1
|
Chen D, Tang Y, Lapinski PE, Wiggins D, Sevick EM, Davis MJ, King PD. EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. Circ Res 2024; 135:1048-1066. [PMID: 39421925 PMCID: PMC11560524 DOI: 10.1161/circresaha.124.325383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND EPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves. METHODS We used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo. RESULTS LV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV valve specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV valve development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos. CONCLUSIONS EPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Yipei Tang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - David Wiggins
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eva M. Sevick
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| |
Collapse
|
2
|
Banerjee R, Knauer LA, Iyer D, Barlow SE, Shalaby H, Dehghan R, Scallan JP, Yang Y. Rictor, an mTORC2 Protein, Regulates Murine Lymphatic Valve Formation Through the AKT-FOXO1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:2004-2023. [PMID: 39087350 PMCID: PMC11335088 DOI: 10.1161/atvbaha.124.321164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Lymphatic valves are specialized structures in collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves. Conventionally, in many cell types, AKT is phosphorylated at Ser473 by the mTORC2 (mammalian target of rapamycin complex 2). However, mTORC2 has not yet been implicated in lymphatic valve formation. METHODS In vivo and in vitro techniques were used to investigate the role of Rictor, a critical component of mTORC2, in lymphatic endothelium. RESULTS Here, we showed that embryonic and postnatal lymphatic deletion of Rictor, a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human dermal lymphatic endothelial cells not only reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions but also abolished the upregulation of AKT activity and valve-forming genes in response to oscillatory shear stress. We further showed that the AKT target, FOXO1 (forkhead box protein O1), a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric lymphatic endothelial cells in vivo. Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in lymphatic vessels of the ear and mesentery. CONCLUSIONS Our work identifies a novel role for RICTOR in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately enables the formation and maintenance of lymphatic valves.
Collapse
Affiliation(s)
- Richa Banerjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Luz A. Knauer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Drishya Iyer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Sara E. Barlow
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Hanan Shalaby
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Razieh Dehghan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
3
|
Davis MJ, Castorena-Gonzalez JA, Li M, Zawieja SD, Simon AM, Geng X, Srinivasan RS. Connexin-45 is expressed in mouse lymphatic endothelium and required for lymphatic valve function. JCI Insight 2024; 9:e169931. [PMID: 39074069 PMCID: PMC11343601 DOI: 10.1172/jci.insight.169931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The expression and functional relevance of the gap junction molecule connexin-45 (Cx45; GJC1) in lymphatic endothelium were not previously known. We found that Cx45 was expressed widely in the endothelium of murine lymphatics, in both valve and nonvalve regions. Cell-specific deletion of Cx45, driven by a constitutive Cre line (Lyve1-Cre) or an inducible Cre line (Prox1-CreERT2), compromised the function of lymphatic valves, as assessed by physiological tests (back leak and closure) of isolated, single-valve vessel segments. The defects were comparable to those previously reported for loss of Cx43, and as with Cx43, deletion of Cx45 resulted in shortening or increased asymmetry of lymphatic valve leaflets, providing an explanation for the compromised valve function. In contrast with Cx43, lymphatic endothelial cell-specific (LEC-specific) deletion of Cx45 did not alter the number of valves in mesenteric or dermal lymphatic networks or the expression patterns of the canonical valve-associated proteins PROX1, ITGA9, or CLAUDIN5. Constitutive deletion of Cx45 from LECs resulted in increased backflow of injected tracer in popliteal networks in vivo and compromised the integrity of the LEC permeability barrier in a subset of collecting vessels. These findings provide evidence for an unexpected role of Cx45 in the development and maintenance of lymphatic valves.
Collapse
Affiliation(s)
- Michael J. Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | | | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | - Scott D. Zawieja
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri, USA
| | - Alex M. Simon
- Department of Physiology, University of Arizona School of Medicine, Tucson, Arizona, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
4
|
Garlisi Torales LD, Sempowski BA, Krikorian GL, Woodis KM, Paulissen SM, Smith CL, Sheppard SE. Central conducting lymphatic anomaly: from bench to bedside. J Clin Invest 2024; 134:e172839. [PMID: 38618951 PMCID: PMC11014661 DOI: 10.1172/jci172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.
