1
|
Li WJ, Li RY, Wang DY, Shen M, Liu HL. CXCR3 participates in asymmetric division of mouse oocytes by modulating actin dynamics. Theriogenology 2024; 225:43-54. [PMID: 38788628 DOI: 10.1016/j.theriogenology.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes. We found CXCR3 was expressed consistently throughout the entire maturation process of mouse oocyte. Inhibition of CXCR3 impaired the asymmetric division of oocyte, while the injection of Cxcr3 mRNA was capable of restoring these defects. Further study showed that inhibition of CXCR3 perturbed spindle migration by affecting LIMK/cofilin pathway-mediated actin remodeling. Knockout of CXCR3 led to an upregulation of actin-binding protein and an increased ATP level in GV-stage oocytes, while maintaining normal actin dynamics during the process of meiosis. Additionally, we noticed the expression level of DYNLT1 is markedly elevated in CXCR3-null oocytes. DYNLT1 bound with the Arp2/3 complex, and knockdown of DYNLT1 in CXCR3-null oocytes impaired the organization of cytoplasmic actin, suggesting the regulatory role of DYNLT1 in actin organization, and the compensatory expression of DYNLT1 may contribute to maintain normal actin dynamics in CXCR3-knockout oocytes. In summary, our findings provide insights into the intricate network of actin dynamics associated with CXCR3 during oocyte meiosis.
Collapse
Affiliation(s)
- Wei-Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Rong-Yang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Da-Yu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Bourdais A, Dehapiot B, Halet G. MRCK activates mouse oocyte myosin II for spindle rotation and male pronucleus centration. J Cell Biol 2023; 222:e202211029. [PMID: 37651121 PMCID: PMC10470461 DOI: 10.1083/jcb.202211029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/24/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Asymmetric meiotic divisions in oocytes rely on spindle positioning in close vicinity to the cortex. In metaphase II mouse oocytes, eccentric spindle positioning triggers cortical polarization, including the build-up of an actin cap surrounded by a ring of activated myosin II. While the role of the actin cap in promoting polar body formation is established, ring myosin II activation mechanisms and functions have remained elusive. Here, we show that ring myosin II activation requires myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), downstream of polarized Cdc42. MRCK inhibition resulted in spindle rotation defects during anaphase II, precluding polar body extrusion. Remarkably, disengagement of segregated chromatids from the anaphase spindle could rescue rotation. We further show that the MRCK/myosin II pathway is activated in the fertilization cone and is required for male pronucleus migration toward the center of the zygote. These findings provide novel insights into the mechanism of myosin II activation in oocytes and its role in orchestrating asymmetric division and pronucleus centration.
Collapse
Affiliation(s)
- Anne Bourdais
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Benoit Dehapiot
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| | - Guillaume Halet
- University of Rennes, CNRS - UMR 6290, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
3
|
Pelzer D, de Plater L, Bradbury P, Eichmuller A, Bourdais A, Halet G, Maître J. Cell fragmentation in mouse preimplantation embryos induced by ectopic activation of the polar body extrusion pathway. EMBO J 2023; 42:e114415. [PMID: 37427462 PMCID: PMC10476277 DOI: 10.15252/embj.2023114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.
Collapse
Affiliation(s)
- Diane Pelzer
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Ludmilla de Plater
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Peta Bradbury
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Adrien Eichmuller
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| | - Anne Bourdais
- Institut de Génétique et Développement de RennesUniversité de Rennes, CNRS UMR 6290RennesFrance
| | - Guillaume Halet
- Institut de Génétique et Développement de RennesUniversité de Rennes, CNRS UMR 6290RennesFrance
| | - Jean‐Léon Maître
- Institut CuriePSL Research University, CNRS UMR 3215, INSERM U934ParisFrance
| |
Collapse
|
4
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
5
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Kincade JN, Hlavacek A, Akera T, Balboula AZ. Initial spindle positioning at the oocyte center protects against incorrect kinetochore-microtubule attachment and aneuploidy in mice. SCIENCE ADVANCES 2023; 9:eadd7397. [PMID: 36800430 PMCID: PMC9937575 DOI: 10.1126/sciadv.add7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Spindle positioning within the oocyte must be tightly regulated. In mice, the spindle is predominantly assembled at the oocyte center before its migration toward the cortex to achieve the highly asymmetric division, a characteristic of female meiosis. The significance of the initial central positioning of the spindle is largely unknown. We show that initial spindle positioning at the oocyte center is an insurance mechanism to avoid the premature exposure of the spindle to cortical CDC42 signaling, which perturbs proper kinetochore-microtubule attachments, leading to the formation of aneuploid gametes. These findings contribute to understanding why female gametes are notoriously associated with high rates of aneuploidy, the leading genetic cause of miscarriage and congenital abnormalities.
Collapse
Affiliation(s)
- Jessica N. Kincade
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Avery Hlavacek
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ahmed Z. Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
8
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
9
|
Wang H, Hu J, Yi K, Ma Z, Song X, Lee Y, Kalab P, Bershadsky AD, Miao Y, Li R. Dual control of formin-nucleated actin assembly by the chromatin and ER in mouse oocytes. Curr Biol 2022; 32:4013-4024.e6. [PMID: 35981539 PMCID: PMC9549573 DOI: 10.1016/j.cub.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
The first asymmetric meiotic cell divisions in mouse oocytes are driven by formin 2 (FMN2)-nucleated actin polymerization around the spindle. In this study, we investigated how FMN2 is recruited to the spindle peripheral ER and how its activity is regulated in mouse meiosis I (MI) oocytes. We show that this process is regulated by the Ran GTPase, a conserved mediator of chromatin signal, and the ER-associated protein VAPA. FMN2 contains a nuclear localization sequence (NLS) within a domain (SLD) previously shown to be required for FMN2 localization to the spindle periphery. FMN2 NLS is bound to the importin α1/β complex, and the disruption of this interaction by RanGTP is required for FMN2 accumulation in the area proximal to the chromatin and the MI spindle. The importin-free FMN2 is then recruited to the surface of ER around the spindle through the binding of the SLD with the ER-membrane protein VAPA. We further show that FMN2 is autoinhibited through an intramolecular interaction between the SLD with the C-terminal formin homology 2 (FH2) domain that nucleates actin filaments. VAPA binding to SLD relieves the autoinhibition of FMN2, leading to localized actin polymerization. This dual control of formin-mediated actin assembly allows actin polymerization to initiate the movement of the meiotic spindle toward the cortex, an essential step in the maturation of the mammalian female gamete.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinrong Hu
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Kexi Yi
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Mei Q, Li H, Liu Y, Wang X, Xiang W. Advances in the study of CDC42 in the female reproductive system. J Cell Mol Med 2021; 26:16-24. [PMID: 34859585 PMCID: PMC8742232 DOI: 10.1111/jcmm.17088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
CDC42 is a member of the Rho‐GTPase family and is involved in a variety of cellular functions including regulation of cell cycle progression, constitution of the actin backbone and membrane transport. In particular, CDC42 plays a key role in the establishment of polarity in female vertebrate oocytes, and essential to this major regulatory role is its local occupation of specific regions of the cell to ensure that the contractile ring is assembled at the right time and place to ensure proper gametogenesis. The multifactor controlled ‘inactivation‐activation’ process of CDC42 also allows it to play an important role in the multilevel signalling network, and the synergistic regulation of multiple genes ensures maximum precision during gametogenesis. The purpose of this paper is to review the role of CDC42 in the control of gametogenesis and to explore its related mechanisms, with the aim of further understanding the great research potential of CDC42 in female vertebrate germ cells and its future clinical translation.
