1
|
Wang Z, Vilhelmsen L, Rasnitsyn AP, Viertler A, Shih C, Wen S, Yang H, Wu Q, Zhang Y, Ren D, Gao T. Specialized ovipositor sensilla of Cretaceous wasps (Insecta: Hymenoptera) possibly reveal a unique way of host detection. Cladistics 2024; 40:526-537. [PMID: 38712908 DOI: 10.1111/cla.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Insects have evolved complex sensory systems that are important for feeding, defence and reproduction. Parasitoid wasps often spend much time and effort in searching for concealed hosts with the help of specialized sensilla. However, the early evolution of such behaviour and sensilla is poorly known. We describe two fossil female wasps, †Tichostephanus kachinensis sp. nov. and †Tichostephanus longus sp. nov., from mid-Cretaceous Kachin amber. Phylogenetic analyses based on morphological data retrieved †Tichostephanus as deeply nested within Evanioidea and closely related to extant Gasteruptiidae and Evaniidae. Both of these Cretaceous wasps possess features, e.g. coronal tubercles and flexible ovipositor sheaths, that indicate that they might have laid eggs in wood where their larvae possibly parasitized insect larvae. They have a peculiar and unique 'bottle brush' of sensilla close to the apex of their ovipositor sheaths, which has not been observed in any extant parasitoid wasps. These sensilla comprise many regularly arranged plate-shaped setae, attached in relatively large sockets and with rows of longitudinal ridges. Such specialized sensilla perhaps served to enhance the ability to detect hosts inside wood.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Lars Vilhelmsen
- Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Copenhagen, Denmark
| | - Alexandr P Rasnitsyn
- A. A. Borissiak Palaeontological Institute, Russian Academy of Sciences, 117647, Moscow, Russia
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Alexandra Viertler
- Natural History Museum Basel, Augustinerstrasse 2, 4051, Basel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Shanshan Wen
- Huxuan Museum, 58-10 Maanshanlu, Shizhong District, Jinan, Shandong, 250000, China
| | - Hongru Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Qiong Wu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yanjie Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Dong Ren
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Taiping Gao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
2
|
Jessop AL, Pirih P, Wang L, Patel NH, Clode PL, Schröder-Turk GE, Wilts BD. Elucidating nanostructural organization and photonic properties of butterfly wing scales using hyperspectral microscopy. J R Soc Interface 2024; 21:20240185. [PMID: 39257280 PMCID: PMC11463223 DOI: 10.1098/rsif.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, Erora opisena (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, E. opisena develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for in vivo analysis of nanostructure formation in developing butterflies.
Collapse
Affiliation(s)
- Anna-Lee Jessop
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, Western Australia6150, Australia
| | - Primož Pirih
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| | - Limin Wang
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| | - Nipam H. Patel
- Marine Biological Laboratory, University of Chicago, Woods Hole, MA02543, USA
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia6009, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia6009, Australia
| | - Gerd E. Schröder-Turk
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, Western Australia6150, Australia
- Research School of Physics, The Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Bodo D. Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg5020, Austria
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Prakash A, Dion E, Banerjee TD, Monteiro A. The molecular basis of scale development highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. Cell Rep 2024; 43:114147. [PMID: 38662541 DOI: 10.1016/j.celrep.2024.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Butterfly wings display a diversity of cell types, including large polyploid scale cells, yet the molecular basis of such diversity is poorly understood. To explore scale cell diversity at a transcriptomic level, we employ single-cell RNA sequencing of ∼5,200 large cells (>6 μm) from 22.5- to 25-h male pupal forewings of the butterfly Bicyclus anynana. Using unsupervised clustering, followed by in situ hybridization, immunofluorescence, and CRISPR-Cas9 editing of candidate genes, we annotate various cell types on the wing. We identify genes marking non-innervated scale cells, pheromone-producing glandular cells, and innervated sensory cell types. We show that senseless, a zinc-finger transcription factor, and HR38, a hormone receptor, determine the identity, size, and color of different scale cell types and are important regulators of scale cell differentiation. This dataset and the identification of various wing cell-type markers provide a foundation to compare and explore scale cell-type diversification across arthropod species.
Collapse
Affiliation(s)
- Anupama Prakash
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Lloyd VJ, Burg SL, Harizanova J, Garcia E, Hill O, Enciso-Romero J, Cooper RL, Flenner S, Longo E, Greving I, Nadeau NJ, Parnell AJ. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. Nat Commun 2024; 15:4073. [PMID: 38769302 PMCID: PMC11106069 DOI: 10.1038/s41467-024-48060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.
Collapse
Affiliation(s)
- Victoria J Lloyd
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK.
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Jana Harizanova
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Esther Garcia
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Olivia Hill
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Juan Enciso-Romero
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Rory L Cooper
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, 1205, Switzerland
| | - Silja Flenner
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502, Geesthacht, Germany
| | - Elena Longo
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502, Geesthacht, Germany
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK.
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK.
| |
Collapse
|
6
|
Thayer RC, Patel NH. A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J Exp Biol 2023; 226:jeb245940. [PMID: 37937662 DOI: 10.1242/jeb.245940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Butterfly scales are among the richest natural sources of optical nanostructures, which produce structural color and iridescence. Several recurring nanostructure types have been described, such as ridge multilayers, gyroids and lower lamina thin films. While the optical mechanisms of these nanostructure classes are known, their phylogenetic distributions and functional ranges have not been described in detail. In this Review, we examine a century of research on the biological production of structural colors, including their evolution, development and genetic regulation. We have also created a database of more than 300 optical nanostructures in butterflies and conducted a meta-analysis of the color range, abundance and phylogenetic distribution of each nanostructure class. Butterfly structural colors are ubiquitous in short wavelengths but extremely rare in long wavelengths, especially red. In particular, blue wavelengths (around 450 nm) occur in more clades and are produced by more kinds of nanostructures than other hues. Nanostructure categories differ in prevalence, phylogenetic distribution, color range and brightness. For example, lamina thin films are the least bright; perforated lumen multilayers occur most often but are almost entirely restricted to the family Lycaenidae; and 3D photonic crystals, including gyroids, have the narrowest wavelength range (from about 450 to 550 nm). We discuss the implications of these patterns in terms of nanostructure evolution, physical constraint and relationships to pigmentary color. Finally, we highlight opportunities for future research, such as analyses of subadult and Hesperid structural colors and the identification of genes that directly build the nanostructures, with relevance for biomimetic engineering.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
7
|
Seah KS, Saranathan V. Hierarchical morphogenesis of swallowtail butterfly wing scale nanostructures. eLife 2023; 12:RP89082. [PMID: 37768710 PMCID: PMC10538957 DOI: 10.7554/elife.89082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The study of color patterns in the animal integument is a fundamental question in biology, with many lepidopteran species being exemplary models in this endeavor due to their relative simplicity and elegance. While significant advances have been made in unraveling the cellular and molecular basis of lepidopteran pigmentary coloration, the morphogenesis of wing scale nanostructures involved in structural color production is not well understood. Contemporary research on this topic largely focuses on a few nymphalid model taxa (e.g., Bicyclus, Heliconius), despite an overwhelming diversity in the hierarchical nanostructural organization of lepidopteran wing scales. Here, we present a time-resolved, comparative developmental study of hierarchical scale nanostructures in Parides eurimedes and five other papilionid species. Our results uphold the putative conserved role of F-actin bundles in acting as spacers between developing ridges, as previously documented in several nymphalid species. Interestingly, while ridges are developing in P. eurimedes, plasma membrane manifests irregular mesh-like crossribs characteristic of Papilionidae, which delineate the accretion of cuticle into rows of planar disks in between ridges. Once the ridges have grown, disintegrating F-actin bundles appear to reorganize into a network that supports the invagination of plasma membrane underlying the disks, subsequently forming an extruded honeycomb lattice. Our results uncover a previously undocumented role for F-actin in the morphogenesis of complex wing scale nanostructures, likely specific to Papilionidae.
