1
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Floros N, Papagiannakis N, Kyrozis A, Chroni E, Polychronopoulos P. Associations between neurolinguistic deficits and personality traits in people with epilepsy. Front Neurol 2024; 15:1416713. [PMID: 39479006 PMCID: PMC11521817 DOI: 10.3389/fneur.2024.1416713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction People with epilepsy (PWE) have been hypothesized to have higher prevalence of personality disorders and cognitive disorders. The objective of this study was to investigate the controversial notion of "epileptic personality," a series of supposedly specific personality traits of people with epilepsy (PWE). Methods For this purpose, 29 individuals with Mesial Temporal lobe Epilepsy (MTLE) and 23 with Juvenile myoclonic epilepsy (JME) as confirmed by electroencephalography (EEG), MRI scans and clinical examination, underwent a thorough neuropsychological and personality assessment. The resulting neuropsychological profiles were statistically analyzed considering possible personality disorders, character traits, cognitive and linguistic deviations from 20 healthy controls (HC). Results Our findings suggest accumulative cognitive and linguistic deficits in individuals with epilepsy compared to controls. It is possible that these might be misinterpreted as personality disorders. Specifically, personality traits (p = 0.049) and verbal fluency (p = 0.013), were significantly different between PWEs and controls. Also, the type of epilepsy and lateralization seem to affect executive function (p = 0.049) and pragmatology scores (p < 0.001), exhibiting differences in subgroup analysis. Discussion Different theories are considered as plausible pathophysiological explanations for the aforementioned differences. This research might serve as a basis to further investigate the cognitive aspects of epilepsy and possible pharmacological interventions, which are currently lacking.
Collapse
Affiliation(s)
- Nikitas Floros
- Department of Neurology, University of Patras, Patras, Greece
- 1st Department of Psychiatry, Eginiteion Hospital, University of Athens, Athens, Greece
| | | | - Andreas Kyrozis
- 1st Department of Neurology, Eginiteion Hospital, University of Athens, Athens, Greece
| | | | | |
Collapse
|
3
|
Middlebrooks EH, Gupta V, Agarwal AK, Freund BE, Messina SA, Tatum WO, Sabsevitz DS, Feyissa AM, Mirsattari SM, Galan FN, Quinones-Hinojosa A, Grewal SS, Murray JV. Radiologic Classification of Hippocampal Sclerosis in Epilepsy. AJNR Am J Neuroradiol 2024; 45:1185-1193. [PMID: 38383054 PMCID: PMC11392372 DOI: 10.3174/ajnr.a8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Temporal lobe epilepsy is a common form of epilepsy that is often associated with hippocampal sclerosis (HS). Although HS is commonly considered a binary assessment in radiologic evaluation, it is known that histopathologic changes occur in distinct clusters. Some subtypes of HS only affect certain subfields, resulting in minimal changes to the overall volume of the hippocampus. This is likely a major reason why whole hippocampal volumetrics have underperformed versus expert readers in the diagnosis of HS. With recent advancements in MRI technology, it is now possible to characterize the substructure of the hippocampus more accurately. However, this is not consistently addressed in radiographic evaluations. The histologic subtype of HS is critical for prognosis and treatment decision-making, necessitating improved radiologic classification of HS. The International League Against Epilepsy (ILAE) has issued a consensus classification scheme for subtyping HS histopathologic changes. This review aims to explore how the ILAE subtypes of HS correlate with radiographic findings, introduce a grading system that integrates radiologic and pathologic reporting in HS, and outline an approach to detecting HS subtypes by using MRI. This framework will not only benefit current clinical evaluations, but also enhance future studies involving high-resolution MRI in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit K Agarwal
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Brin E Freund
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Steven A Messina
- Department of Radiology (S.A.M.), Mayo Clinic, Rochester, Minnesota
| | - William O Tatum
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - David S Sabsevitz
- Department of Psychiatry and Psychology (D.S.S.), Mayo Clinic, Jacksonville, Florida
| | - Anteneh M Feyissa
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Seyed M Mirsattari
- Departments of Clinical Neurological Sciences, Medical Imaging, Medical Biophysics, and Psychology (S.M.M.), University of Western Ontario, London, Ontario, Canada
| | - Fernando N Galan
- Department of Neurology (F.N.G.), Nemours Children's Health, Jacksonville, Florida
| | | | - Sanjeet S Grewal
- Department of Neurosurgery (A.Q.-H., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - John V Murray
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
4
|
Wang Q, Qin B, Yu H, Hu Y, Yu H, Zhong J, Liu J, Yao C, Zeng J, Fan J, Diao L. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024; 551:246-253. [PMID: 38843987 DOI: 10.1016/j.neuroscience.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, 6 Seventh Branch Road, Panxi, Jiangbei District, Chongqing 400021, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi 30007, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jie Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jiawei Zeng
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jingjing Fan
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China.