Collapse
Affiliation(s)
- Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Benjamin A. Sempowski
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Georgia L. Krikorian
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Kristina M. Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Scott M. Paulissen
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Christopher L. Smith
- Division of Cardiology, Jill and Mark Fishman Center for Lymphatic Disorders, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E. Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Zheng Y, Wang Y, Qi B, Lang Y, Zhang Z, Ma J, Lou M, Liang X, Chang Y, Zhao Q, Gao W, Li T. IL6/adiponectin/HMGB1 feedback loop mediates adipocyte and macrophage crosstalk and M2 polarization after myocardial infarction. Front Immunol 2024; 15:1368516. [PMID: 38601146 PMCID: PMC11004445 DOI: 10.3389/fimmu.2024.1368516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Background Differences in border zone contribute to different outcomes post-infarction, such as left ventricular aneurysm (LVA) and myocardial infarction (MI). LVA usually forms within 24 h of the onset of MI and may cause heart rupture; however, LVA surgery is best performed 3 months after MI. Few studies have investigated the LVA model, the differences in border zones between LVA and MI, and the mechanism in the border zone. Methods The LVA, MI, and SHAM mouse models were used. Echocardiography, Masson's trichrome staining, and immunofluorescence staining were performed, and RNA sequencing of the border zone was conducted. The adipocyte-conditioned medium-treated hypoxic macrophage cell line and LVA and MI mouse models were employed to determine the effects of the hub gene, adiponectin (ADPN), on macrophages. Quantitative polymerase chain reaction (qPCR), Western blot analysis, transmission electron microscopy, and chromatin immunoprecipitation (ChIP) assays were conducted to elucidate the mechanism in the border zone. Human subepicardial adipose tissue and blood samples were collected to validate the effects of ADPN. Results A novel, simple, consistent, and low-cost LVA mouse model was constructed. LVA caused a greater reduction in contractile functions than MI owing to reduced wall thickness and edema in the border zone. ADPN impeded cardiac edema and promoted lymphangiogenesis by increasing macrophage infiltration post-infarction. Adipocyte-derived ADPN promoted M2 polarization and sustained mitochondrial quality via the ADPN/AdipoR2/HMGB1 axis. Mechanistically, ADPN impeded macrophage HMGB1 inflammation and decreased interleukin-6 (IL6) and HMGB1 secretion. The secretion of IL6 and HMGB1 increased ADPN expression via STAT3 and the co-transcription factor, YAP, in adipocytes. Based on ChIP and Dual-Glo luciferase experiments, STAT3 promoted ADPN transcription by binding to its promoter in adipocytes. In vivo, ADPN promoted lymphangiogenesis and decreased myocardial injury after MI. These phenotypes were rescued by macrophage depletion or HMGB1 knockdown in macrophages. Supplying adipocytes overexpressing STAT3 decreased collagen disposition, increased lymphangiogenesis, and impaired myocardial injury. However, these effects were rescued after HMGB1 knockdown in macrophages. Overall, the IL6/ADPN/HMGB1 axis was validated using human subepicardial tissue and blood samples. This axis could serve as an independent factor in overweight MI patients who need coronary artery bypass grafting (CABG) treatment. Conclusion The IL6/ADPN/HMGB1 loop between adipocytes and macrophages in the border zone contributes to different clinical outcomes post-infarction. Thus, targeting the IL6/ADPN/HMGB1 loop may be a novel therapeutic approach for cardiac lymphatic regulation and reduction of cell senescence post-infarction.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Yuchao Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Bingcai Qi
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yuheng Lang
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Department of Heart Center, Tianjin Extracorporeal Membrane Oxygenation (ECMO) Treatment and Training Base, Tianjin, China
| | - Zhibin Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Jie Ma
- Department of Heart Center, Tianjin Kang Ting Biological Engineering Group CO. LTD, Tianjin, China
| | - Minming Lou
- Department of Heart Center, Tianjin Kang Ting Biological Engineering Group CO. LTD, Tianjin, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Department of Heart Center, Tianjin Extracorporeal Membrane Oxygenation (ECMO) Treatment and Training Base, Tianjin, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Department of Heart Center, Tianjin Extracorporeal Membrane Oxygenation (ECMO) Treatment and Training Base, Tianjin, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenqing Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Department of Heart Center, Tianjin Extracorporeal Membrane Oxygenation (ECMO) Treatment and Training Base, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Nankai University Affiliated Third Center Hospital, Tianjin, China
- Department of Heart Center, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Heart Center, Tianjin Extracorporeal Membrane Oxygenation (ECMO) Treatment and Training Base, Tianjin, China
| |
Collapse
|
6
|
Davis MJ, Zawieja SD, Yang Y. Developmental progression of lymphatic valve morphology and function. Front Cell Dev Biol 2024; 12:1331291. [PMID: 38450249 PMCID: PMC10915029 DOI: 10.3389/fcell.2024.1331291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: The bileaflet valves found in collecting lymphatic vessels and some veins are essential for maintaining a unidirectional flow, which is important for lymphatic and venous function. Under an adverse pressure gradient, the two leaflets tightly overlap to prevent backflow. Valves are proposed to share four main stages of development, based on images obtained from randomly oriented valves in fixed mouse embryos, with the best structural views obtained from larger venous valves. It is not known at what stage lymphatic valves (LVs) become functional (e.g., able to oppose backflow), although a requirement for stage 4 is presumed. Methods: To gain an insight into this sequence of events for LVs, we used Prox1CreER T2 :Foxo1 fl/fl mice and Foxc2CreER T2 :Foxo1 fl/fl mouse models, in which deletion of the valve repressor factor Foxo1 promotes the development of new LVs in adult lymphatic vessels. Both strains also contained a Prox1eGFP reporter to image the lymphatic endothelium. Mesenteric collecting lymphatic vessels were dissected, cannulated, and pressurized for ex vivo tests of valve function. LVs at various stages (1-4 and intermediate) were identified in multi-valve segments, which were subsequently shortened to perform the backleak test on single valves. The GFP signal was then imaged at high magnification using a confocal microscope. Z-stack reconstructions enabled 1:1 comparisons of LV morphology with a quantitative measurement of back leak. Results: As expected, LVs of stages 1-3 were completely leaky in response to outflow pressure elevation. Stage 4 valves were generally not leaky, but valve integrity depended on the Cre line used to induce new valve formation. A high percentage of valves at leaflet an intermediate stage (3.5), in which there was an insertion of a second commissure, but without proper luminal alignment, effectively resisted back leak when the outflow pressure was increased. Discussion: Our findings represent the first 3D images of developing lymphatic valves and indicate that valves become competent between stages 3 and 4 of development.