Collapse
Affiliation(s)
- Kwi Shan Seah
- Division of Science, Yale-NUS CollegeSingaporeSingapore
- Department of Biological Science, National University of SingaporeSingaporeSingapore
| | - Vinodkumar Saranathan
- Division of Science, Yale-NUS CollegeSingaporeSingapore
- Department of Biological Science, National University of SingaporeSingaporeSingapore
- NUS Nanoscience and Nanotechnology Initiative (NUSNNI-NanoCore), National University of SingaporeSingaporeSingapore
- Lee Kong Chian Natural History Museum, National University of SingaporeSingaporeSingapore
- Present Address: Division of Sciences, School of Interwoven Arts and Sciences, Krea University, Central ExpresswaySri CityIndia
| |
Collapse
|
8
|
Hanly JJ, Loh LS, Mazo-Vargas A, Rivera-Miranda TS, Livraghi L, Tendolkar A, Day CR, Liutikaite N, Earls EA, Corning OBWH, D'Souza N, Hermina-Perez JJ, Mehta C, Ainsworth JA, Rossi M, Papa R, McMillan WO, Perry MW, Martin A. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023; 150:dev201868. [PMID: 37602496 PMCID: PMC10560568 DOI: 10.1242/dev.201868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Butterfly color patterns provide visible and biodiverse phenotypic readouts of the patterning processes. Although the secreted ligand WntA has been shown to instruct the color pattern formation in butterflies, its mode of reception remains elusive. Butterfly genomes encode four homologs of the Frizzled-family of Wnt receptors. Here, we show that CRISPR mosaic knockouts of frizzled2 (fz2) phenocopy the color pattern effects of WntA loss of function in multiple nymphalids. Whereas WntA mosaic clones result in intermediate patterns of reduced size, fz2 clones are cell-autonomous, consistent with a morphogen function. Shifts in expression of WntA and fz2 in WntA crispant pupae show that they are under positive and negative feedback, respectively. Fz1 is required for Wnt-independent planar cell polarity in the wing epithelium. Fz3 and Fz4 show phenotypes consistent with Wnt competitive-antagonist functions in vein formation (Fz3 and Fz4), wing margin specification (Fz3), and color patterning in the Discalis and Marginal Band Systems (Fz4). Overall, these data show that the WntA/Frizzled2 morphogen-receptor pair forms a signaling axis that instructs butterfly color patterning and shed light on the functional diversity of insect Frizzled receptors.
Collapse
Affiliation(s)
- Joseph J. Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Ling S. Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Anyi Mazo-Vargas
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Luca Livraghi
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amruta Tendolkar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Christopher R. Day
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27708, USA
| | - Neringa Liutikaite
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Emily A. Earls
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Olaf B. W. H. Corning
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Natalie D'Souza
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - José J. Hermina-Perez
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Caroline Mehta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Julia A. Ainsworth
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Matteo Rossi
- Division of Evolutionary Biology, Ludwig Maximilian University, Munich 80539, Germany
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico at Río Piedras, San Juan 00931, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan 00931, Puerto Rico
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parma 43121, Italy
| | - W. Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| | - Michael W. Perry
- Department of Cell and Developmental Biology, UC San Diego, La Jolla, CA, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Smithsonian Tropical Research Institute, Gamboa 0843-03092, Panama
| |
Collapse
|
9
|
Nakazato Y, Otaki JM. Live Detection of Intracellular Chitin in Butterfly Wing Epithelial Cells In Vivo Using Fluorescent Brightener 28: Implications for the Development of Scales and Color Patterns. INSECTS 2023; 14:753. [PMID: 37754721 PMCID: PMC10532232 DOI: 10.3390/insects14090753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Chitin is the major component of the extracellular cuticle and plays multiple roles in insects. In butterflies, chitin builds wing scales for structural colors. Here, we show that intracellular chitin in live cells can be detected in vivo with fluorescent brightener 28 (FB28), focusing on wing epithelial cells of the small lycaenid butterfly Zizeeria maha immediately after pupation. A relatively small number of cells at the apical surface of the epithelium were strongly FB28-positive in the cytosol and seemed to have extensive ER-Golgi networks, which may be specialized chitin-secreting cells. Some cells had FB28-positive tadpole-tail-like or rod-like structures relative to the nucleus. We detected FB28-positive hexagonal intracellular objects and their associated structures extending toward the apical end of the cell, which may be developing scale bases and shafts. We also observed FB28-positive fibrous intracellular structures extending toward the basal end. Many cells were FB28-negative in the cytosol, which contained FB28-positive dots or discs. The present data are crucial to understanding the differentiation of the butterfly wing epithelium, including scale formation and color pattern determination. The use of FB28 in probing intracellular chitin in live cells may be applicable to other insect systems.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
10
|
Nishida K, Adachi H, Moriyama M, Futahashi R, Hanson PE, Kondo S. Butterfly wing color made of pigmented liquid. Cell Rep 2023; 42:112917. [PMID: 37537843 DOI: 10.1016/j.celrep.2023.112917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
A previously undescribed mechanism underlying butterfly wing coloration patterns was discovered in two distantly related butterfly species, Siproeta stelenes and Philaethria diatonica. These butterflies have bright green wings, but the color pattern is not derived from solid pigments or nanostructures of the scales or from the color of the cuticular membrane but rather from a liquid retained in the wing membrane. Wing structure differs between the green and non-green areas. In the non-green region, the upper and lower cuticular membranes are attached to each other, whereas in the green region, we observed a space of 5-10 μm where green liquid is held and living cells are present. A pigment analysis and tracer experiment revealed that the color of the liquid is derived from hemolymph components, bilin and carotenoid pigments. This discovery broadens our understanding of the diverse ways in which butterfly wings obtain their coloration and patterns.
Collapse
Affiliation(s)
- Kenji Nishida
- Associate Researcher Museo de Zoología, Universidad de Costa Rica & Estación Biológica Monteverde, Apdo 22-5655, Monteverde, Costa Rica.
| | - Haruhiko Adachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Minoru Moriyama
- National Institute of Advanced Industrial Science and Technology, Central bld. 6th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology, Central bld. 6th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Paul E Hanson
- Escuela de Biología & Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, Costa Rica
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Bayala EX, VanKuren N, Massardo D, Kronforst MR. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol 2023; 21:100. [PMID: 37143075 PMCID: PMC10161628 DOI: 10.1186/s12915-023-01601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Highly diverse butterfly wing patterns have emerged as a powerful system for understanding the genetic basis of phenotypic variation. While the genetic basis of this pattern variation is being clarified, the precise developmental pathways linking genotype to phenotype are not well understood. The gene aristaless, which plays a role in appendage patterning and extension, has been duplicated in Lepidoptera. One copy, aristaless1, has been shown to control a white/yellow color switch in the butterfly Heliconius cydno, suggesting a novel function associated with color patterning and pigmentation. Here we investigate the developmental basis of al1 in embryos, larvae, and pupae using new antibodies, CRISPR/Cas9, RNAi, qPCR assays of downstream targets, and pharmacological manipulation of an upstream activator. RESULTS We find that Al1 is expressed at the distal tips of developing embryonic appendages consistent with its ancestral role. In developing wings, we observe Al1 accumulation within developing scale cells of white H. cydno during early pupation while yellow scale cells exhibit little Al1 at this time point. Reduced Al1 expression is also associated with yellow scale development in al1 knockouts and knockdowns. We propose that Al1 expression in future white scales might be related to an observed downregulation of the enzyme Cinnabar and other genes that synthesize and transport the yellow pigment, 3-hydroxykynurenine (3-OHK). Finally, we provide evidence that Al1 activation is under the control of Wnt signaling. CONCLUSIONS We propose a model in which high levels of Al1 during early pupation, which are mediated by Wnt, are important for melanic pigmentation and specifying white portions of the wing while reduced levels of Al1 during early pupation promote upregulation of proteins needed to move and synthesize 3-OHK, promoting yellow pigmentation. In addition, we discuss how the ancestral role of aristaless in appendage extension may be relevant in understanding the cellular mechanism behind color patterning in the context of the heterochrony hypothesis.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| | - Nicholas VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Antennapedia and optix regulate metallic silver wing scale development and cell shape in Bicyclus anynana butterflies. Cell Rep 2022; 40:111052. [PMID: 35793633 DOI: 10.1016/j.celrep.2022.111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
Butterfly wing scales can develop intricate cuticular nanostructures that produce silver colors, but the underlying genetic and physical basis of such colors is mostly unexplored. Here, we characterize different types of wild-type silver scales in Bicyclus anynana butterflies and show that the varying thickness of the air layer between two cuticular laminas is most important for producing silvery broadband reflectance. We then address the function of five genes-apterous A, Ultrabithorax, doublesex, Antennapedia, and optix-in silver scale development by examining crispants with either ectopic gains or losses of silver scales. Simultaneous transformations of three parameters-loss of the upper lamina, increased lower lamina thickness, and increased pigmentation-occur when silver scales become brown and vice versa when brown scales become silver. Antennapedia and optix are high-level regulators of different silver scale types and determine cell shape in both sexes. Moreover, Antennapedia is involved in determining ridge and crossrib orientation.