Collapse
Affiliation(s)
- Qiaojuan Mei
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Li
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenpei Xiang
- Institute of Reproductive Health and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Mori M, Yao T, Mishina T, Endoh H, Tanaka M, Yonezawa N, Shimamoto Y, Yonemura S, Yamagata K, Kitajima TS, Ikawa M. RanGTP and the actin cytoskeleton keep paternal and maternal chromosomes apart during fertilization. J Cell Biol 2021; 220:e202012001. [PMID: 34424312 PMCID: PMC8404465 DOI: 10.1083/jcb.202012001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg-sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg-sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg-sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.
Collapse
Affiliation(s)
- Masashi Mori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Endoh
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Tanaka
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Nao Yonezawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Yuta Shimamoto
- Physics and Cell Biology Laboratory, National Institute of Genetics & Department of Genetics, SOKENDAI University, Kanagawa, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Dehapiot B, Clément R, Bourdais A, Carrière V, Huet S, Halet G. RhoA- and Cdc42-induced antagonistic forces underlie symmetry breaking and spindle rotation in mouse oocytes. PLoS Biol 2021; 19:e3001376. [PMID: 34491981 PMCID: PMC8448345 DOI: 10.1371/journal.pbio.3001376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 09/17/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II–arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined. Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and two small polar bodies, but the mechanisms underlying the required symmetry breaking and spindle rotation have remained elusive. This study shows that spindle rotation in activated mouse oocytes relies on spontaneous symmetry breaking resulting from an unstable configuration generated by cleavage furrow ingression and cortical chromosome attraction.
Collapse
Affiliation(s)
- Benoit Dehapiot
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| | - Raphaël Clément
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | | | | | | | - Guillaume Halet
- Univ Rennes, CNRS, IGDR—UMR 6290, Rennes, France
- * E-mail: (BD); (GH)
| |
Collapse
|
13
|
Abstract
Female meiotic drive is the phenomenon where a selfish genetic element alters chromosome segregation during female meiosis to segregate to the egg and transmit to the next generation more frequently than Mendelian expectation. While several examples of female meiotic drive have been known for many decades, a molecular understanding of the underlying mechanisms has been elusive. Recent advances in this area in several model species prompts a comparative re-examination of these drive systems. In this review, we compare female meiotic drive of several animal and plant species, highlighting pertinent similarities.
Collapse
Affiliation(s)
- Frances E. Clark
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Van Essen D, Alcaraz AJG, Miller JGP, Jones PD, Doering JA, Wiseman S. The brominated flame retardant, TBCO, impairs oocyte maturation in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105929. [PMID: 34375885 DOI: 10.1016/j.aquatox.2021.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), has been shown to decrease fecundity in Japanese medaka (Oryzias latipes) and there is indirect evidence from analysis of the transcriptome and proteome that this effect might be due to impaired oogenesis. An assay for disruption of oocyte maturation by chemical stressors has not been developed in Japanese medaka. Thus, using zebrafish (Danio rerio) as a model, objectives of the present study were to determine whether exposure to TBCO has effects on maturation of oocytes and to investigate potential mechanisms. Sexually mature female zebrafish were given a diet of 35.3 or 628.8 μg TBCO / g food for 14 days after which, stage IV oocytes were isolated to assess maturation in response to maturation inducing hormone. To explore potential molecular mechanisms, abundances of mRNAs of a suite of genes that regulate oocyte maturation were quantified by use of quantitative real-time PCR, and abundances of microRNAs were determined by use of miRNAseq. Ex vivo maturation of oocytes from fish exposed to TBCO was significantly less than maturation of oocytes from control fish. The percentage of oocytes which matured from control fish and those exposed to low and high TBCO were 89, 71, and 67%, respectively. Among the suite of genes known to regulate oocyte maturation, mRNA abundance of insulin like growth factor-3 was decreased by 1.64- and 3.44-fold in stage IV oocytes from females given the low and high concentrations of TBCO, respectively, compared to the control group. Abundances of microRNAs regulating the expression of proteins that regulate oocyte maturation, including processes related to insulin-like growth factor, were significantly different in stage IV oocytes from fish exposed to TBCO. Overall, results of this study indicated that impaired oocyte maturation might be a mechanism of reduced reproductive performance in TBCO-exposed fish. Results also suggested that effects of TBCO on oocyte maturation might be due to molecular perturbations on insulin-like growth factor signaling and expression of microRNAs.