Collapse
Affiliation(s)
- Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
8
|
Zheng Y, Gao W, Qi B, Zhang R, Ning M, Hu X, Li T. CCR2 inhibitor strengthens the adiponectin effects against myocardial injury after infarction. FASEB J 2023; 37:e23039. [PMID: 37392374 DOI: 10.1096/fj.202300281rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023]
Abstract
Little evidence demonstrated the effects of nitric oxide (NO) hydrogel with adipocytes in vivo. We aimed to investigate the effects of adiponectin (ADPN) and CCR2 antagonist on cardiac functions and macrophage phenotypes after myocardial infarction (MI) using chitosan caged nitric oxide donor (CSNO) patch with adipocytes. 3T3-L1 cell line was induced to adipocytes and ADPN expression was knocked down. CSNO was synthesized and patch was constructed. MI model was constructed and patch was placed on the infarcted area. ADPN knockdown adipocytes or control was incubated with CSNO patch, and CCR2 antagonist was also used to investigate the ADPN effects on myocardial injury after infarction. On day 7 after operation, cardiac functions of the mice using CSNO with adipocytes or ADPN knockdown adipocytes improved more than in mice only using CSNO for treatment. Lymphangiogenesis increased much more in the MI mice using CSNO with adipocytes. After treating with CCR2 antagonist, Connexin43+ CD206+ cells and ZO-1+ CD206+ cells increased, suggesting that CCR2 antagonist promoted M2 polarization after MI. Besides, CCR2 antagonist promoted ADPN expression in adipocytes and cardiomyocytes. ELISA was also used and CKMB expression was much lower than other groups at 3 days after operation. On day 7 after operation, the VEGF and TGFβ expressions were high in the adipocytes CSNO group, illustrating that higher ADPN led to better treatment. In all, CCR2 antagonist enhanced the ADPN effects on macrophage M2 polarization and cardiac functions. The combination used in border zone and infarcted areas may help improve patients' prognosis in surgery, such as CABG.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Bingcai Qi
- School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Ruiying Zhang
- Emergency Ward, Tianjin Chest Hospital, Tianjin, China
| | - Meng Ning
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaomin Hu
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, Tianjin Third Central Hospital, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Tianjin ECMO Treatment and Training Base, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| |
Collapse
|
9
|
Banerjee R, Knauer LA, Iyer D, Barlow SE, Scallan JP, Yang Y. Rictor induces AKT signaling to regulate lymphatic valve formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544698. [PMID: 37397997 PMCID: PMC10312634 DOI: 10.1101/2023.06.12.544698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lymphatic valves are specialized structures of the collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress (OSS) from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves throughout life. Conventionally, in other tissue types, AKT activation requires dual kinase activity and the mammalian target of rapamycin complex 2 (mTORC2) commands this process by phosphorylating AKT at Ser473. Here we showed that embryonic and postnatal lymphatic deletion of Rictor , a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human lymphatic endothelial cells (hdLECs) not only significantly reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions, but also abolished the upregulation of AKT activity and valve-forming genes in response to flow. We further showed that the AKT target, FOXO1, a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric LECs, in vivo . Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in both mesenteric and ear lymphatics. Our work revealed a novel role of RICTOR signaling in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately allows the formation and maintenance of a normal lymphatic valve.
Collapse
|
10
|
Scallan JP, Jannaway M. Lymphatic Vascular Permeability. Cold Spring Harb Perspect Med 2022; 12:a041274. [PMID: 35879102 PMCID: PMC9380735 DOI: 10.1101/cshperspect.a041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Blood vessels have a regulated permeability to fluid and solutes, which allows for the delivery of nutrients and signaling molecules to all cells in the body, a process essential to life. The lymphatic vasculature is the second network of vessels in the body, making up part of the immune system, yet is not typically thought of as having a permeability to fluid and solute. However, the major function of the lymphatic vasculature is to regulate tissue fluid balance to prevent edema, so lymphatic vessels must be permeable to absorb and transport fluid efficiently. Only recently were lymphatic vessels discovered to be permeable, which has had many functional implications. In this review, we will provide an overview of what is known about lymphatic vascular permeability, discuss the biophysical and signaling mechanisms regulating lymphatic permeability, and examine the disease relevance of this new property of lymphatic vessels.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| |
Collapse
|
11
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
12
|
Castorena-Gonzalez JA. Lymphatic Valve Dysfunction in Western Diet-Fed Mice: New Insights Into Obesity-Induced Lymphedema. Front Pharmacol 2022; 13:823266. [PMID: 35308249 PMCID: PMC8931217 DOI: 10.3389/fphar.2022.823266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A two-way connection between obesity and lymphatic dysfunction has now been established. Clinical studies have demonstrated that obesity significantly increases the risk for developing secondary lymphedema. Using animal-models, obesity and metabolic syndrome have been linked to different aspects of lymphatic structural abnormalities and lymphatic dysfunction, including impaired contractility, impaired flow-mediated responses, impaired fluid transport, as well as increased permeability, and abnormal dendritic cell migration among others. Dysfunction of lymphatic valves is a main form of lymphatic dysfunction, known to result in severe edematous phenotypes; however, the extent of lymphatic valve deficiency in secondary lymphedema, including obesity-induced lymphedema, remains unknown. Therefore, the aims of the present study were 1) to determine whether western diet-induced obesity results in lymphatic valve dysfunction, and 2) to determine whether lymphatic valve dysfunction in western diet-induced obesity results from the diet itself, or as a consequence of the metabolic alterations induced by the diet. First, we quantitatively assessed and compared valve function in isolated popliteal and mesenteric collecting lymphatic vessels from control and western diet-induced obese C57BL/6J (WT) mice. Feeding a western diet for 14 weeks induced obesity and elevated plasma glucose and cholesterol levels when compared to controls. The function of lymphatic valves in popliteal lymphatics was not affected by diet-induced obesity; however, significant back-leak of pressure was observed in mesenteric lymphatic valves. Dysfunctional, leaky valves from obese animals also required significantly higher adverse pressure to trigger valve closure. Importantly, when subjected to treatment with a western diet, globally deficient PAI-1 mice were significantly protected against metabolic dysfunction and displayed fully functional, competent mesenteric lymphatic valves. In conclusion, our findings show for the first time that, in association with the metabolic alterations induced by the western diet, lymphatic valve dysfunction can be a critical component of obesity-induced lymphedema.
