1
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
2
|
Agarwal P, Cadart C, Fort L, Gahan J, Greenspan L, Juan T, Kameneva P, Miao Y. Pathway to Independence: the future of developmental biology. Development 2023; 150:dev202360. [PMID: 37812057 PMCID: PMC10705336 DOI: 10.1242/dev.202360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In 2022, Development launched its Pathway to Independence (PI) Programme, aimed at supporting postdocs as they transition to their first independent position. We selected eight talented researchers as the first cohort of PI Fellows. In this article, each of our Fellows provides their perspective on the future of their field. Together, they paint an exciting picture of the current state of and open questions in developmental biology.
Collapse
Affiliation(s)
- Priti Agarwal
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Loic Fort
- Vanderbilt University School of Medicine, 465 21st Avenue South, U 3200 MRB III, Nashville, TN 37240-7935, USA
| | - James Gahan
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Leah Greenspan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Polina Kameneva
- The Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Yuchuan Miao
- Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
3
|
Lewis VM, Le Bleu HK, Henner AL, Markovic H, Robbins AE, Stewart S, Stankunas K. Insulin-like growth factor receptor / mTOR signaling elevates global translation to accelerate zebrafish fin regenerative outgrowth. Dev Biol 2023; 502:1-13. [PMID: 37290497 PMCID: PMC10866574 DOI: 10.1016/j.ydbio.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.
Collapse
Affiliation(s)
- Victor M Lewis
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Heather K Le Bleu
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Astra L Henner
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Hannah Markovic
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
4
|
Okamura DM, Nguyen ED, Collins SJ, Yoon K, Gere JB, Weiser-Evans MCM, Beier DR, Majesky MW. Mammalian organ regeneration in spiny mice. J Muscle Res Cell Motil 2023; 44:39-52. [PMID: 36131170 DOI: 10.1007/s10974-022-09631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.
Collapse
Affiliation(s)
- Daryl M Okamura
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth D Nguyen
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Kevin Yoon
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Joshua B Gere
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases & Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David R Beier
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
6
|
Wang S, Shibata Y, Fu L, Tanizaki Y, Luu N, Bao L, Peng Z, Shi YB. Thyroid hormone receptor knockout prevents the loss of Xenopus tail regeneration capacity at metamorphic climax. Cell Biosci 2023; 13:40. [PMID: 36823612 PMCID: PMC9948486 DOI: 10.1186/s13578-023-00989-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration. Intriguingly, plasma T3 level peaks during amphibian metamorphosis, which is very similar to postembryonic development in humans. In addition, many organs, such as heart and tail, also lose their regenerative ability during metamorphosis. These make frogs as a good model to address how the organs gradually lose their regenerative ability during development and what roles T3 may play in this. Early tail regeneration studies have been done mainly in the tetraploid Xenopus laevis (X. laevis), which is difficult for gene knockout studies. Here we use the highly related but diploid anuran X. tropicalis to investigate the role of T3 signaling in tail regeneration with gene knockout approaches. RESULTS We discovered that X. tropicalis tadpoles could regenerate their tail from premetamorphic stages up to the climax stage 59 then lose regenerative capacity as tail resorption begins, just like what observed for X. laevis. To test the hypothesis that T3-induced metamorphic program inhibits tail regeneration, we used TR double knockout (TRDKO) tadpoles lacking both TRα and TRβ, the only two receptor genes in vertebrates, for tail regeneration studies. Our results showed that TRs were not necessary for tail regeneration at all stages. However, unlike wild type tadpoles, TRDKO tadpoles retained regenerative capacity at the climax stages 60/61, likely in part by increasing apoptosis at the early regenerative period and enhancing subsequent cell proliferation. In addition, TRDKO animals had higher levels of amputation-induced expression of many genes implicated to be important for tail regeneration, compared to the non-regenerative wild type tadpoles at stage 61. Finally, the high level of apoptosis in the remaining uncut portion of the tail as wild type tadpoles undergo tail resorption after stage 61 appeared to also contribute to the loss of regenerative ability. CONCLUSIONS Our findings for the first time revealed an evolutionary conservation in the loss of tail regeneration capacity at metamorphic climax between X. laevis and X. tropicalis. Our studies with molecular and genetic approaches demonstrated that TR-mediated, T3-induced gene regulation program is responsible not only for tail resorption but also for the loss of tail regeneration capacity. Further studies by using the model should uncover how T3 modulates the regenerative outcome and offer potential new avenues for regenerative medicines toward human patients.