Collapse
Affiliation(s)
- Darren Van Essen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | | | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
| | - Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA), Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, G1K 9A9, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA), Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, QC, G1K 9A9, Canada; Water Institute for Sustainable Environments, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
15
|
Jo YJ, Kwon J, Jin ZL, Namgoong S, Kwon T, Yoon SB, Lee DH, Kim JS, Kim NH. WHAMM is essential for spindle formation and spindle actin polymerization in maturing mouse oocytes. Cell Cycle 2021; 20:225-235. [PMID: 33397186 DOI: 10.1080/15384101.2020.1867791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
WHAMM (WAS Protein Homolog Associated with Actin, Golgi Membranes, and Microtubules) is involved in Golgi membrane association, microtubule binding, and actin nucleation as a nucleation-promoting factor, which activates the actin-related protein 2/3 complex (the Arp2/3 complex). However, the role of WHAMM in mammalian oocyte maturation is poorly understood. The presence of WHAMM mRNA and protein during all stages of mouse oocyte maturation has been verified. It is mainly co-localized with the actin cage permeating the spindle during mouse oocyte maturation. Through the knockdown of WHAMM, we confirmed that it regulates spindle formation and affects the localization of the microtubule-organizing center (MTOC) during the early stages of spindle formation. Moreover, depletion of WHAMM impaired the formation of the spindle actin and chromosome alignment, which might be the cause of chromosomal aneuploidy and abnormal, asymmetric division. Treatment with brefeldin A (BFA), an inhibitor of vesicle transport from the endoplasmic reticulum (ER) to the Golgi apparatus, induced abnormal and dispersed localization of WHAMM. Taken together, these findings show that WHAMM is an essential component of the actin cytoskeleton machinery and plays a crucial role in oocyte maturation, presumably by controlling the formation of spindles with normal length by activating the formation of the spindle actin via the Arp2/3 complex.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea.,Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea.,Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Zhe-Long Jin
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| | - Taeho Kwon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Dong-Ho Lee
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University , Cheong-Ju, Chungcheongbuk-Do, Republic of Korea
| |
Collapse
|
16
|
Role of PB1 Midbody Remnant Creating Tethered Polar Bodies during Meiosis II. Genes (Basel) 2020; 11:genes11121394. [PMID: 33255457 PMCID: PMC7760350 DOI: 10.3390/genes11121394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/30/2023] Open
Abstract
Polar body (PB) formation is an extreme form of unequal cell division that occurs in oocytes due to the eccentric position of the small meiotic spindle near the oocyte cortex. Prior to PB formation, a chromatin-centered process causes the cortex overlying the meiotic chromosomes to become polarized. This polarized cortical subdomain marks the site where a cortical protrusion or outpocket forms at the oocyte surface creating the future PBs. Using ascidians, we observed that PB1 becomes tethered to the fertilized egg via PB2, indicating that the site of PB1 cytokinesis directed the precise site for PB2 emission. We therefore studied whether the midbody remnant left behind following PB1 emission was involved, together with the egg chromatin, in defining the precise cortical site for PB2 emission. During outpocketing of PB2 in ascidians, we discovered that a small structure around 1 µm in diameter protruded from the cortical outpocket that will form the future PB2, which we define as the “polar corps”. As emission of PB2 progressed, this small polar corps became localized between PB2 and PB1 and appeared to link PB2 to PB1. We tested the hypothesis that this small polar corps on the surface of the forming PB2 outpocket was the midbody remnant from the previous round of PB1 cytokinesis. We had previously discovered that Plk1::Ven labeled midbody remnants in ascidian embryos. We therefore used Plk1::Ven to follow the dynamics of the PB1 midbody remnant during meiosis II. Plk1::Ven strongly labeled the small polar corps that formed on the surface of the cortical outpocket that created PB2. Following emission of PB2, this polar corps was rich in Plk1::Ven and linked PB2 to PB1. By labelling actin (with TRITC-Phalloidin) we also demonstrated that actin accumulates at the midbody remnant and also forms a cortical cap around the midbody remnant in meiosis II that prefigured the precise site of cortical outpocketing during PB2 emission. Phalloidin staining of actin and immunolabelling of anti-phospho aPKC during meiosis II in fertilized eggs that had PB1 removed suggested that the midbody remnant remained within the fertilized egg following emission of PB1. Dynamic imaging of microtubules labelled with Ens::3GFP, MAP7::GFP or EB3::3GFP showed that one pole of the second meiotic spindle was located near the midbody remnant while the other pole rotated away from the cortex during outpocketing. Finally, we report that failure of the second meiotic spindle to rotate can lead to the formation of two cortical outpockets at anaphase II, one above each set of chromatids. It is not known whether the midbody remnant of PB1 is involved in directing the precise location of PB2 since our data are correlative in ascidians. However, a review of the literature indicates that PB1 is tethered to the egg surface via PB2 in several species including members of the cnidarians, lophotrochozoa and echinoids, suggesting that the midbody remnant formed during PB1 emission may be involved in directing the precise site of PB2 emission throughout the invertebrates.
Collapse
|
17
|
Parameter estimation for a point-source diffusion-decay morphogen model. J Math Biol 2020; 80:2227-2255. [DOI: 10.1007/s00285-020-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/08/2020] [Indexed: 10/24/2022]
|
18
|
Totsuka T, Ohsugi M. Production of mouse androgenetic embryos using spindle perturbation. Sci Rep 2020; 10:6556. [PMID: 32300113 PMCID: PMC7162913 DOI: 10.1038/s41598-020-63010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
To study the functional differences between maternal and paternal genomes in mammalian development, embryos with only one parental genome are often used. Androgenetic embryos are produced by the removal of maternal chromosomes before or after fertilization by techniques that require specialized skills and are associated with high risk of cellular damage. Here, we developed a novel method for producing androgenetic mouse embryos without the invasive enucleation process. We found that during in vitro fertilization in the presence of low-dose nocodazole, a microtubule destabilizing drug, whole oocyte chromosomes were extruded into the second polar body resulting in the production of androgenetic embryos. We further demonstrated that low-dose nocodazole decreased the spindle size and prevented chromosome segregation but did not compromise oocyte meiotic resumption. This led to the formation of a protrusion around the chromosomes, accumulation of protein regulator of cytokinesis 1 (PRC1) to the microtubules around the chromosomes, and assembly of a contractile ring at the neck region of the protrusion. Our method uses the intrinsic cytokinetic mechanism to exclude maternal chromatin from zygotes and may be applicable to other mammals.
Collapse
Affiliation(s)
- Takaya Totsuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Miho Ohsugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
19
|
Beaudet D, Pham N, Skaik N, Piekny A. Importin binding mediates the intramolecular regulation of anillin during cytokinesis. Mol Biol Cell 2020; 31:1124-1139. [PMID: 32238082 PMCID: PMC7353161 DOI: 10.1091/mbc.e20-01-0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytokinesis occurs by the ingression of an actomyosin ring that cleaves a cell into two daughters. This process is tightly controlled to avoid aneuploidy, and we previously showed that active Ran coordinates ring positioning with chromatin. Active Ran is high around chromatin, and forms an inverse gradient to cargo-bound importins. We found that the ring component anillin contains a nuclear localization signal (NLS) that binds to importin and is required for its function during cytokinesis. Here we reveal the mechanism whereby importin binding favors a conformation required for anillin's recruitment to the equatorial cortex. Active RhoA binds to the RhoA-binding domain causing an increase in accessibility of the nearby C2 domain containing the NLS. Importin binding subsequently stabilizes a conformation that favors interactions for cortical recruitment. In addition to revealing a novel mechanism for the importin-mediated regulation of a cortical protein, we also show how importin binding positively regulates protein function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0G4
| | - Nhat Pham
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Noha Skaik
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada, H4B 1R6
| |
Collapse
|
20
|
Wang H, Li Y, Yang J, Duan X, Kalab P, Sun SX, Li R. Symmetry breaking in hydrodynamic forces drives meiotic spindle rotation in mammalian oocytes. SCIENCE ADVANCES 2020; 6:eaaz5004. [PMID: 32284983 PMCID: PMC7124937 DOI: 10.1126/sciadv.aaz5004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Patterned cell divisions require a precisely oriented spindle that segregates chromosomes and determines the cytokinetic plane. In this study, we investigated how the meiotic spindle orients through an obligatory rotation during meiotic division in mouse oocytes. We show that spindle rotation occurs at the completion of chromosome segregation, whereby the separated chromosome clusters each define a cortical actomyosin domain that produces cytoplasmic streaming, resulting in hydrodynamic forces on the spindle. These forces are initially balanced but become unbalanced to drive spindle rotation. This force imbalance is associated with spontaneous symmetry breaking in the distribution of the Arp2/3 complex and myosin-II on the cortex, brought about by feedback loops comprising Ran guanosine triphosphatase signaling, Arp2/3 complex activity, and myosin-II contractility. The torque produced by the unbalanced hydrodynamic forces, coupled with a pivot point at the spindle midzone cortical contract, constitutes a unique mechanical system for meiotic spindle rotation.