Collapse
|
13
|
Schneider S, Köllges R, Stegmann JD, Thieme F, Hilger AC, Waffenschmidt L, Fazaal J, Kalanithy JC, Geipel A, Strizek B, Ludwig KU, Reutter H, Müller A. Resequencing of VEGFR3 pathway genes implicate GJC2 and FLT4 in the formation of primary congenital chylothorax. Am J Med Genet A 2022; 188:1607-1611. [PMID: 34994518 DOI: 10.1002/ajmg.a.62643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Sophia Schneider
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Ricarda Köllges
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Jil D Stegmann
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Frederic Thieme
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Alina C Hilger
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Lea Waffenschmidt
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Julia Fazaal
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Jeshurun C Kalanithy
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Heiko Reutter
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Nürnberg-Erlangen, Erlangen, Germany
| | - Andreas Müller
- Department of Neonatology and Paediatric Intensive Care, University Hospital Bonn Center of Paediatrics, Bonn, Germany
| |
Collapse
|
14
|
Creed HA, Sanfelippo AN, Reyna AJ, Chakraborty A, Rutkowski JM. Impact of High Fat Diet and Bolus Feeding on Chyle Accumulation in a Mouse Model of Generalized Lymphatic Anomaly. Lymphat Res Biol 2021; 20:358-367. [PMID: 34748416 PMCID: PMC9422780 DOI: 10.1089/lrb.2021.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Generalized lymphatic anomalies (GLA) are complex vessel malformations that can impair lymphatic function. Potential GLA complications include lipid-rich lymph in the thoracic space or peritoneal cavity, respectively chylothorax and chylous ascites. To reduce the potential for chyle accumulation, GLA patients limit dietary fats. We hypothesized that dietary fatty acid composition impacts the potential for lymphatic dysfunction and chyle accumulation in GLA. Methods and Results: Adipose-specific overexpression of lymphatic growth factors has demonstrated lethal chylothorax in mice. Here, we utilized mice with inducible adipocyte overexpression of vascular endothelial growth factor-D (VD mice) to mimic lymphatic proliferation in GLA and assessed the incidence of chyle accumulation on a mixed high fat diet (HFD), high saturated fat diet (HSFD), or high unsaturated fat diet (HUSFD). Lipid transport was assessed by uptake rates of bolus oral triglyceride load and mesenteric fat analysis. Lymphatic expansion and inflammation were determined by whole mount immunofluorescence and gene expression. Body composition was assessed by MRI. HSFD 2-month wildtype groups resulted in an increase in TNF-α, IL-6, and IL-10 expression compared with chow-fed controls. The chyle accumulation incidence was highest in HFD-fed mice compared with either HSFD or HUSFD. Strikingly, increased mortality was observed irrespective of which high fat diet was consumed after administration of a bolus lipid load. Conclusion: Chronic HFD increases risk of chyle accumulation, however increased mortality was driven particularly by a bolus lipid load in VD mice. These findings suggest that although chronic HFD increases chyle accumulation risk, a single large meal feeding may increase risk of lethal chylothorax instances for GLA patients.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Ashley N Sanfelippo
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Andrea J Reyna
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| |
Collapse
|
15
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
16
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
17
|
Stavropoulos F, Georgiou E, Sargiannidou I, Kleopa KA. Dysregulation of Blood-Brain Barrier and Exacerbated Inflammatory Response in Cx47-Deficient Mice after Induction of EAE. Pharmaceuticals (Basel) 2021; 14:ph14070621. [PMID: 34203192 PMCID: PMC8308522 DOI: 10.3390/ph14070621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Induction of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), in connexin 32 (Cx32) or Cx47 knockout (KO) mice with deficiency in oligodendrocyte gap junctions (GJs) results in a more severe disease course. In particular, Cx47 KO EAE mice experience an earlier EAE onset and more pronounced disease severity, accompanied by dysregulated pro-inflammatory responses preceding the disease manifestations. In this study, analysis of relevant pro-inflammatory cytokines in wild type EAE, Cx32 KO EAE, and Cx47 KO EAE mice revealed altered expression of Vcam-1 preceding EAE [7 days post injection (dpi)], of Ccl2 at the onset of EAE (12 dpi), and of Gm-csf at the peak of EAE (24 dpi) in Cx47 KO EAE mice. Moreover, Cx47 KO EAE mice exhibited more severe blood-spinal cord barrier (BSCB) disruption, enhanced astrogliosis with defects in tight junction formation at the glia limitans, and increased T-cell infiltration prior to disease onset. Thus, Cx47 deficiency appears to cause dysregulation of the inflammatory profile and BSCB integrity, promoting early astrocyte responses in Cx47 KO EAE mice that lead to a more severe EAE outcome. Further investigation into the role of oligodendrocytic Cx47 in EAE and multiple sclerosis pathology is warranted.
Collapse
Affiliation(s)
- Filippos Stavropoulos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (F.S.); (E.G.); (I.S.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (F.S.); (E.G.); (I.S.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (F.S.); (E.G.); (I.S.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (F.S.); (E.G.); (I.S.)