Collapse
|
13
|
Djokic S, Bakhrat A, Li M, Akbari OS, Abdu U. Scale-type-specific requirement for the mosquito Aedes aegypti Spindle-F homologue by regulating microtubule organization. INSECT MOLECULAR BIOLOGY 2022; 31:216-224. [PMID: 34919304 PMCID: PMC10537241 DOI: 10.1111/imb.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Insect epithelial cells contain unique cellular extensions such as bristles, hairs, and scales. In contrast to bristle and hair, which are not divergent in their shape, scale morphology shows high diversity. In our attempt to characterize the role of the insect-specific gene, Spindle-F (spn-F), in mosquito development, we revealed a scale-type specific requirement for the mosquito Aedes aegypti spn-F homologue. Using CRISPR-Cas9, we generated Ae-spn-F mutants and found that Ae-spn-F is an essential gene, but we were able to recover a few adult escapers. These escapers could not fly nor move, and died after 3 to 4 days. We found that in Ae-spn-F mutants, only the tip part of the bristle was affected with bulbous with misoriented ribs. We also show that in Ae-spn-F mutants, only in falcate scales, which are curved with a sharp or narrowly rounded apex, and not in other scale types, the tip region is strongly affected. Our analysis also revealed that in contrast to Drosophila spn-F, which show strong defects in both the actin and microtubule (MT) network in the bristle, the Ae-spn-F gene is required only for MT organization in scales and bristles. In summary, our results reveal that Ae-spn-F is required for shaping tapered epithelial cellular extension structures, namely, the bristle and falcate scales by affecting MT organization.
Collapse
Affiliation(s)
- Sanja Djokic
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
14
|
Ficarrotta V, Hanly JJ, Loh LS, Francescutti CM, Ren A, Tunström K, Wheat CW, Porter AH, Counterman BA, Martin A. A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies. Proc Natl Acad Sci U S A 2022; 119:e2109255118. [PMID: 35012980 PMCID: PMC8784150 DOI: 10.1073/pnas.2109255118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.
Collapse
Affiliation(s)
- Vincent Ficarrotta
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | | | - Anna Ren
- Department of Biological Sciences, The George Washington University, Washington, DC 20052
| | - Kalle Tunström
- Department of Zoology, Stockholm University, Stockholm S-10691, Sweden
| | | | - Adam H Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052;
| |
Collapse
|
15
|
In vivo visualization of butterfly scale cell morphogenesis in Vanessa cardui. Proc Natl Acad Sci U S A 2021; 118:2112009118. [PMID: 34845021 PMCID: PMC8670486 DOI: 10.1073/pnas.2112009118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Many organisms exhibit functional micro- and nanoscale materials with structural definition and performance that challenge synthetic fabrication techniques, yet we know little about the processes that enable their formation. Using butterfly scales as a model system for functional biomaterials, we establish a timeline of scale formation and quantify relevant structural parameters for developing painted lady butterflies. We overcome challenges of previous efforts by imaging structure formation directly in living organisms, which allows us to continuously observe the evolving wing tissue and the fine details of individual scale cells. Visualization of scale structure formation in live butterflies forms the basis for modeling the underlying biomechanical processes and opens avenues for their translation into advanced fabrication strategies. During metamorphosis, the wings of a butterfly sprout hundreds of thousands of scales with intricate microstructures and nano-structures that determine the wings’ optical appearance, wetting characteristics, thermodynamic properties, and aerodynamic behavior. Although the functional characteristics of scales are well known and prove desirable in various applications, the dynamic processes and temporal coordination required to sculpt the scales’ many structural features remain poorly understood. Current knowledge of scale growth is primarily gained from ex vivo studies of fixed scale cells at discrete time points; to fully understand scale formation, it is critical to characterize the time-dependent morphological changes throughout their development. Here, we report the continuous, in vivo, label-free imaging of growing scale cells of Vanessa cardui using speckle-correlation reflection phase microscopy. By capturing time-resolved volumetric tissue data together with nanoscale surface height information, we establish a morphological timeline of wing scale formation and gain quantitative insights into the underlying processes involved in scale cell patterning and growth. We identify early differences in the patterning of cover and ground scales on the young wing and quantify geometrical parameters of growing scale features, which suggest that surface growth is critical to structure formation. Our quantitative, time-resolved in vivo imaging of butterfly scale development provides the foundation for decoding the processes and biomechanical principles involved in the formation of functional structures in biological materials.
Collapse
|
16
|
Yoshida A, Kato Y, Takahashi H, Kodama R. Programmed Scale Detachment in the Wing of the Pellucid Hawk Moth, Cephonodes hylas: Novel Scale Morphology, Scale Detachment Mechanism, and Wing Transparency. Zoolog Sci 2021; 38:427-435. [PMID: 34664917 DOI: 10.2108/zs210031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
No scales of most lepidopterans (butterflies and moths) detach from the wings through fluttering. However, in the pellucid hawk moth, Cephonodes hylas, numerous scales detach from a large region of the wing at initial take-off after eclosion; consequently, a large transparent region without scales appears in the wing. Even after this programmed detachment of scales (d-scales), small regions along the wing margin and vein still have scales attached (a-scales). To investigate the scale detachment mechanism, we analyzed the scale detachment process using video photography and examined the morphology of both d- and a-scales using optical and scanning electron microscopy. This study showed that d-scale detachment only occurs through fluttering and that d-scales are obviously morphologically different from a-scales. Although a-scales are morphologically common lepidopteran scales, d-scales have four distinctive features. First, d-scales are much larger than a-scales. Second, the d-scale pedicel, which is the slender base of the scale, is tapered; that of the a-scale is columnar. Third, the socket on the wing surface into which the pedicel is inserted is much smaller for d-scales than a-scales. Fourth, the d-scale socket density is much lower than the a-scale socket density. This novel scale morphology likely helps to facilitate scale detachment through fluttering and, furthermore, increases wing transparency.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Laboratory of Morphodiversity, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan,
| | - Yoshiomi Kato
- International Christian University, Mitaka, Tokyo 181-8585, Japan
| | | | - Ryuji Kodama
- Laboratory of Morphodiversity, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
17
|
Piszter G, Kertész K, Sramkó G, Krízsik V, Bálint Z, Biró LP. Concordance of the spectral properties of dorsal wing scales with the phylogeographic structure of European male Polyommatus icarus butterflies. Sci Rep 2021; 11:16498. [PMID: 34389765 PMCID: PMC8363635 DOI: 10.1038/s41598-021-95881-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The males of more than 80% of the Lycaenidae species belonging to the tribe Polyommatini exhibit structural coloration on their dorsal wing surfaces. These colors have a role in reinforcement in prezygotic reproductive isolation. The species-specific colors are produced by the cellular self-assembly of chitin/air nanocomposites. The spectral position of the reflectance maximum of such photonic nanoarchitectures depends on the nanoscale geometric dimensions of the elements building up the nanostructure. Previous work showed that the coloration of male Polyommatus icarus butterflies in the Western and Eastern Palearctic exhibits a characteristic spectral difference (20 nm). We investigated the coloration and the de novo developed DNA microsatellites of 80 P. icarus specimens from Europe from four sampling locations, spanning a distance of 1621 km. Remarkably good concordance was found between the spectral properties of the blue sexual signaling color (coincident within 5 nm) and the population genetic structure as revealed by 10 microsatellites for the P. icarus species.