Collapse
Affiliation(s)
- HaiYang Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yizeng Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jing Yang
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Duan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sean X. Sun
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Abstract
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran forms where levels are highest near chromatin. This gradient plays a crucial role in regulating mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing spindle assembly factors. An emerging theme is that the Ran gradient also regulates the actomyosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For these events, active Ran could play an inhibitory role, where importin-binding may help promote or stabilize a conformation or interaction that favours the recruitment and function of cortical regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines the extent of importin-binding, the effects of which could vary for different proteins.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
22
|
Wang QC, Wan X, Jia RX, Xu Y, Liu X, Zhang Y, Sun SC. Inhibition of N-WASP affects actin-mediated cytokinesis during porcine oocyte maturation. Theriogenology 2020; 144:132-138. [PMID: 31940504 DOI: 10.1016/j.theriogenology.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
N-WASP is the mammalian ortholog of WASP which is an actin nucleation promoting factor and has been reported to regulate actin nucleation and polymerization for multiple cell activities. However, the expression and functions of N-WASP in porcine oocytes are still unclear. In this study, we showed that N-WASP expressed at all stages during porcine oocyte maturation, and immunofluorescence staining indicated that N-WASP mainly accumulated at the cortex in different stages of meiosis. Inhibition of N-WASP activity by Wiskostatin significantly decreased the rate of first polar body extrusion and disturbed the cell cycle progression of porcine oocytes. Further analysis indicated that cortical actin distribution was interfered by N-WASP inhibition, and this might be through its regulatory roles on the expression and localization of ARP2, a key component of actin nucleator Arp2/3 complex. Moreover, the expression of N-WASP decreased after ROCK activity inhibition, indicating a ROCK-N-WASP-ARP2/3 pathway for actin assembly in porcine oocytes. Taken together, these results suggest that N-WASP is critical for the regulation of actin filaments for cytokinesis during porcine oocyte maturation.
Collapse
Affiliation(s)
- Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ru-Xia Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhong Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
23
|
Silva LE, Souza RC, Kitano ES, Monteiro LF, Iwai LK, Forti FL. Proteomic and Interactome Approaches Reveal PAK4, PHB-2, and 14-3-3η as Targets of Overactivated Cdc42 in Cellular Responses to Genomic Instability. J Proteome Res 2019; 18:3597-3614. [DOI: 10.1021/acs.jproteome.9b00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luiz E. Silva
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Renan C. Souza
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Eduardo S. Kitano
- Special Laboratory of Applied Toxicology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo-SP 05503-000, Brazil
| | - Lucas F. Monteiro
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| | - Leo K. Iwai
- Special Laboratory of Applied Toxicology (LETA), Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo-SP 05503-000, Brazil
| | - Fabio L. Forti
- Laboratory of Signaling in Biomolecular Systems (LSSB), Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP CEP 05508-900, Brazil
| |
Collapse
|
24
|
Akera T, Trimm E, Lampson MA. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell 2019; 178:1132-1144.e10. [PMID: 31402175 DOI: 10.1016/j.cell.2019.07.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Ran promotes membrane targeting and stabilization of RhoA to orchestrate ovarian cancer cell invasion. Nat Commun 2019; 10:2666. [PMID: 31209254 PMCID: PMC6573066 DOI: 10.1038/s41467-019-10570-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Ran is a nucleocytoplasmic shuttle protein that is involved in cell cycle regulation, nuclear-cytoplasmic transport, and cell transformation. Ran plays an important role in cancer cell survival and cancer progression. Here, we show that, in addition to the nucleocytoplasmic localization of Ran, this GTPase is specifically associated with the plasma membrane/ruffles of ovarian cancer cells. Ran depletion has a drastic effect on RhoA stability and inhibits RhoA localization to the plasma membrane/ruffles and RhoA activity. We further demonstrate that the DEDDDL domain of Ran is required for the interaction with serine 188 of RhoA, which prevents RhoA degradation by the proteasome pathway. Moreover, the knockdown of Ran leads to a reduction of ovarian cancer cell invasion by impairing RhoA signalling. Our findings provide advanced insights into the mode of action of the Ran-RhoA signalling axis and may represent a potential therapeutic avenue for drug development to prevent ovarian tumour metastasis. Ran, a nucleus-cytoplasm shuttle protein, is implicated in cancer development and survival. Here, the authors show that Ran binds RhoA to impair its degradation and allow its localisation to the plasma membrane of ovarian cancer cells for tumour invasion.
Collapse
|
26
|
Liu R, Deng D, Liu X, Xiao Y, Huang J, Wang F, Li X, Yu M. A miR-18a binding-site polymorphism in CDC42 3'UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mamm Genome 2018; 30:34-41. [PMID: 30506450 DOI: 10.1007/s00335-018-9788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests that miRNA binding-site polymorphism in the 3'-untranslated region (3'UTR) of a target gene could affect that gene's expression, and can be associated with a variety of complex traits. In this study, we find that miR-18a and cell division cycle 42 (CDC42) mRNA, whose expression was inversely correlated, are differentially expressed in porcine placentas during critical stages of placental development. rs55618224 (T>C), a SNP in the 3'UTR region of CDC42 that is perfectly complementary to the miR-18a seed could influence miR-18a-related regulation of CDC42 gene by altering their binding affinity. In addition, CDC42 mRNA was found to have higher expression level in the homozygous TT placentas as compared to those homozygous CC placentas in pigs. Furthermore, we identified a significant association between rs55618224 and total number born per litter. These results suggest the miR-18a binding-site polymorphism in CDC42 3'UTR may impact litter size by regulation of CDC42 gene in porcine placentas.
Collapse
Affiliation(s)
- Ruize Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiangdong Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yujing Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
27
|
Li X, Gao M, He Y, Xiong B, Liu H, Gu L. Intersectin-Cdc42 interaction is required for orderly meiosis in porcine oocytes. J Cell Physiol 2018; 234:7492-7497. [PMID: 30478952 DOI: 10.1002/jcp.27510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022]
Abstract
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongfu He
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Uraji J, Scheffler K, Schuh M. Functions of actin in mouse oocytes at a glance. J Cell Sci 2018; 131:131/22/jcs218099. [PMID: 30467138 DOI: 10.1242/jcs.218099] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gametes undergo a specialized and reductional cell division termed meiosis. Female gametes (oocytes) undergo two rounds of meiosis; the first meiotic division produces the fertilizable egg, while the second meiotic division occurs upon fertilization. Both meiotic divisions are highly asymmetric, producing a large egg and small polar bodies. Actin takes over various essential function during oocyte meiosis, many of which commonly rely on microtubules in mitotic cells. Specifically, the actin network has been linked to long-range vesicle transport, nuclear positioning, spindle migration and anchorage, polar body extrusion and accurate chromosome segregation in mammalian oocytes. In this Cell Science at a Glance article and the accompanying poster, we summarize the many functions of the actin cytoskeleton in oocytes, with a focus on findings from the mouse model system.