Collapse
Affiliation(s)
- Shouhong Wang
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biology, Nippon Medical School, Musashino, Tokyo, Japan
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, People's Republic of China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
7
|
Aztekin C, Storer MA. To regenerate or not to regenerate: Vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen 2022; 30:623-635. [PMID: 35192230 PMCID: PMC7613846 DOI: 10.1111/wrr.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
Why only certain species can regenerate their appendages (e.g. tails and limbs) remains one of the biggest mysteries of nature. Unlike anuran tadpoles and salamanders, humans and other mammals cannot regenerate their limbs, but can only regrow lost digit tips under specific circumstances. Numerous hypotheses have been postulated to explain regeneration-incompetency in mammals. By studying model organisms that show varying regenerative abilities, we now have more opportunities to uncover what contributes to regeneration-incompetency and functionally test which perturbations restore appendage regrowth. Particularly, Xenopus laevis tail and limb, and mouse digit tip model systems exhibit naturally occurring variations in regenerative capacities. Here, we discuss major hypotheses that are suggested to contribute to regeneration-incompetency, and how species with varying regenerative abilities reflect on these hypotheses.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)Lausanne
| | - Mekayla A. Storer
- Department of Physiology, Development and Neuroscience and Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridge
| |
Collapse
|
8
|
Patel JH, Ong DJ, Williams CR, Callies LK, Wills AE. Elevated pentose phosphate pathway flux supports appendage regeneration. Cell Rep 2022; 41:111552. [PMID: 36288713 PMCID: PMC10569227 DOI: 10.1016/j.celrep.2022.111552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation.
Collapse
Affiliation(s)
- Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel J Ong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Claire R Williams
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - LuLu K Callies
- Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A. Nutritional control of thyroid morphogenesis through gastrointestinal hormones. Curr Biol 2022; 32:1485-1496.e4. [PMID: 35196509 DOI: 10.1016/j.cub.2022.01.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Developing animals absorb nutrients either through the placenta or from ingested food; however, the mechanisms by which embryos use external nutrients for individual organ morphogenesis remain to be elucidated. In this study, we assessed nutrient-dependent thyroid follicle morphogenesis in Xenopus laevis and investigated the role of secreted gastrointestinal (GI) hormones post-feeding. We found that feeding triggers thyroid follicle formation, and the thyroid cells showed transient inactivation of cell proliferation after feeding. In addition, the thyroid cells with multi-lumina were frequently observed in the fed tadpoles. The expression of the particular GI hormone incretin, glucose-dependent insulinotropic polypeptide (GIP), responded to feeding in the intestines of Xenopus tadpoles. Inhibition of dipeptidyl peptidase 4 (Dpp4), a degradative enzyme of incretin, increased the size of the thyroid follicles by facilitating follicular lumina connection, whereas inhibition of the sodium-glucose cotransporter (SGLT) reversed the effects of Dpp4 inhibition. Furthermore, injection of GIP peptide in unfed tadpoles initiated thyroid follicle formation-without requiring feeding-and injection of an incretin receptor antagonist suppressed follicle enlargement in the fed tadpoles. Lastly, GIP receptor knockout in neonatal mice showed smaller follicles in the thyroid, suggesting that the GI hormone-dependent thyroid morphogenesis is conserved in mammals. In conclusion, our study links external nutrients to thyroid morphogenesis and provides new insights into the function of GI hormone as a regulator of organ morphology in developing animals.
Collapse
Affiliation(s)
- Maki Takagishi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Binta Maria Aleogho
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masako Okumura
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kaori Ushida
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichiro Yamada
- Kansai Electric Power Medical Research Institute, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Sayoko Fujimura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kaoru Nakashima
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Asako Shindo
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
10
|
CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between Xenopus laevis and Xenopus tropicalis. Cells 2022; 11:cells11050807. [PMID: 35269429 PMCID: PMC8909648 DOI: 10.3390/cells11050807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/25/2022] Open
Abstract
Retinitis pigmentosa is an inherited retinal dystrophy that ultimately leads to blindness due to the progressive degeneration of rod photoreceptors and the subsequent non-cell autonomous death of cones. Rhodopsin is the most frequently mutated gene in this disease. We here developed rhodopsin gene editing-based models of retinitis pigmentosa in two Xenopus species, Xenopus laevis and Xenopus tropicalis, by using CRISPR/Cas9 technology. In both of them, loss of rhodopsin function results in massive rod cell degeneration characterized by progressive shortening of outer segments and occasional cell death. This is followed by cone morphology deterioration. Despite these apparently similar degenerative environments, we found that Müller glial cells behave differently in Xenopus laevis and Xenopus tropicalis. While a significant proportion of Müller cells re-enter into the cell cycle in Xenopus laevis, their proliferation remains extremely limited in Xenopus tropicalis. This work thus reveals divergent responses to retinal injury in closely related species. These models should help in the future to deepen our understanding of the mechanisms that have shaped regeneration during evolution, with tremendous differences across vertebrates.
Collapse
|
11
|
Abrams MJ, Tan FH, Li Y, Basinger T, Heithe ML, Sarma A, Lee IT, Condiotte ZJ, Raffiee M, Dabiri JO, Gold DA, Goentoro L. A conserved strategy for inducing appendage regeneration in moon jellyfish, Drosophila, and mice. eLife 2021; 10:65092. [PMID: 34874003 PMCID: PMC8782573 DOI: 10.7554/elife.65092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.
Collapse
Affiliation(s)
- Michael J Abrams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yutian Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ty Basinger
- Department of Biology and Allied Health Sciences, Bloomsburg University, Bloomsburg, United States
| | - Martin L Heithe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Anish Sarma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Iris T Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Zevin J Condiotte
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Misha Raffiee
- Department of Bioengineering, Stanford University, Paolo Alto, United States
| | - John O Dabiri
- Graduate Aerospace Laboratories and Mechanical Engineering, California Institute of Technology, Pasadena, United States
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, United States
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|