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
- Correspondence: ; Tel.: +357-22-358600; Fax: +357-22-392786
| |
Collapse
|
18
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
19
|
Lymphatic Connexins and Pannexins in Health and Disease. Int J Mol Sci 2021; 22:ijms22115734. [PMID: 34072103 PMCID: PMC8199429 DOI: 10.3390/ijms22115734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.
Collapse
|
20
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
21
|
Lin Q, Zhang Y, Bai J, Liu J, Li H. VEGF-C/VEGFR-3 axis protects against pressure-overload induced cardiac dysfunction through regulation of lymphangiogenesis. Clin Transl Med 2021; 11:e374. [PMID: 33783987 PMCID: PMC7989711 DOI: 10.1002/ctm2.374] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prolonged pressure overload triggers cardiac hypertrophy and frequently leads to heart failure (HF). Vascular endothelial growth factor-C (VEGF-C) and its receptor VEGFR-3 are components of the central pathway for lymphatic vessel growth (also known as lymphangiogenesis), which has crucial functions in the maintenance of tissue fluid balance and myocardial function after ischemic injury. However, the roles of this pathway in the development of cardiac hypertrophy and dysfunction during pressure overload remain largely unknown. Eight- to 10-week-old male wild-type (WT) mice, VEGFR-3 knockdown (VEGFR-3f/- ) mice, and their WT littermates (VEGFR-3f/f ) were subjected to pressure overload induced by transverse aortic constriction (TAC) for 1-6 weeks. We found that cardiac lymphangiogenesis and the protein expression of VEGF-C and VEGFR-3 were upregulated in the early stage of cardiac hypertrophy but were markedly reduced in failing hearts. Moreover, TAC for 6 weeks significantly reduced cardiac lymphangiogenesis by inhibiting activation of VEGFR-3-mediated signals (AKT/ERK1/2, calcineurin A/NFATc1/FOXc2, and CX43), leading to increased cardiac edema, hypertrophy, fibrosis, apoptosis, inflammation, and dysfunction. These effects were further aggravated in VEGFR-3f/- mice and were dose-dependently attenuated by delivery of recombinant VEGF-C156S in WT mice. VEGF-C156s administration also reversed pre-established cardiac dysfunction induced by sustained pressure overload. Thus, these results demonstrate, for the first time, that activation of the VEGF-C-VEGFR-3 axis exerts a protective effect during the transition from cardiac hypertrophy to HF and highlight selective stimulation of cardiac lymphangiogenesis as a potential new therapeutic approach for hypertrophic heart diseases.
Collapse
Affiliation(s)
- Qiu‐Yue Lin
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yun‐Long Zhang
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Bai
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jin‐Qiu Liu
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Hui‐Hua Li
- Department of Cardiology, Institute of Cardiovascular DiseasesFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Emergency MedicineBeijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
22
|
González-Loyola A, Petrova TV. Development and aging of the lymphatic vascular system. Adv Drug Deliv Rev 2021; 169:63-78. [PMID: 33316347 DOI: 10.1016/j.addr.2020.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature has a pivotal role in regulating body fluid homeostasis, immune surveillance and dietary fat absorption. The increasing number of in vitro and in vivo studies in the last decades has shed light on the processes of lymphatic vascular development and function. Here, we will discuss the current progress in lymphatic vascular biology such as the mechanisms of lymphangiogenesis, lymphatic vascular maturation and maintenance and the emerging mechanisms of lymphatic vascular aging.
Collapse
Affiliation(s)
- Alejandra González-Loyola
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Switzerland.
| |
Collapse
|
23
|
Cano‐Ballesteros S, Palmquist‐Gomes P, Marín‐Sedeño E, Guadix JA, Pérez‐Pomares JM. Fsp1 cardiac embryonic expression delineates atrioventricular endocardial cushion, coronary venous and lymphatic valve development. J Anat 2021; 238:508-514. [PMID: 32920869 PMCID: PMC7812130 DOI: 10.1111/joa.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/03/2023] Open
Abstract
Fsp1 (a.k.a S100A4 or Metastatin) is an intracellular and secreted protein widely regarded as a fibroblast marker. Recent studies have nonetheless shown that Fsp1 is also expressed by other cell types, including small subsets of endothelial cells. Since no detailed and systematic description of Fsp1 spatio-temporal expression pattern in cardiac vascular cells is available in the literature, we have used a transgenic murine line (Fsp1-GFP) to study Fsp1 expression in the developing and postnatal cardiac vasculature and endocardium. Our work shows that Fsp1 is expressed in the endocardium and mesenchyme of atrioventricular valve primordia, as well as in some coronary venous and lymphatic endothelial cells. Fsp1 expression in cardiac venous and lymphatic endothelium is progressively restricted to the leaflets of cardiac venous and lymphatic valves. Our results suggest that Fsp1 could play a role in the development of atrioventricular valves and participate in the patterning and morphogenesis of cardiac venous and lymphatic vessel valves.