Collapse
Affiliation(s)
- Julia Uraji
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Klughammer N, Bischof J, Schnellbächer ND, Callegari A, Lénárt P, Schwarz US. Cytoplasmic flows in starfish oocytes are fully determined by cortical contractions. PLoS Comput Biol 2018; 14:e1006588. [PMID: 30439934 PMCID: PMC6264906 DOI: 10.1371/journal.pcbi.1006588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/29/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic flows are an ubiquitous feature of biological systems, in particular in large cells, such as oocytes and eggs in early animal development. Here we show that cytoplasmic flows in starfish oocytes, which can be imaged well with transmission light microscopy, are fully determined by the cortical dynamics during surface contraction waves. We first show that the dynamics of the oocyte surface is highly symmetric around the animal-vegetal axis. We then mathematically solve the Stokes equation for flows inside a deforming sphere using the measured surface displacements as boundary conditions. Our theoretical predictions agree very well with the intracellular flows quantified by particle image velocimetry, proving that during this stage the starfish cytoplasm behaves as a simple Newtonian fluid on the micrometer scale. We calculate the pressure field inside the oocyte and find that its gradient is too small as to explain polar body extrusion, in contrast to earlier suggestions. Myosin II inhibition by blebbistatin confirms this conclusion, because it diminishes cell shape changes and hydrodynamic flow, but does not abolish polar body formation. As already noted by Aristotle, life is motion. On the molecular scale, thermal motion leads to diffusive transport. On cellular scales, however, diffusion starts to become inefficient, due to the general property of random walks that their spatial excursions grow less than linear with time. Therefore more directed transport processes are needed on cellular scales, including transport by molecular motors or by hydrodynamic flows. This is especially true for oocytes and eggs in early animal development, which often have to be large in order to store sufficient amounts of nutrients. Here we use starfish oocytes as a convenient model system to investigate the nature and function of cytoplasmic flows in early development. These cells are very large and optically transparent, and therefore ideal for live cell imaging that here we combine with image processing and mathematical modelling. This approach allows us to demonstrate that the experimentally observed cytoplasmic flows during early development are a direct consequence of surface contraction waves that deform the soft and contractile eggs. Additionally we show that despite its microscopic complexity, the cytoplasm behaves like a Newtonian fluid on the cellular scale. Our findings impose strong physical limits on the potential biological function of these flows and suggest that also other cellular systems that are soft and contractile might experience large cytoplasmic flows upon cell shape changes, for example during cell migration or division.
Collapse
Affiliation(s)
- Nils Klughammer
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Johanna Bischof
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Andrea Callegari
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
30
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
31
|
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes. Nat Commun 2018; 9:2952. [PMID: 30054463 PMCID: PMC6063951 DOI: 10.1038/s41467-018-05338-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
In the first meiotic division (MI) of oocytes, the cortically positioned spindle causes bivalent segregation in which only the centre-facing homologue pairs are retained. 'Selfish' chromosomes are known to exist, which bias their spindle orientation and hence retention in the egg, a process known as 'meiotic drive'. Here we report on this phenomenon in oocytes from F1 hybrid mice, where parental strain differences in centromere size allows distinction of the two homologue pairs of a bivalent. Bivalents with centromere and kinetochore asymmetry show meiotic drive by rotating during prometaphase, in a process dependent on aurora kinase activity. Cortically positioned homologue pairs appear to be under greater stretch than their centre-facing partners. Additionally the cortex spindle-half contain a greater density of tubulin and microtubule organising centres. A model is presented in which meiotic drive is explained by the impact of microtubule force asymmetry on chromosomes with different sized centromeres and kinetochores.
Collapse
|
32
|
Duan X, Sun SC. Actin cytoskeleton dynamics in mammalian oocyte meiosis†. Biol Reprod 2018; 100:15-24. [DOI: 10.1093/biolre/ioy163] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Burdyniuk M, Callegari A, Mori M, Nédélec F, Lénárt P. F-Actin nucleated on chromosomes coordinates their capture by microtubules in oocyte meiosis. J Cell Biol 2018; 217:2661-2674. [PMID: 29903878 PMCID: PMC6080919 DOI: 10.1083/jcb.201802080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022] Open
Abstract
Capture of each and every chromosome by spindle microtubules is essential to prevent chromosome loss and aneuploidy. In somatic cells, astral microtubules search and capture chromosomes forming lateral attachments to kinetochores. However, this mechanism alone is insufficient in large oocytes. We have previously shown that a contractile F-actin network is additionally required to collect chromosomes scattered in the 70-µm starfish oocyte nucleus. How this F-actin-driven mechanism is coordinated with microtubule capture remained unknown. Here, we show that after nuclear envelope breakdown Arp2/3-nucleated F-actin "patches" form around chromosomes in a Ran-GTP-dependent manner, and we propose that these structures sterically block kinetochore-microtubule attachments. Once F-actin-driven chromosome transport is complete, coordinated disassembly of F-actin patches allows synchronous capture by microtubules. Our observations indicate that this coordination is necessary because early capture of chromosomes by microtubules would interfere with F-actin-driven transport leading to chromosome loss and formation of aneuploid eggs.
Collapse
Affiliation(s)
- Mariia Burdyniuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrea Callegari
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
34
|
Varjabedian A, Kita A, Bement W. Living Xenopus oocytes, eggs, and embryos as models for cell division. Methods Cell Biol 2018; 144:259-285. [PMID: 29804672 PMCID: PMC6050073 DOI: 10.1016/bs.mcb.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis has long been a popular model for studies of development and, based on the use of cell-free extracts derived from its eggs, as a model for reconstitution of cell cycle regulation and other basic cellular processes. However, work over the last several years has shown that intact Xenopus eggs and embryos are also powerful models for visualization and characterization of cell cycle-regulated cytoskeletal dynamics. These findings were something of a surprise, given that the relatively low opacity of Xenopus eggs and embryos was assumed to make them poor subjects for live-cell imaging. In fact, however, the high tolerance for light exposure, the development of new imaging approaches, new probes for cytoskeletal components and cytoskeletal regulators, and the ease of microinjection make the Xenopus oocytes, eggs, and embryos one of the most useful live-cell imaging models among the vertebrates. In this review, we describe the basics of using X. laevis as a model organism for studying cell division and outline experimental approaches for imaging cytoskeletal components in vivo in X. laevis embryos and eggs.