Collapse
Affiliation(s)
- Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary.
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary
| | - Gábor Sramkó
- MTA-DE "Lendület" Evolutionary Phylogenomics Research Group, 1 Egyetem Sq., 4032, Debrecen, Hungary
| | - Virág Krízsik
- Department of Zoology, Hungarian Natural History Museum, 13 Baross St., 1088, Budapest, Hungary
| | - Zsolt Bálint
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary
- Department of Zoology, Hungarian Natural History Museum, 13 Baross St., 1088, Budapest, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, 1525, Budapest, Hungary
| |
Collapse
|
18
|
Rodriguez-Caro F, Fenner J, Bhardwaj S, Cole J, Benson C, Colombara AM, Papa R, Brown MW, Martin A, Range RC, Counterman BA. Novel doublesex duplication associated with sexually dimorphic development of dogface butterfly wings. Mol Biol Evol 2021; 38:5021-5033. [PMID: 34323995 PMCID: PMC8557438 DOI: 10.1093/molbev/msab228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics.
Collapse
Affiliation(s)
| | | | | | - Jared Cole
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Caleb Benson
- Department of Biological Sciences, Auburn University, USA
| | | | - Riccardo Papa
- Department of Biological Sciences, University of Puerto Rico-Rio Piedras, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, USA
| | | |
Collapse
|
19
|
Montejo-Kovacevich G, Salazar PA, Smith SH, Gavilanes K, Bacquet CN, Chan YF, Jiggins CD, Meier JI, Nadeau NJ. Genomics of altitude-associated wing shape in two tropical butterflies. Mol Ecol 2021; 30:6387-6402. [PMID: 34233044 DOI: 10.1111/mec.16067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
Collapse
Affiliation(s)
| | | | - Sophie H Smith
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, UK.,St John's College, University of Cambridge, Cambridge, UK
| | - Nicola J Nadeau
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Zhang L, Steward RA, Wheat CW, Reed RD. High-Quality Genome Assembly and Comprehensive Transcriptome of the Painted Lady Butterfly Vanessa cardui. Genome Biol Evol 2021; 13:evab145. [PMID: 34282459 PMCID: PMC8290113 DOI: 10.1093/gbe/evab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The painted lady butterfly, Vanessa cardui, has the longest migration routes, the widest hostplant diversity, and one of the most complex wing patterns of any insect. Due to minimal culturing requirements, easily characterized wing pattern elements, and technical feasibility of CRISPR/Cas9 genome editing, V. cardui is emerging as a functional genomics model for diverse research programs. Here, we report a high-quality, annotated genome assembly of the V. cardui genome, generated using 84× coverage of PacBio long-read data, which we assembled into 205 contigs with a total length of 425.4 Mb (N50 = 10.3 Mb). The genome was very complete (single-copy complete Benchmarking Universal Single-Copy Orthologs [BUSCO] 97%), with contigs assembled into presumptive chromosomes using synteny analyses. Our annotation used embryonic, larval, and pupal transcriptomes, and 20 transcriptomes across five different wing developmental stages. Gene annotations showed a high level of accuracy and completeness, with 14,437 predicted protein-coding genes. This annotated genome assembly constitutes an important resource for diverse functional genomic studies ranging from the developmental genetic basis of butterfly color pattern, to coevolution with diverse hostplants.
Collapse
Affiliation(s)
- Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Pomerantz AF, Siddique RH, Cash EI, Kishi Y, Pinna C, Hammar K, Gomez D, Elias M, Patel NH. Developmental, cellular and biochemical basis of transparency in clearwing butterflies. J Exp Biol 2021; 224:268372. [PMID: 34047337 PMCID: PMC8340268 DOI: 10.1242/jeb.237917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
The wings of butterflies and moths (Lepidoptera) are typically covered with thousands of flat, overlapping scales that endow the wings with colorful patterns. Yet, numerous species of Lepidoptera have evolved highly transparent wings, which often possess scales of altered morphology and reduced size, and the presence of membrane surface nanostructures that dramatically reduce reflection. Optical properties and anti-reflective nanostructures have been characterized for several ‘clearwing’ Lepidoptera, but the developmental processes underlying wing transparency are unknown. Here, we applied confocal and electron microscopy to create a developmental time series in the glasswing butterfly, Greta oto, comparing transparent and non-transparent wing regions. We found that during early wing development, scale precursor cell density was reduced in transparent regions, and cytoskeletal organization during scale growth differed between thin, bristle-like scale morphologies within transparent regions and flat, round scale morphologies within opaque regions. We also show that nanostructures on the wing membrane surface are composed of two layers: a lower layer of regularly arranged nipple-like nanostructures, and an upper layer of irregularly arranged wax-based nanopillars composed predominantly of long-chain n-alkanes. By chemically removing wax-based nanopillars, along with optical spectroscopy and analytical simulations, we demonstrate their role in generating anti-reflective properties. These findings provide insight into morphogenesis and composition of naturally organized microstructures and nanostructures, and may provide bioinspiration for new anti-reflective materials. Summary: Transparency is a fascinating, yet poorly studied, optical property in living organisms. We elucidated the developmental processes underlying scale and nanostructure formation in glasswing butterflies, and their roles in generating anti-reflective properties.
Collapse
Affiliation(s)
- Aaron F Pomerantz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Radwanul H Siddique
- Image Sensor Lab, Samsung Semiconductor, Inc., 2 N Lake Ave. Ste. 240, Pasadena, CA 91101, USA.,Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth I Cash
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yuriko Kishi
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charline Pinna
- ISYEB, 45 rue Buffon, CP50, 75005, Paris, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, France
| | - Kasia Hammar
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Doris Gomez
- CEFE, 1919 route de Mende, 34090, Montpellier, CNRS, Université Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | - Marianne Elias
- ISYEB, 45 rue Buffon, CP50, 75005, Paris, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, France
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Liu J, Chen Z, Xiao Y, Asano T, Li S, Peng L, Chen E, Zhang J, Li W, Zhang Y, Tong X, Kadono-Okuda K, Zhao P, He N, Arunkumar KP, Gopinathan KP, Xia Q, Willis JH, Goldsmith MR, Mita K. Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins. Commun Biol 2021; 4:491. [PMID: 33888855 PMCID: PMC8062583 DOI: 10.1038/s42003-021-01996-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Scales are symbolic characteristic of Lepidoptera; however, nothing is known about the contribution of cuticular proteins (CPs) to the complex patterning of lepidopteran scales. This is because scales are resistant to solubilization, thus hindering molecular studies. Here we succeeded in dissolving developing wing scales from Bombyx mori, allowing analysis of their protein composition. We identified a distinctive class of histidine rich (His-rich) CPs (6%-45%) from developing lepidopteran scales by LC-MS/MS. Functional studies using RNAi revealed CPs with different histidine content play distinct and critical roles in constructing the microstructure of the scale surface. Moreover, we successfully synthesized films in vitro by crosslinking a 45% His-rich CP (BmorCPR152) with laccase2 using N-acetyl- dopamine or N-β-alanyl-dopamine as the substrate. This molecular study of scales provides fundamental information about how such a fine microstructure is constructed and insights into the potential application of CPs as new biomaterials.
Collapse
Affiliation(s)
- Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yingdan Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Enxiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Jiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wanshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoling Tong
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Keiko Kadono-Okuda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Kallare P Arunkumar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
- Central Muga Eri Research and Training Institute, (CMER&TI), Central Silk Board, Jorhat, India
| | | | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Marian R Goldsmith
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
- Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Krishnan RK, Baskar R, Anna B, Elia N, Boermel M, Bausch AR, Abdu U. Recapitulating Actin Module Organization in the Drosophila Oocyte Reveals New Roles for Bristle-Actin-Modulating Proteins. Int J Mol Sci 2021; 22:ijms22084006. [PMID: 33924532 PMCID: PMC8070096 DOI: 10.3390/ijms22084006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
The generation of F-actin bundles is controlled by the action of actin-binding proteins. In Drosophila bristle development, two major actin-bundling proteins—Forked and Fascin—were identified, but still the molecular mechanism by which these actin-bundling proteins and other proteins generate bristle actin bundles is unknown. In this study, we developed a technique that allows recapitulation of bristle actin module organization using the Drosophila ovary by a combination of confocal microscopy, super-resolution structured illumination microscopy, and correlative light and electron microscope analysis. Since Forked generated a distinct ectopic network of actin bundles in the oocyte, the additive effect of two other actin-associated proteins, namely, Fascin and Javelin (Jv), was studied. We found that co-expression of Fascin and Forked demonstrated that the number of actin filaments within the actin bundles dramatically increased, and in their geometric organization, they resembled bristle-like actin bundles. On the other hand, co-expression of Jv with Forked increased the length and density of the actin bundles. When all three proteins co-expressed, the actin bundles were longer and denser, and contained a high number of actin filaments in the bundle. Thus, our results demonstrate that the Drosophila oocyte could serve as a test tube for actin bundle analysis.