| |
Collapse
|
5
|
Singh T, Ramakrishnan S, Wu X, Reddy DS. A Pediatric Rat Model of Organophosphate-Induced Refractory Status Epilepticus: Characterization of Long-Term Epileptic Seizure Activity, Neurologic Dysfunction and Neurodegeneration. J Pharmacol Exp Ther 2024; 388:416-431. [PMID: 37977810 PMCID: PMC10801778 DOI: 10.1124/jpet.123.001794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023] Open
Abstract
Children are highly vulnerable to the neurotoxic effects of organophosphates (OPs), which can cause neuronal developmental defects, including intellectual disability, autism, epilepsy, and related comorbidities. Unfortunately, no specific pediatric OP neurotoxicity model currently exists. In this study, we developed and characterized a pediatric rat model of status epilepticus (SE) induced by the OP diisopropylfluorophosphate (DFP) and examined its impact on long-term neurological outcomes. Postnatal day 21 rats were exposed to a DFP regimen with standard antidotes. Progressive behavioral deteriorations were assessed over a three-month period. Development of epileptic seizures, ictal discharges, high-frequency oscillations (HFOs), and interictal spikes were monitored by video-electroencephalography recordings. Histology-stereology analysis was performed to assess neurodegeneration, neuroinflammation, and morphologic abnormalities. DFP-exposed, post-SE animals exhibited significantly elevated levels of anxiety and depression than age-matched controls at 1, 2, and 3 months post-exposure. DFP-exposed animals displayed aggressive behavior and a marked decline in object recognition memory, as well as prominent impairment in spatial learning and memory. DFP-exposed animals had striking electrographic abnormalities with the occurrence of displayed epileptic seizures, ictal discharges, HFOs, and interictal spikes, suggesting chronic epilepsy. Neuropathological analysis showed substantially fewer principal neurons and inhibitory interneurons with a marked increase in reactive microglia and neuroinflammation in the hippocampus and other brain regions. DFP-exposed animals also exhibited mossy fiber sprouting indicating impaired network formations. Long-term epileptic seizures and neuropsychiatric functional deficits induced by DFP were consistent with neuropathological defects. Collectively, this pediatric model displays many hallmarks of chronic sequelae reminiscent of children exposed to OPs, suggesting that it will be a valuable tool for investigating pathologic mechanisms and potential treatment strategies to attenuate long-term OP neurotoxicity. SIGNIFICANCE STATEMENT: Millions of children are exposed to organophosphates (OPs) used in agriculture or chemical incidents. This study investigated the long-term impact of neonatal exposure to the OP chemical diisopropylfluorophosphate (DFP) on neurobehavioral and neurodevelopmental outcomes in adulthood. DFP exposure caused long-lasting behavioral abnormalities, epileptic seizures, and bilateral brain defects with an array of neurological sequelae seen in children's OP neurotoxicity. Thus, this model provides a novel tool to explore therapeutic interventions that mitigate long-term neurotoxic effects of children exposed to OP-induced seizures and status epilepticus.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas (T.S., S.R., X.W., D.S.R.) and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas (T.S., S.R., X.W., D.S.R.)
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas (T.S., S.R., X.W., D.S.R.) and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas (T.S., S.R., X.W., D.S.R.)
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas (T.S., S.R., X.W., D.S.R.) and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas (T.S., S.R., X.W., D.S.R.)