Collapse
Affiliation(s)
- Ani Varjabedian
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Kita
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - William Bement
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
35
|
Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 2018; 358:668-672. [PMID: 29097549 DOI: 10.1126/science.aan0092] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Genetic elements compete for transmission through meiosis, when haploid gametes are created from a diploid parent. Selfish elements can enhance their transmission through a process known as meiotic drive. In female meiosis, selfish elements drive by preferentially attaching to the egg side of the spindle. This implies some asymmetry between the two sides of the spindle, but the molecular mechanisms underlying spindle asymmetry are unknown. Here we found that CDC42 signaling from the cell cortex regulated microtubule tyrosination to induce spindle asymmetry and that non-Mendelian segregation depended on this asymmetry. Cortical CDC42 depends on polarization directed by chromosomes, which are positioned near the cortex to allow the asymmetric cell division. Thus, selfish meiotic drivers exploit the asymmetry inherent in female meiosis to bias their transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karren Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chanat Aonbangkhen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carsten Janke
- Institut Curie, Paris Sciences & Lettres (PSL) Research University, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Vesicular transport protein Arf6 modulates cytoskeleton dynamics for polar body extrusion in mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:455-462. [DOI: 10.1016/j.bbamcr.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/30/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
|
37
|
Li L, Han L, Zhang J, Liu X, Ma R, Hou X, Ge J, Wang Q. Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget 2018; 7:50927-50936. [PMID: 27463009 PMCID: PMC5239448 DOI: 10.18632/oncotarget.10815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 01/04/2023] Open
Abstract
Epsins are a conserved family of endocytic adaptors essential for diverse biological events. However, its role in oocytes remains completely unknown. Here, we report that specific depletion of Epsin2 in mouse oocytes significantly disrupts meiotic progression. Confocal microscopy reveals that Epsin2 knockdown results in the failure of actin cap formation and polar body extrusion during meiosis, indicative of the importance of Epsin2 in polarity establishment and cytokinesis. In addition, spindle defects and chromosome misalignment are readily observed in oocytes depleted of Epsin2. Moreover, we find that Epsin2 knockdown markedly decreases the activity of Cdc42 in oocytes and importantly, that the dominant-positive mutant of Cdc42 (Cdc42Q61L) is capable of partially rescuing the deficient phenotypes of Epsin2-knockdown oocytes. Together, our data identify Epsin2 as a novel player in regulating oocyte maturation, and demonstrate that Epsin2 promotes polarity establishment and meiotic division via activating Cdc42.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaohui Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Morov AR, Ukizintambara T, Sabirov RM, Yasui K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol 2017; 6:rsob.160062. [PMID: 27307516 PMCID: PMC4929940 DOI: 10.1098/rsob.160062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
Acquisition of dorsal structures, such as notochord and hollow nerve cord, is likely to have had a profound influence upon vertebrate evolution. Dorsal formation in chordate development thus has been intensively studied in vertebrates and ascidians. However, the present understanding does not explain how chordates acquired dorsal structures. Here we show that amphioxus retains a key clue to answer this question. In amphioxus embryos, maternal nodal mRNA distributes asymmetrically in accordance with the remodelling of the cortical cytoskeleton in the fertilized egg, and subsequently lefty is first expressed in a patch of blastomeres across the equator where wnt8 is expressed circularly and which will become the margin of the blastopore. The lefty domain co-expresses zygotic nodal by the initial gastrula stage on the one side of the blastopore margin and induces the expression of goosecoid, not-like, chordin and brachyury1 genes in this region, as in the oral ectoderm of sea urchin embryos, which provides a basis for the formation of the dorsal structures. The striking similarity in the gene regulations and their respective expression domains when comparing dorsal formation in amphioxus and the determination of the oral ectoderm in sea urchin embryos suggests that chordates derived from an ambulacrarian-type blastula with dorsoventral inversion.
Collapse
Affiliation(s)
- Arseniy R Morov
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Tharcisse Ukizintambara
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Rushan M Sabirov
- Department of Zoology and General Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya Street, Kazan 420008, Republic of Tatarstan, Russian Federation
| | - Kinya Yasui
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
39
|
He SW, Xu BH, Liu Y, Wang YL, Chen MH, Xu L, Liao BQ, Lui R, Li FP, Lin YH, Fu XP, Fu BB, Hong ZW, Liu YX, Qi ZQ, Wang HL. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes. Cell Cycle 2017; 16:2272-2281. [PMID: 28933599 PMCID: PMC5788478 DOI: 10.1080/15384101.2017.1380126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.
Collapse
Affiliation(s)
- Shu-Wen He
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bai-Hui Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,g Department of Workshop 25, Shangdong new time Pharmaceutical Company Limited , Shangdong , China
| | - Yu Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ya-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ming-Huang Chen
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China
| | - Lin Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bao-Qiong Liao
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Rui Lui
- c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China.,d Department of Gynaecology and Obstetrics , Zhongxin Hospital , Qingdao, Shangdong , China
| | - Fei-Ping Li
- b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,f Department of Life Science, Biological College, Southwest Forestry University , Kunming , China
| | - Yan-Hong Lin
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,e Department of Gynaecology and Obstetrics , the First Clinical Medical College, Fujian Medical University , Fuzhou , China
| | - Xian-Pei Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bin-Bin Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zi-Wei Hong
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Yu-Xin Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zhong-Quan Qi
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Hai-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| |
Collapse
|
40
|
Beaudet D, Akhshi T, Phillipp J, Law C, Piekny A. Active Ran regulates anillin function during cytokinesis. Mol Biol Cell 2017; 28:3517-3531. [PMID: 28931593 PMCID: PMC5683762 DOI: 10.1091/mbc.e17-04-0253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/11/2022] Open
Abstract
We describe a novel mechanism by which active Ran regulates anillin during cytokinesis. Anillin is highly conserved and coordinates RhoA, actomyosin, microtubules, and the membrane for cytokinesis in mammalian cells. This study implicates Ran-GTP in influencing cortical contractility during anaphase by regulating anillin function. Cytokinesis cleaves a cell into two daughters at the end of mitosis, and must be spatially coordinated with chromosome segregation to prevent aneuploidy. The dogma is that the mitotic spindle governs the assembly and constriction of an actomyosin ring. Here, we reveal a function for active Ran in spatially restricting the ring. Our model is that during anaphase, “free” importins, whose gradient inversely correlates with active Ran and chromatin position, function as a molecular ruler for the recruitment and localization of anillin, a contractile protein and a crucial regulator of cytokinesis. We found that decreasing Ran-GTP levels or tethering active Ran to the equatorial membrane affects anillin’s localization and causes cytokinesis phenotypes. Anillin contains a conserved nuclear localization signal (NLS) at its C-terminus that binds to importin-β and is required for cortical polarity and cytokinesis. Mutating the NLS decreases anillin’s cortical affinity, causing it to be more dominantly regulated by microtubules. Anillin contains a RhoA-GTP binding domain, which autoinhibits the NLS and the neighboring microtubule-binding domain, and RhoA-GTP binding may relieve this inhibition during mitosis. Retention of the C-terminal NLS in anillin homologues suggests that this is a conserved mechanism for controlling anillin function.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Tara Akhshi
- Program in Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julia Phillipp
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Christopher Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Program in Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
41
|