Collapse
Affiliation(s)
- Ramesh Kumar Krishnan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Bakhrat Anna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mandy Boermel
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany;
| | - Andreas R. Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany;
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747 Garching, Germany
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (R.K.K.); (R.B.); (B.A.); (N.E.)
- Correspondence:
| |
Collapse
|
24
|
Kertész K, Bálint Z, Piszter G, Horváth ZE, Biró LP. Multi-instrumental techniques for evaluating butterfly structural colors: A case study on Polyommatus bellargus (Rottemburg, 1775) (Lepidoptera: Lycaenidae: Polyommatinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101010. [PMID: 33486292 DOI: 10.1016/j.asd.2020.101010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Color is an important communication channel for day-flying butterflies. Chemical (pigmentary) coloration is often supplemented by physical color generated by photonic nanostructures. These nanoarchitectures - which are characteristic for a given species - exhibit wavelength ranges in which light propagation is forbidden. The photonic nanoarchitectures are located in the lumen of the wing scales and are developed individually by each scale during metamorphosis. This self-assembly process is governed by the genes in the nucleus of the scale producing cell. It is crucial to establish well-defined measurement methods for the unambiguous characterization and comparison of colors generated in such a complex manner. Owing to the intricate architecture ordered at multiple levels (from centimeters to tens of nanometers), the precise quantitative determination of butterfly wing coloration is not trivial. In this paper, we present an overview of several optical spectroscopy measurement methods and illustrate techniques for processing the obtained data, using the species Polyommatus bellargus as a test case, the males of which exhibit a variation in their blue structural color that is easily recognizable to the naked eye. The benefits and drawbacks of these optical methods are discussed and compared. Furthermore, the origin of the color differences is explained in relation to differences in the wing scale nanomorphology revealed by electron microscopy. This in turn is tentatively associated with the unusually large genetic drift reported for this species in the literature.
Collapse
Affiliation(s)
- Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.
| | - Zsolt Bálint
- Hungarian Natural History Museum, Baross utca 13, H-1088 Budapest, Hungary
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - Zsolt Endre Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
25
|
Osotsi MI, Zhang W, Zada I, Gu J, Liu Q, Zhang D. Butterfly wing architectures inspire sensor and energy applications. Natl Sci Rev 2021; 8:nwaa107. [PMID: 34691587 PMCID: PMC8288439 DOI: 10.1093/nsr/nwaa107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biological systems are constantly developing efficient mechanisms to counter adverse effects of increasing human population and depleting energy resources. Their intelligent mechanisms are characterized by the ability to detect changes in the environment, store and evaluate information, and respond to external stimuli. Bio-inspired replication into man-made functional materials guarantees enhancement of characteristics and performance. Specifically, butterfly architectures have inspired the fabrication of sensor and energy materials by replicating their unique micro/nanostructures, light-trapping mechanisms and selective responses to external stimuli. These bio-inspired sensor and energy materials have shown improved performance in harnessing renewable energy, environmental remediation and health monitoring. Therefore, this review highlights recent progress reported on the classification of butterfly wing scale architectures and explores several bio-inspired sensor and energy applications.
Collapse
|
26
|
The evolution of structural colour in butterflies. Curr Opin Genet Dev 2021; 69:28-34. [PMID: 33540167 DOI: 10.1016/j.gde.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/23/2023]
Abstract
Butterflies display some of the most striking examples of structural colour in nature. These colours originate from cuticular scales that cover the wing surface, which have evolved a diverse suite of optical nanostructures capable of manipulating light. In this review we explore recent advances in the evolution of structural colour in butterflies. We discuss new insights into the underlying genetics and development of the structural colours in various nanostructure types. Improvements in -omic and imaging technologies have been paramount to these new advances and have permitted an increased appreciation of their development and evolution.
Collapse
|
27
|
Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev 2021; 69:6-13. [PMID: 33434722 DOI: 10.1016/j.gde.2020.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
Abstract
Eyespots on the wings of different nymphalid butterflies have become valued models in eco-evo-devo. They are ecologically significant, evolutionarily diverse, and developmentally tractable. Their study has provided valuable insight about the genetic and developmental basis of inter-specific diversity and intra-specific variation, as well as into other key themes in evo-evo-devo: evolutionary novelty, developmental constraints, and phenotypic plasticity. Here we provide an overview of eco-evo-devo studies of butterfly eyespots, highlighting previous reviews, and focusing on both the most recent advances and the open questions expected to be solved in the future.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande C2, 1749-016 Lisboa, Portugal.
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Science Division, Yale-NUS College, Singapore 138614, Singapore.
| |
Collapse
|
28
|
Prakash A, Monteiro A. Cell Dissociation from Butterfly Pupal Wing Tissues for Single-Cell RNA Sequencing. Methods Protoc 2020; 3:mps3040072. [PMID: 33126499 PMCID: PMC7712902 DOI: 10.3390/mps3040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023] Open
Abstract
Butterflies are well known for their beautiful wings and have been great systems to understand the ecology, evolution, genetics, and development of patterning and coloration. These color patterns are mosaics on the wing created by the tiling of individual units called scales, which develop from single cells. Traditionally, bulk RNA sequencing (RNA-seq) has been used extensively to identify the loci involved in wing color development and pattern formation. RNA-seq provides an averaged gene expression landscape of the entire wing tissue or of small dissected wing regions under consideration. However, to understand the gene expression patterns of the units of color, which are the scales, and to identify different scale cell types within a wing that produce different colors and scale structures, it is necessary to study single cells. This has recently been facilitated by the advent of single-cell sequencing. Here, we provide a detailed protocol for the dissociation of cells from Bicyclus anynana pupal wings to obtain a viable single-cell suspension for downstream single-cell sequencing. We outline our experimental design and the use of fluorescence-activated cell sorting (FACS) to obtain putative scale-building and socket cells based on size. Finally, we discuss some of the current challenges of this technique in studying single-cell scale development and suggest future avenues to address these challenges.
Collapse
Affiliation(s)
- Anupama Prakash
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Correspondence: (A.P.); (A.M.)
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
- Correspondence: (A.P.); (A.M.)
| |
Collapse
|
29
|
Schröder-Turk GE. Quo vadis biophotonics? Wearing serendipity and slow science as a badge of pride, and embracing biology. Faraday Discuss 2020; 223:307-323. [PMID: 33034598 DOI: 10.1039/d0fd00108b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is a reflection on the themes of the Faraday Discussion meeting on 'Biological and bio-inspired optics' held from 20 to 22 July 2020. It is a personal perspective on the nature of this field as a broad and interdisciplinary field that has led to a sound understanding of the material properties of biological nanostructured and optical materials. The article describes how the nature of the field and the themes of the conference are reflected in particular in work on the 3D bicontinuous biophotonic nanostructures known as single gyroids and in bicontinuous structures more broadly. Such single gyroid materials are found for example in the butterfly Thecla opisena, where the questions of biophotonic response, of bio-inspired optics, of the relationship between structure and function, and of the relationship between natural and synthetic realisations are closely interlinked. This multitude of facets of research on single gyroid structures reflects the beauty of the broader field of biophotonics, namely as a field that lives through embracing the serendipitous discovery of the biophotonic marvels that nature offers to us as seeds for in-depth analysis and understanding. The meandering nature of its discoveries, and the need to accept the slowness that comes from exploration of intellectually new or foreign territory, mean that the field shares some traits with biological evolution itself. Looking into the future, I consider that a closer engagement with living tissue and with the biological questions of function and formation, rather than with the materials science of biological materials, will help ensure the continuing great success of this field.