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, Texas (T.S., S.R., X.W., D.S.R.) and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas (T.S., S.R., X.W., D.S.R.)
| |
Collapse
|
6
|
McAfee D, Moyer M, Queen J, Mortazavi A, Boddeti U, Bachani M, Zaghloul K, Ksendzovsky A. Differential metabolic alterations in IDH1 mutant vs. wildtype glioma cells promote epileptogenesis through distinctive mechanisms. Front Cell Neurosci 2023; 17:1288918. [PMID: 38026690 PMCID: PMC10680369 DOI: 10.3389/fncel.2023.1288918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
Collapse
Affiliation(s)
- Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jaden Queen
- The College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kareem Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Ots HD, Anderson T, Sherrerd-Smith W, DelBianco J, Rasic G, Chuprin A, Toor Z, Fitch E, Ahuja K, Reid F, Musto AE. Scoping review of disease-modifying effect of drugs in experimental epilepsy. Front Neurol 2023; 14:1097473. [PMID: 36908628 PMCID: PMC9997527 DOI: 10.3389/fneur.2023.1097473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Epilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention. Methods PubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control. Results Discrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties. Significance Our review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Collapse
Affiliation(s)
- Heather D. Ots
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Taylor Anderson
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | - John DelBianco
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Gordana Rasic
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anthony Chuprin
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Zeeshan Toor
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elizabeth Fitch
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kripa Ahuja
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Faith Reid
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
8
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
10
|
Pazarlar BA, Madsen CA, Oyar EÖ, Eğilmez CB, Mikkelsen JD. Temporal and Spatial Changes in Synaptic Vesicle Glycoprotein 2 A (SV2A) under Kainic Acid Induced Epileptogenesis: An Autoradiographic Study. Epilepsy Res 2022; 183:106926. [DOI: 10.1016/j.eplepsyres.2022.106926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
|
11
|
Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, Gambardella A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:ijms23063063. [PMID: 35328484 PMCID: PMC8954985 DOI: 10.3390/ijms23063063] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Correspondence: (I.M.); (A.G.)
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy;
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
- Correspondence: (I.M.); (A.G.)
| |
Collapse
|
12
|
Lee HM, Fadaie F, Gill R, Caldairou B, Sziklas V, Crane J, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N. Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain 2021; 145:897-908. [PMID: 34849619 DOI: 10.1093/brain/awab425] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
In drug-resistant temporal lobe epilepsy (TLE), precise predictions of drug response, surgical outcome, and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant "one-size-fits-all" group-level analytical approaches that does not allow parsing inter-individual variations along the disease spectrum. Conversely, analyzing inter-patient heterogeneity is increasingly recognized as a step towards person-centered care. Here, we utilized unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features (cortical thickness, hippocampal volume, FLAIR, T1/FLAIR, diffusion parameters) representing whole-brain patterns of structural pathology in 82 TLE patients. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically-verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor-1), bilateral paralimbic and hippocampal gliosis (Factor-2), bilateral neocortical atrophy (Factor-3), bilateral white matter microstructural alterations (Factor-4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug-response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is likely determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.
Collapse
Affiliation(s)
- Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fatemeh Fadaie
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Ravnoor Gill
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Viviane Sziklas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Joelle Crane
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research Institute for Basic Science, Department of Biomedical Engineering, Sungkyunkwan University Suwon South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
14
|
Roh H, Kim W, Kim J, Kim JH, Kim JH. Duration-dependent extensive volume and shape changes of mesolimbic structures in surgically treated unilateral patients with temporal lobe epilepsy. Epilepsy Behav 2021; 114:107517. [PMID: 33257292 DOI: 10.1016/j.yebeh.2020.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Although surgical treatment of drug-resistant mesial temporal lobe epilepsy (MTLE) has proven efficacy, surgical referrals are often delayed. Knowledge of the abnormalities of mesolimbic structures beyond the hippocampus may be important for patients with MTLE because of its usefulness in the understanding of progressive disabilities in affected structures. This study aimed to identify volume and shape changes of mesolimbic structures in surgically treated patients with unilateral MTLE and their correlation with various clinical parameters. METHODS Twenty-four patients with unilateral MTLE (12 with left MTLE [LMTLE] and 12 with right MTLE [RMTLE]) who were surgically treated with standard temporal lobectomy, including amygdalohippocampectomy, and 24 age- and sex-matched healthy individuals were enrolled. Preoperatively, volumetric analysis using magnetic resonance imaging (MRI) of 27 mesolimbic substructures (11 from each hemisphere and 5 from the midline) was performed. We also investigated the three-dimensional morphometric differences of the mesolimbic structures between the unilateral MTLE and control groups using shape analyses. RESULTS Patients with LMTLE showed significant volume reductions in various ipsilateral mesolimbic (72.7%, 8/11) and contralateral structures (27.3%, 3/11). Patients with RMTLE had also significant reduced volumes in ipsilateral (63.6%, 7/11) and contralateral structures (73.3%, 3/11). Among the clinical parameters, only the duration of epilepsy had a statistically significant inverse correlation with the volumes of the hippocampus, parahippocampus, entorhinal cortex, cingulate, and corpus callosum. In the shape analysis of the bilateral hippocampus, amygdala, parahippocampus, and entorhinal cortex, after accounting for the effects of age and total intracranial volume, significant shape changes in the anterolateral area of the ipsilateral hippocampus were noted, which corresponds to the cornu ammonis (CA)1 and subiculum of the hippocampus. CONCLUSIONS The extensive volume reductions in the multiple mesolimbic structures and the substantial inverse correlation between the duration of epilepsy and the volumes of the various mesolimbic structures in our study supports that MTLE is not restricted to the hippocampus, but it progressively involves extensive mesolimbic structures. The duration-dependent atrophic changes in multiple subcortical structures seen in this study also suggest a positive role of early surgical intervention for patients with drug-resistant TLE.