Collapse
Affiliation(s)
- Sara Cano‐Ballesteros
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Paul Palmquist‐Gomes
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Ernesto Marín‐Sedeño
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - Juan Antonio Guadix
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| | - José María Pérez‐Pomares
- Department of Animal Biology, Faculty of SciencesInstituto Malagueño de Biomedicina (IBIMA), University of MálagaMálagaSpain,BIONAND, Centro Andaluz de Nanomedicina y BiotecnologíaJunta de AndalucíaUniversidad de MálagaMálagaSpain
| |
Collapse
|
24
|
Lymphatic Valves and Lymph Flow in Cancer-Related Lymphedema. Cancers (Basel) 2020; 12:cancers12082297. [PMID: 32824219 PMCID: PMC7464955 DOI: 10.3390/cancers12082297] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Lymphedema is a complex disease caused by the accumulation of fluid in the tissues resulting from a dysfunctional or damaged lymphatic vasculature. In developed countries, lymphedema most commonly occurs as a result of cancer treatment. Initially, impaired lymph flow causes edema, but over time this results in inflammation, fibrotic and fatty tissue deposition, limited mobility, and bacterial infections that can lead to sepsis. While chronically impaired lymph flow is generally believed to be the instigating factor, little is known about what pathophysiological changes occur in the lymphatic vessels to inhibit lymph flow. Lymphatic vessels not only regulate lymph flow through a variety of physiologic mechanisms, but also respond to lymph flow itself. One of the fascinating ways that lymphatic vessels respond to flow is by growing bicuspid valves that close to prevent the backward movement of lymph. However, lymphatic valves have not been investigated in cancer-related lymphedema patients, even though the mutations that cause congenital lymphedema regulate genes involved in valve development. Here, we review current knowledge of the regulation of lymphatic function and development by lymph flow, including newly identified genetic regulators of lymphatic valves, and provide evidence for lymphatic valve involvement in cancer-related lymphedema.
Collapse
|
25
|
Papaneophytou C, Georgiou E, Kleopa KA. The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 2020; 13:247-263. [PMID: 31232168 PMCID: PMC6602578 DOI: 10.1080/19336950.2019.1631107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gap junctions (GJs) provide channels for direct cell-to-cell connectivity serving the homeostasis in several organs of vertebrates including the central (CNS) and peripheral (PNS) nervous systems. GJs are composed of connexins (Cx), which show a highly distinct cellular and subcellular expression pattern. Oligodendrocytes, the myelinating cells of the CNS, are characterized by extensive GJ connectivity with each other as well as with astrocytes. The main oligodendrocyte connexins forming these GJ channels are Cx47 and Cx32. The importance of these channels has been highlighted by the discovery of human diseases caused by mutations in oligodendrocyte connexins, manifesting with leukodystrophy or transient encephalopathy. Experimental models have provided further evidence that oligodendrocyte GJs are essential for CNS myelination and homeostasis, while a strong inflammatory component has been recognized in the absence of oligodendrocyte connexins. Further studies revealed that connexins are also disrupted in multiple sclerosis (MS) brain, and in experimental models of induced inflammatory demyelination. Moreover, induced demyelination was more severe and associated with higher degree of CNS inflammation in models with oligodendrocyte GJ deficiency, suggesting that disrupted connexin expression in oligodendrocytes is not only a consequence but can also drive a pro-inflammatory environment in acquired demyelinating disorders such as MS. In this review, we summarize the current insights from human disorders as well as from genetic and acquired models of demyelination related to oligodendrocyte connexins, with the remaining challenges and perspectives.
Collapse
Affiliation(s)
- Christos Papaneophytou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,b Department of Life and Health Sciences, School of Sciences and Engineering , University of Nicosia , Nicosia , Cyprus
| | - Elena Georgiou
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Kleopas A Kleopa
- a Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine , Nicosia , Cyprus.,c Neurology Clinics , the Cyprus Institute of Neurology and Genetics, and the Cyprus School of Molecular Medicine , Nicosia , Cyprus
| |
Collapse
|
26
|
Castorena-Gonzalez JA, Srinivasan RS, King PD, Simon AM, Davis MJ. Simplified method to quantify valve back-leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37. J Physiol 2020; 598:2297-2310. [PMID: 32267537 PMCID: PMC8170716 DOI: 10.1113/jp279472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Lymphatic valve defects are one of the major causes of lymph transport dysfunction; however, there are no accessible methods for quantitatively assessing valve function. This report describes a novel technique for quantifying lymphatic valve back-leak. Postnatal endothelial-specific deletion of connexin 43 (Cx43) in connexin 37 null (Cx37-/- ) mice results in rapid regression of valve leaflets and severe valve dysfunction. This method can also be used for assessing the function of venous and lymphatic valves from various species, including humans. ABSTRACT The lymphatic system relies on robust, spontaneous contractions of collecting lymphatic vessels and one-way secondary lymphatic valves to efficiently move lymph forward. Secondary valves prevent reflux and allow for the generation of propulsive pressure during each contraction cycle. Lymphatic valve defects are one of the major causes of lymph transport dysfunction. Genetic mutations in multiple genes have been associated with the development of primary lymphoedema in humans; and many of the same mutations in mice result in valve defects that subsequently lead to chylous ascites or chylothorax. At present the only experimental technique for the quantitative assessment of lymphatic valve function utilizes the servo-null micropressure system, which is highly accurate and precise, but relatively inaccessible and difficult to use. We developed a novel, simplified alternative method for quantifying valve function and determining the degree of pressure back-leak through an intact valve in pressurized, single-valve segments of isolated lymphatic vessels. With this diameter-based method, the competence of each lymphatic valve is challenged over a physiological range of pressures (e.g. 0.5-10cmH2 O) and pressure back-leak is extrapolated from calibrated, pressure-driven changes in diameter upstream from the valve. Using mesenteric lymphatic vessels from C57BL/6J, Ub-CreERT2 ;Rasa1fx/fx , Foxc2Cre/+ , Lyve1-Cre;Cx43fx/fx , and Prox1-CreERT2 ;Cx43fx/fx ;Cx37-/- mice, we tested our method on lymphatic valves displaying a wide range of dysfunction, from fully competent to completely incompetent. Our results were validated by simultaneous direct measurement of pressure back-leak using a servo-null micropressure system. Our diameter-based technique can be used to quantify valve function in isolated lymphatic valves from a variety of species. This method also revealed that haplodeficiency in Foxc2 (Foxc2Cre/+ ) is not sufficient to cause significant valve dysfunction; however, postnatal endothelial-specific deletion of Cx43 in Cx37-/- mice results in rapid regression of valve leaflets and severe valve dysfunction.