Zhang Y, Wang QC, Liu J, Xiong B, Cui XS, Kim NH, Sun SC. The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. J Reprod Dev 2017; 63:505-510. [PMID: 28781348 PMCID: PMC5649100 DOI: 10.1262/jrd.2017-034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine oocytes. Immunofluorescent staining showed that CDC42 was mainly localized at the periphery of the oocytes, and accumulated with microtubules. Deactivation of CDC42 protein activity with the effective inhibitor ML141 caused a decrease in actin distribution in the cortex, which resulted in a failure of polar body extrusion. Moreover, western blot analysis revealed that besides the Cdc42-N-WASP pathway previously reported in mouse oocytes, the expression of ROCK and p-cofilin, two molecules involved in actin dynamics, was also decreased after CDC42 inhibition during porcine oocyte maturation. Thus, our study demonstrates that CDC42 is an indispensable protein during porcine oocyte meiosis, and CDC42 may interact with N-WASP, ROCK, and cofilin in the assembly of actin filaments during porcine oocyte maturation.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Zhang J, Ma R, Li L, Wang L, Hou X, Han L, Ge J, Li M, Wang Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway. FASEB J 2017. [PMID: 28626024 DOI: 10.1096/fj.201700179r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intersectins (ITSNs), an evolutionarily conserved adaptor protein family, have been implicated in multiple biologic processes; however, their functions in mammalian oocytes have not been addressed. Here, we report delayed meiotic resumption and defective cytokinesis upon specific depletion of ITSN2 in mouse oocytes. In particular, abnormal spindle, misaligned chromosomes, and loss of cortical actin cap are readily observed in ITSN2-depleted oocytes. Similarly, a small molecule that targets the Cdc42-ITSN interaction also disrupts oocyte maturation and actin polymerization. Moreover, we find that ITSN2 depletion reduces the activity of Cdc42 in oocytes and, of note, that forced expression of the dominant-positive mutant of Cdc42, in part, prevents the effects of ITSN2 knockdown on actin cap formation. In addition, the localization of WASP and Arp2, the downstream effector proteins of Cdc42, is altered in ITSN2-depleted oocytes accordingly. In summary, our data support a model in which ITSN2 depletion induces the inactivation of Cdc42, which, in turn, influences the distribution and function of Arp2/3 and WASP, consequently disrupting oocyte polarity establishment and meiotic division.-Zhang, J., Ma, R., Li, L., Wang, L., Hou, X., Han, L., Ge, J., Li, M., Wang, Q. Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Center of Reproductive Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Key Laboratory of Birth Defects Prevention, National Health and Family Planning Commission, Zhengzhou, China
| | - Xiaojing Hou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|
43
|
Wang H, Guo J, Lin Z, Namgoong S, Oh JS, Kim NH. Filamin A is required for spindle migration and asymmetric division in mouse oocytes. FASEB J 2017; 31:3677-3688. [PMID: 28487281 DOI: 10.1096/fj.201700056r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 11/11/2022]
Abstract
Dynamic changes in the actin network are crucial for the cortical migration of spindles and establishment of polarity, to ensure asymmetric division during meiotic maturation. In this study, filamin A (FLNA) was found to be an essential actin regulator that controlled spindle migration and asymmetric division during oocyte meiosis. FLNA was localized in the cytoplasm and enriched at the cortex and near the chromosomes. Knockdown of FLNA impaired meiotic asymmetric division and spindle migration with a decrease in the amount of cytoplasmic actin mesh and cortical actin levels. Moreover, FLNA knockdown reduced the phosphorylation of cofilin and Rho kinase (ROCK) near the spindle. Similar phenotypes, such as decreased filament actin levels, impaired spindle migration and polar body extrusion, were observed when active cofilin (S3A) was overexpressed or ROCK was inhibited. Notably, we found that FLNA and ROCK interacted directly in mouse oocytes. Taken together, our results show that FLNA plays crucial roles in asymmetric division during meiotic maturation by regulating ROCK-cofilin-mediated actin reorganization.-Wang, H., Guo J., Lin, Z., Namgoong, S., Oh, J. S., Kim, N.-H. Filamin A is required for spindle migration and asymmetric division in mouse oocytes.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jing Guo
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - ZiLi Lin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea;
| |
Collapse
|
44
|
Zhu JQ, Tan SL, Taketo T. A lack of coordination between sister-chromatids segregation and cytokinesis in the oocytes of B6.Y TIR (XY) sex-reversed female mice. Sci Rep 2017; 7:960. [PMID: 28424461 PMCID: PMC5430445 DOI: 10.1038/s41598-017-00922-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023] Open
Abstract
The B6.YTIR (XY) mouse develops bilateral ovaries despite the expression of the testis-determining gene Sry during gonadal differentiation. We reported that the oocytes of the XY female are defective in their cytoplasm, resulting in a failure in the second meiotic division after activation or fertilization in vitro. However, the mechanism of meiotic failure or the cause of infertility remained to be clarified. In the present study, we obtained mature oocytes from XY females by superovulation and confirmed that these oocytes also fail in zygotic development. By using confocal microscopy 3D-analysis, we demonstrated that meiotic spindles were properly positioned and oriented in the MII-oocytes from XY females. After parthenogenic activation, fewer oocytes from XY females extruded the second polar body, and in those oocytes, sister-chromatids were often separated but neither set entered the second polar body. ARP2, F-actin, and ORC4, known to play roles in asymmetric meiotic division, were initially localized along the ooplasmic membrane and concentrated over the MII-spindle but lost their cortical polarity after activation while the sister-chromatids moved away from the oolemma in the oocytes from XY females. Our results indicate that the second polar body extrusion is uncoupled from the sister-chromatids separation in the oocytes from XY female mouse.
Collapse
Affiliation(s)
- Jia-Qiao Zhu
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.,College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, P.R. China
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.,MUHC Reproductive Centre, Division of Reproductive Endocrinology and Infertility, McGill University, Montreal, Quebec, Canada.,OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada. .,Department of Surgery, McGill University, Montreal, Quebec, Canada. .,Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Zhou CX, Shi LY, Li RC, Liu YH, Xu BQ, Liu JW, Yuan B, Yang ZX, Ying XY, Zhang D. GTPase-activating protein Elmod2 is essential for meiotic progression in mouse oocytes. Cell Cycle 2017; 16:852-860. [PMID: 28324667 DOI: 10.1080/15384101.2017.1304329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Meiotic failure in oocytes is the major determinant of human zygote-originated reproductive diseases, the successful accomplishment of meiosis largely relay on the normal functions of many female fertility factors. Elmod2 is a member of the Elmod family with the strongest GAP (GTPase-activating protein) activity; although it was identified as a possible maternal protein, its actual physiologic role in mammalian oocytes has not been elucidated. Herein we reported that among Elmod family proteins, Elmod2 is the most abundant in mouse oocytes, and that inhibition of Elmod2 by specific siRNA caused severe meiotic delay and abnormal chromosomal segregation during anaphase. Elmod2 knockdown also significantly decreased the rate of oocyte maturation (to MII, with first polar body extrusion), and significantly greater numbers of Elmod2-knockdown MII oocytes were aneuploid. Correspondingly, Elmod2 knockdown dramatically decreased fertilization rate. To investigate the mechanism(s) involved, we found that Elmod2 knockdown caused significantly more abnormal mitochondrial aggregation and diminished cellular ATP levels; and we also found that Elmod2 co-localized and interacted with Arl2, a GTPase that is known to maintain mitochondrial dynamics and ATP levels in oocytes. In summary, we found that Elmod2 is the GAP essential to meiosis progression of mouse oocytes, most likely by regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Chun-Xiang Zhou
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Li-Ya Shi
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Rui-Chao Li
- b Liuzhou Worker's Hospital , Liuzhou , Guangxi , China
| | - Ya-Hong Liu
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Bo-Qun Xu
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Jin-Wei Liu
- d Department of Gynecology , Zhejiang Provincial People's Hospital , Hangzhou , Zhejiang , China
| | - Bo Yuan
- e Wenxi Agriculture Committee , Yuncheng , Shanxi , China
| | - Zhi-Xia Yang
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Xiao-Yan Ying
- c The Second Affiliated Hospital , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Dong Zhang
- a State Key Lab of Reproductive Medicine , Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| |
Collapse
|
46
|
Dudka D, Meraldi P. Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results Probl Cell Differ 2017; 61:301-321. [PMID: 28409311 DOI: 10.1007/978-3-319-53150-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.