Collapse
Affiliation(s)
- Gerd E Schröder-Turk
- Murdoch University, College of Science, Health, Engineering & Education, 90 South St, Murdoch, WA 6150, Australia.
| |
Collapse
|
30
|
Actin bundles play a different role in shaping scales compared to bristles in the mosquito Aedes aegypti. Sci Rep 2020; 10:14885. [PMID: 32913276 PMCID: PMC7483531 DOI: 10.1038/s41598-020-71911-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Insect epithelial cells contain cellular extensions such as bristles, hairs, and scales. These cellular extensions are homologous structures that differ in morphology and function. They contain actin bundles that dictate their cellular morphology. While the organization, function, and identity of the major actin-bundling proteins in bristles and hairs are known, this information on scales is unknown. In this study, we characterized the development of scales and the role of actin bundles in the mosquito, Aedes aegypti. We show that scales undergo drastic morphological changes during development, from a cylindrical to flat shape with longer membrane invagination. Scale actin-bundle distribution changes from the symmetrical organization of actin bundles located throughout the bristle membrane to an asymmetrical organization. By chemically inhibiting actin polymerization and by knocking out the forked gene in the mosquito (Ae-Forked; a known actin-bundling protein) by CRISPR-Cas9 gene editing, we showed that actin bundles are required for shaping bristle, hair, and scale morphology. We demonstrated that actin bundles and Ae-Forked are required for bristle elongation, but not for that of scales. In scales, actin bundles are required for width formation. In summary, our results reveal, for the first time, the developmental process of mosquito scale formation and also the role of actin bundles and actin-bundle proteins in scale morphogenesis. Moreover, our results reveal that although scale and bristle are thought to be homologous structures, actin bundles have a differential requirement in shaping mosquito scales compared to bristles.
Collapse
|
31
|
Lewis JJ, Van Belleghem SM, Papa R, Danko CG, Reed RD. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. SCIENCE ADVANCES 2020; 6:6/39/eabb8617. [PMID: 32978147 PMCID: PMC7518860 DOI: 10.1126/sciadv.abb8617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Characterizing the genetic complexity of adaptation and trait evolution is a major emphasis of evolutionary biology and genetics. Incongruent findings from genetic studies have resulted in conceptual models ranging from a few large-effect loci to massively polygenic architectures. Here, we combine chromatin immunoprecipitation sequencing, Hi-C, RNA sequencing, and 40 whole-genome sequences from Heliconius butterflies to show that red color pattern diversification occurred via many genomic loci. We find that the red wing pattern master regulatory transcription factor Optix binds dozens of loci also under selection, which frequently form three-dimensional adaptive hubs with selection acting on multiple physically interacting genes. Many Optix-bound genes under selection are tied to pigmentation and wing development, and these loci collectively maintain separation between adaptive red color pattern phenotypes in natural populations. We propose a model of trait evolution where functional connections between loci may resolve much of the disparity between large-effect and polygenic evolutionary models.
Collapse
Affiliation(s)
- James J Lewis
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
32
|
Bermúdez-Ureña E, Kilchoer C, Lord NP, Steiner U, Wilts BD. Structural Diversity with Varying Disorder Enables the Multicolored Display in the Longhorn Beetle Sulawesiella rafaelae. iScience 2020; 23:101339. [PMID: 32688285 PMCID: PMC7371903 DOI: 10.1016/j.isci.2020.101339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Light control through layered photonic nanostructures enables the strikingly colored displays of many beetles, birds, and butterflies. To achieve different reflected colors, natural organisms mainly rely on refractive index variations or scaling of a fixed structure design, as opposed to varying the type of structure. Here, we describe the presence of distinct coloration mechanisms in the longhorn beetle Sulawesiella rafaelae, which exhibits turquoise, yellow-green, and orange colors, each with a variable iridescence. By optical and electron microscopy, we show that the colors originate from multilayered architectures in hair-like scales with varying amounts of structural disorder. Structural characterizations and optical modeling show that the disorder strongly influences the optical properties of the scales, allowing an independent adjustment of the optical response. Our results shed light on the interplay of disorder in multilayered photonic structures and their biological significance, and could potentially inspire new ecological research and the development of novel optical components.
Collapse
Affiliation(s)
- Esteban Bermúdez-Ureña
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nathan P Lord
- Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Building, LSU, Baton Rouge, LA 70803, USA
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
33
|
McMillan WO, Livraghi L, Concha C, Hanly JJ. From Patterning Genes to Process: Unraveling the Gene Regulatory Networks That Pattern Heliconius Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
34
|
Masó A, Romero J, Baixeras J. How many scales on the wings? A case study based on Colias crocea (Geoffroy, 1785) (Hexapoda: Lepidoptera, Pieridae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 57:100947. [PMID: 32505064 DOI: 10.1016/j.asd.2020.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
The covering by scales of the wings of Lepidoptera contributes to multiple functions that are critical for their survival and reproduction. In order to gain a better understanding about their distribution, we have exhaustively studied 4 specimens of Colias crocea (Geoffroy, 1785). We have quantified the sources of variability affecting scale density. The results indicate that the scale covering of butterfly wings may be remarkably heterogeneous, and that the importance of the sources of variability differs between forewings and hindwings. Thus, in forewing the greatest variability occurs between sectors, while in the hindwings it occurs between sides, with a higher density of scales on the underside, considerably higher (almost 19%) than on the upperside. It seems likely that this difference has an adaptive value, as the hindwing underside is more exposed (in resting position) to predators. These results are in contrast with the generally accepted notion that scale covering is uniform and homogeneous. Moreover, the cover scale density is independent of the size of the specimen and therefore an average density of scales can be attributed to this species. According to our measurements C. crocea has 312 scales/mm2 and the total number of scales per individual is about 520,000 on average.
Collapse
Affiliation(s)
- Albert Masó
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Javier Romero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of València, c/ Catedràtic José Beltrán 2, 46980 València, Spain.
| |
Collapse
|
35
|
Ren A, Day CR, Hanly JJ, Counterman BA, Morehouse NI, Martin A. Convergent Evolution of Broadband Reflectors Underlies Metallic Coloration in Butterflies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Tsai CC, Childers RA, Nan Shi N, Ren C, Pelaez JN, Bernard GD, Pierce NE, Yu N. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat Commun 2020; 11:551. [PMID: 31992708 PMCID: PMC6987309 DOI: 10.1038/s41467-020-14408-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/11/2019] [Indexed: 11/08/2022] Open
Abstract
The wings of Lepidoptera contain a matrix of living cells whose function requires appropriate temperatures. However, given their small thermal capacity, wings can overheat rapidly in the sun. Here we analyze butterfly wings across a wide range of simulated environmental conditions, and find that regions containing living cells are maintained at cooler temperatures. Diverse scale nanostructures and non-uniform cuticle thicknesses create a heterogeneous distribution of radiative cooling that selectively reduces the temperature of structures such as wing veins and androconial organs. These tissues are supplied by circulatory, neural and tracheal systems throughout the adult lifetime, indicating that the insect wing is a dynamic, living structure. Behavioral assays show that butterflies use wings to sense visible and infrared radiation, responding with specialized behaviors to prevent overheating of their wings. Our work highlights the physiological importance of wing temperature and how it is exquisitely regulated by structural and behavioral adaptations.
Collapse
Affiliation(s)
- Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Richard A Childers
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Norman Nan Shi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
- Western Digital, San Jose, CA, 95119, USA
| | - Crystal Ren
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Julianne N Pelaez
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Gary D Bernard
- Department of Electrical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
37
|
Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, Celorio-Mancera MDLP, Brattström O, Hill J, Lehmann P, Käkelä R, Wheat CW. A transposable element insertion is associated with an alternative life history strategy. Nat Commun 2019; 10:5757. [PMID: 31848330 PMCID: PMC6917731 DOI: 10.1038/s41467-019-13596-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS: either yellow/orange or white. Here we map the locus associated with this ALHS in Colias crocea to a transposable element insertion located downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPR/Cas9 gene editing, antibody staining, and electron microscopy we find white-specific expression of BarH-1 suppresses the formation of pigment granules in wing scales and gives rise to white wing color. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. Together, these findings characterize a mechanism for a female-limited ALHS. Tradeoffs are central to life history theory and evolutionary biology, yet almost nothing is known about their mechanistic basis. Here the authors characterize one such mechanism and find a transposable element insertion is associated with the switch between alternative life history strategies.