Collapse
Affiliation(s)
- Jorge A Castorena-Gonzalez
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
27
|
Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol 2020; 11:509. [PMID: 32547411 PMCID: PMC7274196 DOI: 10.3389/fphys.2020.00509] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) lining lymphatic vessels develop specialized cell-cell junctions that are crucial for the maintenance of vessel integrity and proper lymphatic vascular functions. Successful lymphatic drainage requires a division of labor between lymphatic capillaries that take up lymph via open "button-like" junctions, and collectors that transport lymph to veins, which have tight "zipper-like" junctions that prevent lymph leakage. In recent years, progress has been made in the understanding of these specialized junctions, as a result of the application of state-of-the-art imaging tools and novel transgenic animal models. In this review, we discuss lymphatic development and mechanisms governing junction remodeling between button and zipper-like states in LECs. Understanding lymphatic junction remodeling is important in order to unravel lymphatic drainage regulation in obesity and inflammatory diseases and may pave the way towards future novel therapeutic interventions.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Georgia Zarkada
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
28
|
Hautefort A, Pfenniger A, Kwak BR. Endothelial connexins in vascular function. VASCULAR BIOLOGY 2019; 1:H117-H124. [PMID: 32923963 PMCID: PMC7439941 DOI: 10.1530/vb-19-0015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
Gap junctions are essential for intercellular crosstalk in blood and lymphatic vasculature. These clusters of intercellular channels ensure direct communication among endothelial cells and between endothelial and smooth muscle cells, and the synchronization of their behavior along the vascular tree. Gap junction channels are formed by connexins; six connexins form a connexon or hemichannel and the docking of two connexons result in a full gap junction channel allowing for the exchange of ions and small metabolites between neighboring cells. Recent evidence indicates that the intracellular domains of connexins may also function as an interaction platform (interactome) for other proteins, thereby regulating their function. Interestingly, fragments of Cx proteins generated by alternative internal translation were recently described, although their functions in the vascular wall remain to be uncovered. Variations in connexin expression are observed along different types of blood and lymphatic vessels; the most commonly found endothelial connexins are Cx37, Cx40, Cx43 and Cx47. Physiological studies on connexin-knockout mice demonstrated the essential roles of these channel-forming proteins in the coordination of vasomotor activity, endothelial permeability and inflammation, angiogenesis and in the maintenance of fluid balance in the body.
Collapse
Affiliation(s)
- Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Anna Pfenniger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
30
|
Abstract
The formation and remodeling of a functional circulatory system is critical for sustaining prenatal and postnatal life. During embryogenesis, newly differentiated endothelial cells require further specification to create the unique features of distinct vessel subtypes needed to support tissue morphogenesis. In this review, we explore signaling pathways and transcriptional regulators that modulate endothelial cell differentiation and specification, as well as applications of these processes to stem cell biology and regenerative medicine. We also summarize recent technical advances, including the growing utilization of single-cell sequencing to study vascular heterogeneity and development.
Collapse
Affiliation(s)
- Jingyao Qiu
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| | - Karen K Hirschi
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
31
|
Trincot CE, Xu W, Zhang H, Kulikauskas MR, Caranasos TG, Jensen BC, Sabine A, Petrova TV, Caron KM. Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ Res 2019; 124:101-113. [PMID: 30582443 PMCID: PMC6318063 DOI: 10.1161/circresaha.118.313835] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.
Collapse
Affiliation(s)
- Claire E. Trincot
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Molly R. Kulikauskas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Thomas G. Caranasos
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Amelie Sabine
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
- Division of Experimental Pathlogy, Lausanne University Hospital
| | - Kathleen M. Caron
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , 111 Mason Farm Rd, MBRB 6312B, CB 7545, Chapel Hill, NC 27599
| |
Collapse
|
32
|
Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, Abrams CK, Kleopa KA. Regulatory role of oligodendrocyte gap junctions in inflammatory demyelination. Glia 2018; 66:2589-2603. [PMID: 30325069 PMCID: PMC6519212 DOI: 10.1002/glia.23513] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Gap junctions (GJs) coupling oligodendrocytes to astrocytes and to other oligodendrocytes are formed mainly by connexin47 (Cx47) and a smaller portion by connexin32 (Cx32). Mutations in both connexins cause inherited demyelinating disorders, but their expression is also disrupted in multiple sclerosis (MS). To clarify whether the loss of either Cx47 or Cx32 could modify the outcome of inflammation and myelin loss, we induced experimental autoimmune encephalomyelitis (EAE) in fully backcrossed Cx32 knockout (KO) and Cx47KO mice and compared their outcome with wild type (WT, C57BI/6 N) mice. Cx47KO EAE mice developed the most severe phenotype assessed by clinical scores and behavioral testing, followed by Cx32KO and WT mice. Cx47KO more than Cx32KO EAE mice developed more microglial activation, myelin, and axonal loss than did WT mice. Oligodendrocyte apoptosis and precursor proliferation was also higher in Cx47KO than in Cx32KO or WT EAE mice. Similarly, blood-spinal cord barrier (BSCB) disruption and inflammatory infiltrates of macrophages, T- and B-cells were more severe in Cx47KO than either Cx32KO or WT EAE groups. Finally, expression profiling revealed that several proinflammatory cytokines were higher at the peak of inflammation in the Cx47KO mice and persisted at later stages of EAE in contrast to reduction of their levels in WT EAE mice. Thus, loss of oligodendrocyte GJs aggravates BSCB disruption and inflammatory myelin loss, likely due to dysregulation of proinflammatory cytokines. This mechanism may play an important role in MS brain with reduced connexin expression, as well as in patients with inherited mutations in oligodendrocyte connexins and secondary inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/physiopathology
- Calcium-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Connexins/genetics
- Connexins/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Freund's Adjuvant/toxicity
- Gap Junctions/metabolism
- Gap Junctions/pathology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Hand Strength/physiology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Microfilament Proteins/metabolism
- Motor Activity/drug effects
- Motor Activity/genetics
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Oligodendroglia/metabolism
- Oligodendroglia/pathology
- Peptide Fragments/toxicity
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- Christos P. Papaneophytou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaNicosiaCyprus
| | - Elena Georgiou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Christos Karaiskos
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Irene Sargiannidou
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Kyriaki Markoullis
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| | - Mona M. Freidin
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Charles K. Abrams
- Department of Neurology and RehabilitationUniversity of Illinois ChicagoChicagoIllinois
| | - Kleopas A. Kleopa
- Neuroscience LaboratoryThe Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
33
|
Castorena-Gonzalez JA, Zawieja SD, Li M, Srinivasan RS, Simon AM, de Wit C, de la Torre R, Martinez-Lemus LA, Hennig GW, Davis MJ. Mechanisms of Connexin-Related Lymphedema. Circ Res 2018; 123:964-985. [PMID: 30355030 PMCID: PMC6771293 DOI: 10.1161/circresaha.117.312576] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.
