and an established in vivo model of hypercholesterolemia. We report that morpholinos targeted against the gene encoding ldlr effectively suppressed its expression in embryos during the first 8 days of development. The ldlr morphants exhibited increased LDL-c levels that were exacerbated by feeding a high cholesterol diet. Increased LDL-c was ameliorated in morphants upon treatment with atorvastatin. Furthermore, we observed significant vascular and liver lipid accumulation, vascular leakage, and plaque oxidation in ldlr-deficient embryos. Finally, upon transcript analysis of several cholesterol-regulating genes, we observed changes similar to those seen in mammalian systems, suggesting that cholesterol regulation may be conserved in zebrafish. Taken together, these observations indicate conservation of ldlr function in zebrafish and demonstrate the utility of transient gene knockdown in embryos as a genetic model for hyperlipidemia.
Collapse
Affiliation(s)
- Elizabeth A O'Hare
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Xiaochun Wang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Yen-Pei C Chang
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Norann A Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
39
|
|
40
|
Cocci P, Mosconi G, Palermo FA. Partial cloning, tissue distribution and effects of epigallocatechin gallate on hepatic 3-hydroxy-3-methylglutaryl-CoA reductase mRNA transcripts in goldfish (Carassius auratus). Gene 2014; 545:220-5. [PMID: 24835314 DOI: 10.1016/j.gene.2014.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
Epigallocatechin gallate (EGCG), the major active component of the green tea, has recently been found to inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoAR) activity in vitro and to modulate lipogenesis in vivo. In this study we have evaluated the effects of short-term in vivo exposure to EGCG (6 μg g(-1) BW or 9 μg g(-1) BW) on hepatic HMGCoAR gene expression of goldfish (Carassius auratus). We initially characterized a partial sequence of goldfish HMGCoAR suggesting that the obtained fragment shares high similarity (>92%) with other fish HMGCoAR sequences. Further, the HMGCoAR transcript was detected in all goldfish tissues (except muscle) but primarily in liver, brain and gonads; on the contrary, low expression levels were found in intestine, heart, gill, and kidney. Both EGCG doses significantly decreased hepatic HMGCoAR mRNA levels 180 min post-injection. HMGCoAR was also significantly down-regulated at 90 min after injection in fish treated with the highest dose of EGCG. Our results demonstrate that hepatic HMGCoAR gene expression is acutely responsive to short-term EGCG exposure in goldfish. This finding suggests a potential role of EGCG in transcriptional regulation of the rate-limiting enzyme in cholesterol synthesis.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
41
|
Eisa-Beygi S, Wen XY, Macdonald RL. A call for rigorous study of statins in resolution of cerebral cavernous malformation pathology. Stroke 2014; 45:1859-61. [PMID: 24803598 DOI: 10.1161/strokeaha.114.005132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shahram Eisa-Beygi
- From the Zebrafish Centre for Advanced Drug Discovery (S.E.-B., X.-Y.W., R.L.M.) and Keenan Research Centre for Biomedical Science (S.E.-B., X.-Y.W., R.L.M.), St. Michael's Hospital, Toronto, Ontario, Canada; Departments of Medicine and Surgery, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada (S.E.-B., X.-Y.W., R.L.M.); and Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Toronto, Ontario, Canada (R.L.M.).
| | - Xiao-Yan Wen
- From the Zebrafish Centre for Advanced Drug Discovery (S.E.-B., X.-Y.W., R.L.M.) and Keenan Research Centre for Biomedical Science (S.E.-B., X.-Y.W., R.L.M.), St. Michael's Hospital, Toronto, Ontario, Canada; Departments of Medicine and Surgery, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada (S.E.-B., X.-Y.W., R.L.M.); and Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Toronto, Ontario, Canada (R.L.M.)
| | - R Loch Macdonald
- From the Zebrafish Centre for Advanced Drug Discovery (S.E.-B., X.-Y.W., R.L.M.) and Keenan Research Centre for Biomedical Science (S.E.-B., X.-Y.W., R.L.M.), St. Michael's Hospital, Toronto, Ontario, Canada; Departments of Medicine and Surgery, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada (S.E.-B., X.-Y.W., R.L.M.); and Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Toronto, Ontario, Canada (R.L.M.)
| |
Collapse
|
42
|
Eisa-Beygi S, Ekker M, Moon TW, Macdonald RL, Wen XY. Developmental processes regulated by the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway: highlights from animal studies. Reprod Toxicol 2014; 46:115-20. [PMID: 24732207 DOI: 10.1016/j.reprotox.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/13/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in the biosynthesis of cholesterol and isoprenoids, which are substrates required for post-translational modification of signalling proteins that can potentially regulate various aspects of embryonic development. The HMGCR transcripts are detectable during early embryogenesis in both invertebrates and vertebrates, which suggests a conserved developmental requirement for mevalonate derivatives. Consistently, recent animal and in vitro studies have yielded valuable insights into potential morphogenic parameters that are modulated by HMGCR activity. These developmental end-points include brain and craniofacial morphogenesis, PGC migration and survival, myocardial epithelial migration and fusion, EC migration and survival, and vascular stabilization. By providing a synthesis of these studies, we hope that this review will highlight the need to comprehensively examine the entire suite of developmental processes regulated by HMGCR.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada; Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada.
| | - Marc Ekker
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada
| | - R Loch Macdonald
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada; Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
43
|
Nishiya N, Oku Y, Kumagai Y, Sato Y, Yamaguchi E, Sasaki A, Shoji M, Ohnishi Y, Okamoto H, Uehara Y. A zebrafish chemical suppressor screening identifies small molecule inhibitors of the Wnt/β-catenin pathway. ACTA ACUST UNITED AC 2014; 21:530-540. [PMID: 24684907 DOI: 10.1016/j.chembiol.2014.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 01/26/2023]
Abstract
Genetic screening for suppressor mutants has been successfully used to identify important signaling regulators. Using an analogy to genetic suppressor screening, we developed a chemical suppressor screening method to identify inhibitors of the Wnt/β-catenin signaling pathway. We used zebrafish embryos in which chemically induced β-catenin accumulation led to an "eyeless" phenotype and conducted a pilot screening for compounds that restored eye development. This approach allowed us to identify geranylgeranyltransferase inhibitor 286 (GGTI-286), a geranylgeranyltransferase (GGTase) inhibitor. Our follow-up studies showed that GGTI-286 reduces nuclear localization of β-catenin and transcription dependent on β-catenin/T cell factor in mammalian cells. In addition to pharmacological inhibition, GGTase gene knockdown also attenuates the nuclear function of β-catenin. Overall, we validate our chemical suppressor screening as a method for identifying Wnt/β-catenin pathway inhibitors and implicate GGTase as a potential therapeutic target for Wnt-activated cancers.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan.
| | - Yusuke Oku
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yusuke Kumagai
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yuki Sato
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Emi Yamaguchi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Akari Sasaki
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Momoko Shoji
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yukimi Ohnishi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshimasa Uehara
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|