Collapse
Affiliation(s)
- Alyssa Woronik
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden. .,Department of Biology, New York University, New York, NY, 10003, USA.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Michael W Perry
- Department of Biology, New York University, New York, NY, 10003, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Constanti Stefanescu
- Museum of Natural Sciences of Granollers, Granollers, Catalonia, 08402, Spain.,CREAF, Cerdanyola del Valles, Catalonia, 08193, Spain
| | | | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, CB23EJ, UK
| | - Jason Hill
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, FI00014, Helsinki, Finland
| | | |
Collapse
|
38
|
Pavlović D, Rabasović MD, Krmpot AJ, Lazović V, Čurčić S, Stojanović DV, Jelenković B, Zhang W, Zhang D, Vukmirović N, Stepanenko D, Kolarić B, Pantelić DV. Naturally safe: Cellular noise for document security. JOURNAL OF BIOPHOTONICS 2019; 12:e201900218. [PMID: 31452335 DOI: 10.1002/jbio.201900218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Modern document protection relies on the simultaneous combination of many optical features with micron and submicron structures, whose complexity is the main obstacle for unauthorized copying. In that sense, documents are best protected by the diffractive optical elements generated lithographically and mass-produced by embossing. The problem is that the resulting security elements are identical, facilitating mass-production of both original and counterfeited documents. Here, we prove that each butterfly wing-scale is structurally and optically unique and can be used as an inimitable optical memory tag and applied for document security. Wing-scales, exhibiting angular variability of their color, were laser-cut and bleached to imprint cryptographic information of an authorized issuer. The resulting optical memory tag is extremely durable, as verified by several century-old insect specimens still retaining their coloration. The described technique is simple, amenable to mass-production, low cost and easy to integrate within the existing security infrastructure.
Collapse
Affiliation(s)
- Danica Pavlović
- Institute of Physics, University of Belgrade, Belgrade, Serbia
| | | | | | | | - Srećko Čurčić
- Institute of Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Dejan V Stojanović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | | | - Wang Zhang
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhang
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Branko Kolarić
- Institute of Physics, University of Belgrade, Belgrade, Serbia
- MNM Group, Department of Physics, UMONS, Mons, Belgium
| | | |
Collapse
|
39
|
Piszter G, Kertész K, Horváth ZE, Bálint Z, Biró LP. Reproducible phenotype alteration due to prolonged cooling of the pupae of Polyommatus icarus butterflies. PLoS One 2019; 14:e0225388. [PMID: 31765404 PMCID: PMC6876796 DOI: 10.1371/journal.pone.0225388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
The phenotypic changes induced by prolonged cooling (2-12 weeks at 5 °C in the dark) of freshly formed Polyommatus icarus pupae were investigated. Cooling halted the imaginal development of pupae collected shortly after transformation from the larval stage. After cooling, the pupae were allowed to continue their developmental cycle. The wings of the eclosed specimens were investigated by optical microscopy, scanning and cross-sectional transmission electron microscopy, UV-VIS spectroscopy and microspectroscopy. The eclosed adults presented phenotypic alterations that reproduced results that we published previously for smaller groups of individuals remarkably well; these changes included i) a linear increase in the magnitude of quantified deviation from normal ventral wing patterns with increasing cooling time; ii) slight alteration of the blue coloration of males; and iii) an increasing number of blue scales on the dorsal wing surface of females with increasing cooling time. Several independent factors, including disordering of regular scale rows in males, the number of blue scales in females, eclosion probability and the probability of defect-free eclosion, showed that the cooling time can be divided into three periods: 0-4 weeks, 4-8 weeks, and 8-12 weeks, each of which is characterized by specific changes. The shift from brown female scales to first blue scales with a female-specific shape and then to blue scales with a male-specific shape with longer cooling times suggests slow decomposition of a substance governing scale formation.
Collapse
Affiliation(s)
- Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Zsolt Endre Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| | - Zsolt Bálint
- Hungarian Natural History Museum, Budapest, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
40
|
Bálint Z, Katona GP, Horváth ZE, Kertész K, Piszter G, Biró LP. High accuracy of color-generating nanoarchitectures is kept in lowland and mountainous populations of Polyommatus dorylas (Lepidoptera: Lycaenidae: Polyommatinae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 53:100887. [PMID: 31670151 DOI: 10.1016/j.asd.2019.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
It is known that the size of the scales covering the surface of the Lepidoptera wings is in correlation with body size: larger species possess larger scales. However, butterfly individuals representing the various generations of the same species but differing in body size were not investigated in this respect. Similarly, the question whether different scale size may influence structural color generation based on nanoarchitectures in the scale lumen was never addressed. Populations of lowland (environment of Budapest, Hungary) and upland (Carpathian Mountains, Romania) Polyommatus dorylas were compared in terms of voltinism, wing and scale size, and the structural origin of blue coloration. Data analysis showed that the univoltine upland population exhibits a larger wing and scale size. On the other hand, the nanomorphology of the blue color-generating scales was identical when compared between univoltine and bivoltine populations. Coloration was also identical when measured with a spectrophotometer under ultraviolet and visible light. This high accuracy present in the male structural coloration suggests that it is controlled genetically. Body size alteration for enhanced thermal fitness has no influence on the fine structure of the nanoarchitecture present in the scale lumen.
Collapse
Affiliation(s)
- Zsolt Bálint
- Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary.
| | | | - Zsolt Endre Horváth
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, H-1525, Hungary
| |
Collapse
|
41
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
42
|
Boppré M, Fischer OW, Freitag H, Kiesel A. 'Crystal Macrosetae': Novel Scales and Bristles in Male Arctiine Moths (Lepidoptera: Erebidae: Arctiinae) Filled with Crystallizing Material. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5607538. [PMID: 31665785 PMCID: PMC6821358 DOI: 10.1093/jisesa/iez099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Scales, exoskeletal features characteristic of the Lepidoptera, occur in enormous structural and functional diversity. They cover the wing membranes and other body parts and give butterflies and moths their often stunning appearance. Generally, the patterns made by scales are visual signals for intra- and interspecific communication. In males, scales and/or bristles also make up the androconial organs, which emit volatile signals during courtship. Here, a structurally and putative functionally novel type of scales and bristles is reported: 'crystal macrosetae'. These lack trabeculae and windows, are made up by a very thin and flexible envelope only and contain crystallizing material. In 'crystal scales', there is a flat surface ornamentation of modified ridges, while 'crystal bristles' often show large protrusions. Crystal macrosetae usually cannot be reliably recognized without destruction. Apparently, they serve as containers for large amounts of material that is viscous in living moths, highly hygroscopic, crystallizes when specimens dry up, and can be visualized by scanning electron microscopy. Crystal macrosetae occur in males only, always associated with or making up androconial organs located on various parts of the body, and have numerous forms with diverse surface ornamentation across many species and genera. The newly identified structures and the discovery of crystallizing material in scales and bristles raise many questions and could shed new light on ontogenetic development of macrosetae, and on the biology and physiology as well as the evolution and systematics of Arctiinae. There is evidence that crystal macrosetae occur in other moths too.
Collapse
Affiliation(s)
- Michael Boppré
- Forstzoologie und Entomologie, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
| | - Ottmar W Fischer
- Forstzoologie und Entomologie, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
| | - Hannes Freitag
- Forstzoologie und Entomologie, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
| | - Anita Kiesel
- Forstzoologie und Entomologie, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
| |
Collapse
|
43
|
Day CR, Hanly JJ, Ren A, Martin A. Sub-micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales. Dev Dyn 2019; 248:657-670. [PMID: 31107575 DOI: 10.1002/dvdy.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub-micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light-trapping blacks. RESULTS We found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high-throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterfly Vanessa cardui (V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non-reflective scales characterized by tighter cross-rib distances and increased orderedness. CONCLUSION We developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.