Collapse
Affiliation(s)
| | - Scott D. Zawieja
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - Min Li
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK
| | | | - Cor de Wit
- Institute of Physiology, University of Luebeck, Luebeck Germany
| | | | - Luis A. Martinez-Lemus
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | | | - Michael J. Davis
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| |
Collapse
|
34
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
35
|
Petrea CE, Rusu MC, Mănoiu VS, Vrapciu AD. Telocyte-like cells containing Weibel-Palade bodies in rat lamina fusca. Ann Anat 2018; 218:88-94. [PMID: 29655846 DOI: 10.1016/j.aanat.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/25/2022]
Abstract
Telocytes (TCs) are cells with long, thin and moniliform processes called telopodes. These cells have been found in numerous tissues, including the eye choroid and sclera. Lamina fusca (LF), an anatomical structure located at the sclera-choroid junction, has outer fibroblastic lamellae containing cells with long telopodes. The purpose of this study was to evaluate, via transmission electron microscopy, the LF for the presence of endothelial-specific ultrastructural features, such as Weibel-Palade bodies (WPBs), in the residing TCs. We found that the outer fibroblastic layer of LF lacked pigmented cells but contained numerous cells with telopodes. These cells had incomplete or absent basal laminae, were united by focal adhesions and close contacts, and displayed scarce caveolae and shedding vesicles. Within the stromal cells of LF, numerous WPBs in various stages of maturation and vesicular structures, as secretory pods that ensure the exocytosis of WPBs content, were observed. The WPBs content of the cells with telopodes in the LF could indicate either their involvement in vasculogenesis and/or lymphangiogenesis or that they are the P-selectin- and CD63-containing pools that play roles in scleral or choroidal inflammation.
Collapse
Affiliation(s)
- C E Petrea
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
36
|
Meens MJ, Kutkut I, Rochemont V, Dubrot J, Kaladji FR, Sabine A, Lyons O, Hendrikx S, Bernier-Latmani J, Kiefer F, Smith A, Hugues S, Petrova TV, Kwak BR. Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS One 2017; 12:e0181476. [PMID: 28732089 PMCID: PMC5521787 DOI: 10.1371/journal.pone.0181476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/30/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the gap junction protein connexin47 (Cx47) are associated with lymphedema. However, the role of Cx47 in lymphatic pathophysiology is unknown. We demonstrate that Cx47 is expressed in lymphatic endothelial cells by whole-mount immunostaining and qPCR. To determine if Cx47 plays a role in lymphatic vessel function we analysed Cx47-/- mice. Cx47-deficiency did not affect lymphatic contractility (contractile amplitude or frequency) or lymphatic morphology (vessel diameter or number of valves). Interstitial fluid drainage or dendritic cell migration through lymphatic vessels was also not affected by Cx47-deficiency. Cx47 is dispensable for long-chain fatty acid absorption from the gut but rather promotes serum lipid handling as prolonged elevated triglyceride levels were observed in Cx47-deficient mice after oral lipid tolerance tests. When crossed with Apolipoprotein E-deficient (Apoe-/-) mice, LDL-cholesterol was decreased in young Cx47-/-Apoe-/- adults as compared to Apoe-/- mice, which was inverted later in life. Finally, advanced atherosclerotic plaques in thoracic-abdominal aortas of 15 months-old mice tended to be larger in Cx47-/-Apoe-/- mice. These plaques contained fewer macrophages but similar amounts of T lymphocytes, collagen and lipids than plaques of Apoe-/- mice. In conclusion, Cx47 is expressed in lymphatic endothelium and seems modestly implicated in multiple aspects of lymphatic pathophysiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Issa Kutkut
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Viviane Rochemont
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Fouad R. Kaladji
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Amélie Sabine
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Oliver Lyons
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stefanie Hendrikx
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Friedemann Kiefer
- Mammalian Cell Signalling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tatiana V. Petrova
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Medical Specialties – Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1984-1997. [PMID: 28683257 DOI: 10.1016/j.ajpath.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Abstract
Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.
Collapse
|