Collapse
Affiliation(s)
- Damian Dudka
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
47
|
Chaigne A, Terret ME, Verlhac MH. Asymmetries and Symmetries in the Mouse Oocyte and Zygote. Results Probl Cell Differ 2017; 61:285-299. [PMID: 28409310 DOI: 10.1007/978-3-319-53150-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian oocytes grow periodically after puberty thanks to the dialogue with their niche in the follicle. This communication between somatic and germ cells promotes the accumulation, inside the oocyte, of maternal RNAs, proteins and other molecules that will sustain the two gamete divisions and early embryo development up to its implantation. In order to preserve their stock of maternal products, oocytes from all species divide twice minimizing the volume of their daughter cells to their own benefit. For this, they undergo asymmetric divisions in size where one main objective is to locate the division spindle with its chromosomes off-centred. In this chapter, we will review how this main objective is reached with an emphasis on the role of actin microfilaments in this process in mouse oocytes, the most studied example in mammals. This chapter is subdivided into three parts: I-General features of asymmetric divisions in mouse oocytes, II-Mechanism of chromosome positioning by actin in mouse oocytes and III-Switch from asymmetric to symmetric division at the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK.,Institute for the Physics of Living Systems, UCL, London, WC1E 6BT, UK
| | | | | |
Collapse
|
48
|
Lu R, Wilson JM. Rab14 specifies the apical membrane through Arf6-mediated regulation of lipid domains and Cdc42. Sci Rep 2016; 6:38249. [PMID: 27901125 PMCID: PMC5128791 DOI: 10.1038/srep38249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of cell polarity is essential for the development of multi-cellular organisms as well as for the function of epithelial organs in the mature animal. Small GTPases regulate the establishment and maintenance of polarity through effects on cytoskeleton, membrane trafficking, and signaling. Using short-term 3-dimensional culture of MDCK cells, we find that the small GTPase Rab14 is required for apical membrane specification. Rab14 knockdown results in disruption of polarized lipid domains and failure of the Par/aPKC/Cdc42 polarity complex to localize to the apical membrane. These effects are mediated through tight control of lipid localization, as overexpression of the phosphatidylinositol 4-phosphate 5-kinase α [PtdIns(4)P5K] activator Arf6 or PtdIns(4)P5K alone, or treatment with the phosphatidylinositol 3-kinase (PtdInsI3K) inhibitor wortmannin, rescued the multiple-apical domain phenotype observed after Rab14 knockdown. Rab14 also co-immunoprecipitates and colocalizes with the small GTPase Cdc42, and Rab14 knockdown results in increased Cdc42 activity. Furthermore, Rab14 regulates trafficking of vesicles to the apical domain, mitotic spindle orientation, and midbody position, consistent with Rab14’s reported localization to the midbody as well as its effects upon Cdc42. These results position Rab14 at the top of a molecular cascade that regulates the establishment of cell polarity.
Collapse
Affiliation(s)
- Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
49
|
Jia RX, Duan X, Song SJ, Sun SC. LIMK1/2 inhibitor LIMKi 3 suppresses porcine oocyte maturation. PeerJ 2016; 4:e2553. [PMID: 27761340 PMCID: PMC5068415 DOI: 10.7717/peerj.2553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
LIMKi 3 is a specific selective LIMK inhibitor against LIMK1 and LIMK2, while LIMK1 and LIMK2 are the main regulators of actin cytoskeleton to participate in many cell activities. However, the effect of LIMKi 3 in porcine oocyte meiosis is still unclear. The present study was designed to investigate the effects of LIMKi 3 and potential regulatory role of LIMK1/2 on porcine oocyte meiotic maturation. Immunofluorescent staining of p-LIMK1/2 antibody showed that LIMK1/2 was localized mainly to the cortex of porcine oocyte, which co-localized with actin. After LIMKi 3 treatment, the diffusion of COCs became weak and the rate of polar body extrusion was decreased. This could be rescued by moving oocytes to fresh medium. After prolonging the culture time of oocytes, the maturation rate of porcine oocyte increased in LIMKi 3 groups, indicating that LIMKi 3 may suppress the cell cycle during porcine oocyte maturation. We also found that after LIMKi 3 treatment actin distribution was significantly disturbed at porcine oocyte membranes and cytoplasm, indicating the conserved roles of LIMK1/2 on actin dynamics. Next we examined the meiotic spindle positioning in porcine oocyte, and the results showed that a majority of spindles were not attached to the cortex of porcine oocyte, indicating that LIMKi 3 may affect actin-mediated spindle positioning. Taken together, these results showed that LIMK1/2 inhibitor LIMKi 3 had a repressive role on porcine oocyte meiotic maturation.
Collapse
Affiliation(s)
- Ru-Xia Jia
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Xing Duan
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Si-Jing Song
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- College of Animal Science & Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
50
|
Inhibition of Rac1 GTPase activity affects porcine oocyte maturation and early embryo development. Sci Rep 2016; 6:34415. [PMID: 27694954 PMCID: PMC5046063 DOI: 10.1038/srep34415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian oocyte asymmetric division relies on the eccentric positioning of the spindle, resulting in the polar body formation. Small signaling G protein Rac1 is a member of GTPases, which regulates a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. However, effects of Rac1 on the porcine oocyte maturation and early embryo development are not fully understood. In present study we investigated the role of Rac1 in oocyte maturation and embryo cleavage. We first found that Rac1 localized at the cortex of the porcine oocytes, and disrupting the Rac1 activities by treating with NSC 23766 led to the failure of polar body emission. In addition, a majority of treated oocytes exhibited abnormal spindle morphology, indicating that Rac1 may involve into porcine oocyte spindle formation. This might be due to the regulation of Rac1 on MAPK, since p-MAPK expression decreased after NSC 23766 treatments. Moreover, we found that the position of most meiotic spindles in treated oocytes were away from the cortex, indicating the roles of Rac1 on meiotic spindle positioning. Our results also showed that inhibition of Rac1 activity caused the failure of early embryo development. Therefore, our study showed the critical roles of Rac1 GTPase on porcine oocyte maturation and early embryo cleavage.
Collapse
|