Collapse
Affiliation(s)
- Christopher R Day
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia.,Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Anna Ren
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
44
|
Gabrys PA, Zornberg LZ, Macfarlane RJ. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805424. [PMID: 30970182 DOI: 10.1002/smll.201805424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale "artificial atoms" to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP-based crystals are not always as well-understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA-grafted NPs have emerged as a strong candidate for such a "programmable atom equivalent" (PAE), because the predictable nature of DNA base-pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.
Collapse
Affiliation(s)
- Paul A Gabrys
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leonardo Z Zornberg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
45
|
Kilchoer C, Steiner U, Wilts BD. Thin-film structural coloration from simple fused scales in moths. Interface Focus 2018; 9:20180044. [PMID: 30603066 DOI: 10.1098/rsfs.2018.0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
The metallic coloration of insects often originates from diverse nanostructures ranging from simple thin films to complex three-dimensional photonic crystals. In Lepidoptera, structural coloration is widely present and seems to be abundant in extant species. However, even some basal moths exhibit metallic coloration. Here, we have investigated the origin of the vivid metallic colours of the wing scales of the basal moth Micropterix aureatella by spectrophotometry and scanning electron microscopy. The metallic gold-, bronze- and purple-coloured scales share a similar anatomy formed of a fused lower and upper lamina resulting in a single thin film. The optical response of this thin-film scale can be attributed to thin-film interference of the incident light, resulting in the colour variations that correlate with film thickness. Subtle variations in the wing scale thickness result in large visible colour changes that give Micropterix moths their colourful wing patterns. This simple coloration mechanism could provide a hint to understand the evolution of structural coloration in Lepidoptera.
Collapse
Affiliation(s)
- Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
46
|
Brien MN, Enciso-Romero J, Parnell AJ, Salazar PA, Morochz C, Chalá D, Bainbridge HE, Zinn T, Curran EV, Nadeau NJ. Phenotypic variation in Heliconius erato crosses shows that iridescent structural colour is sex-linked and controlled by multiple genes. Interface Focus 2018; 9:20180047. [PMID: 30603067 DOI: 10.1098/rsfs.2018.0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 11/12/2022] Open
Abstract
Bright, highly reflective iridescent colours can be seen across nature and are produced by the scattering of light from nanostructures. Heliconius butterflies have been widely studied for their diversity and mimicry of wing colour patterns. Despite iridescence evolving multiple times in this genus, little is known about the genetic basis of the colour and the development of the structures which produce it. Heliconius erato can be found across Central and South America, but only races found in western Ecuador and Colombia have developed blue iridescent colour. Here, we use crosses between iridescent and non-iridescent races of H. erato to study phenotypic variation in the resulting F2 generation. Using measurements of blue colour from photographs, we find that iridescent structural colour is a quantitative trait controlled by multiple genes, with strong evidence for loci on the Z sex chromosome. Iridescence is not linked to the Mendelian colour pattern locus that also segregates in these crosses (controlled by the gene cortex). Small-angle X-ray scattering data show that spacing between longitudinal ridges on the scales, which affects the intensity of the blue reflectance, also varies quantitatively in F2 crosses.
Collapse
Affiliation(s)
- Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Juan Enciso-Romero
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.,Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Patricio A Salazar
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.,Centro de Investigación en Biodiversidad y Cambio Climático (BioCamb), Universidad Tecnológica Indoamérica, Quito, Ecuador
| | | | | | - Hannah E Bainbridge
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Zinn
- ESRF - The European Synchrotron, 38043 Grenoble Cedex 9, France
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
47
|
Abstract
The wings of moths and butterflies are densely covered in scales that exhibit intricate shapes and sculptured nanostructures. While certain butterfly scales create nanoscale photonic effects, moth scales show different nanostructures suggesting different functionality. Here we investigate moth-scale vibrodynamics to understand their role in creating acoustic camouflage against bat echolocation, where scales on wings provide ultrasound absorber functionality. For this, individual scales can be considered as building blocks with adapted biomechanical properties at ultrasonic frequencies. The 3D nanostructure of a full Bunaea alcinoe moth forewing scale was characterized using confocal microscopy. Structurally, this scale is double layered and endowed with different perforation rates on the upper and lower laminae, which are interconnected by trabeculae pillars. From these observations a parameterized model of the scale's nanostructure was formed and its effective elastic stiffness matrix extracted. Macroscale numerical modeling of scale vibrodynamics showed close qualitative and quantitative agreement with scanning laser Doppler vibrometry measurement of this scale's oscillations, suggesting that the governing biomechanics have been captured accurately. Importantly, this scale of B. alcinoe exhibits its first three resonances in the typical echolocation frequency range of bats, suggesting it has evolved as a resonant absorber. Damping coefficients of the moth-scale resonator and ultrasonic absorption of a scaled wing were estimated using numerical modeling. The calculated absorption coefficient of 0.50 agrees with the published maximum acoustic effect of wing scaling. Understanding scale vibroacoustic behavior helps create macroscopic structures with the capacity for broadband acoustic camouflage.
Collapse
|
48
|
Burg SL, Parnell AJ. Self-assembling structural colour in nature. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:413001. [PMID: 30137023 DOI: 10.1088/1361-648x/aadc95] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diversity and vividness of structural colour in the natural world have been recognised as far back as William Hooke in the 17th century. Whilst it is only recently that advances in the field have revealed the elegance and finesse of the physics used to create these effects. In this topical review we will highlight some of the structures and effects responsible for colour in butterfly scales, bird feathers, plants, insects and beetle elytra that have been studied to date. We will discuss the structures responsible and look at similarities and differences in these structures between species. This will be alongside our current understanding of how these are created biologically, how they develop structurally and what control mechanisms nature has at its disposal to control structure formation.
Collapse
Affiliation(s)
- Stephanie L Burg
- The Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Western Bank, Sheffield S3 7RH, United Kingdom
| | | |
Collapse
|
49
|
From pattern to process: studies at the interface of gene regulatory networks, morphogenesis, and evolution. Curr Opin Genet Dev 2018; 51:103-110. [PMID: 30278289 DOI: 10.1016/j.gde.2018.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
The development of anatomical structures is complex, beginning with patterning of gene expression by multiple gene regulatory networks (GRNs). These networks ultimately regulate the activity of effector molecules, which in turn alter cellular behavior during development. Together these processes biomechanically produce the three-dimensional shape that the anatomical structure adopts over time. However, the interfaces between these processes are often overlooked and also include counter-intuitive feedback mechanisms. In this review, we examine each step in this extraordinarily complex process and explore how evolutionary developmental biology model systems, such as butterfly scales, vertebrate teeth, and the Drosophila dorsal appendage offer a complementary approach to expose the multifactorial integration of genetics and morphogenesis from an alternative perspective.
Collapse
|
50
|
Savić-Šević S, Pantelić D, Jelenković B, Salatić B, Stojanović DV. Golden moth-inspired structures with a synergistic effect of interference, absorption and scattering. SOFT MATTER 2018; 14:5595-5603. [PMID: 29911714 DOI: 10.1039/c8sm00683k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a new type of photonic material inspired by a Diachrysia chrysitis moth, whose nano-structured wings exhibit a prominent golden color. This is a layered photonic structure with a large refractive index contrast, whose alternating layers are rough at the nanoscale level. Theoretical analysis shows that the scattering and interference interact to enhance the local field within the layers and increase the absorption of the material, particularly in the UV-blue part of the spectrum. Theory is experimentally verified using holographically manufactured Bragg gratings in the dichromated-pullulan (DCP). Alternating air-pullulan layers are produced and held in place by sparsely separated nano-pillars. Air voids are filled with 20-100 nm diameter spherical nanoparticles which act as scatterers. Such materials, with a high refractive index contrast and nano-scale scatterers, are important for achieving large reflectance and a broad spectrum, with scattering as an additional mechanism for spectral control.
Collapse
Affiliation(s)
- Svetlana Savić-Šević
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Zemun, Serbia.
| | | | | | | | | |
Collapse
|