Collapse
Affiliation(s)
- Haewon Roh
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Won Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Junwon Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Ji Hyun Kim
- The Department of Neurology, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Jong Hyun Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea.
| |
Collapse
|
15
|
Ohgomori T, Jinno S. Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a mouse pilocarpine model of status epilepticus. Neuropharmacology 2020; 176:108227. [PMID: 32634527 DOI: 10.1016/j.neuropharm.2020.108227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that microglia may play a critical role in epileptogenesis during the early post-status epilepticus (SE) period. In this study, we aimed to elucidate the effects of preconditioning of microglia with lipopolysaccharide (LPS) on neuropathology and cognitive deficits in a mouse pilocarpine model of SE. Mice were treated with an intraperitoneal injection of LPS 24 h before SE induction. The open field test at 13 days after SE showed that LPS preconditioning suppressed SE-induced hyperactivity. The Y-maze test at 14 days after SE showed that LPS preconditioning ameliorated SE-induced working memory impairment. The extent of neuronal damage was decreased by LPS preconditioning in the hippocampus of mice euthanized at 15 days after SE. Gene profile analysis of hippocampal microglia at 15 days after SE showed that the expression level of interleukin-1β was increased by SE induction but decreased by LPS preconditioning. By contrast, SE induction increased the expression levels of phagocytosis-related genes, and LPS preconditioning further enhanced their expression. Interestingly, LPS preconditioning increased the numerical density of hippocampal microglia expressing the 5D4 keratan sulfate epitope, a population of cells known to be involved in phagocytosis. The voxel density of glutamatergic synapses was increased by SE induction but decreased by LPS preconditioning, while GABAergic synapses were not affected by these procedures. Our findings indicate that LPS preconditioning may in part alleviate SE-related abnormal synaptogenesis and cognitive deficits, and also suggest that modulation of microglial activation during the early post-SE period may be a novel strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Rehabilitation, Faculty of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Wu X, Zhou Y, Huang Z, Cai M, Shu Y, Zeng C, Feng L, Xiao B, Zhan Q. The study of microtubule dynamics and stability at the postsynaptic density in a rat pilocarpine model of temporal lobe epilepsy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:863. [PMID: 32793707 DOI: 10.21037/atm-19-4636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The recurrence and drug resistance of temporal lobe epilepsy (TLE) has been ceaselessly challenging scientists and epilepsy experts. There has been an accumulation of evidence linking the dysregulation of postsynaptic proteins etiology and the pathology of epilepsy. For example, NMDA receptors, AMPA receptors, and metabotropic glutamate receptors (mGluRs). Furthermore, our earlier proteomic analysis proved there to be differential expressions of cytoskeletons like microtubules among rat groups. These differential expressions were shown in TLE-spontaneous recurrent seizures (TLE-SRS), TLE without SRS (TLE-NSRS) and control groups. Therefore, we aimed to understand how the microtubule system of the hippocampal postsynaptic density (PSD) regulates the development of TLE. Methods In this study, a pilocarpine-induced Sprague-Dawley rat TLE model were used, and Western blot, Nissl staining, and the immunoelectron microscopic method were utilized to determine the dynamic change of microtubules (α- and β-tubulin) in PSD and the extent of hippocampal neuron loss respectively in acute SE, and latent and chronic (spontaneous seizures) periods. Animal models were then stereotactically treated using colchicine, a microtubule depolymerizer, and paclitaxel, a microtubule polymerization agent, after each animal's acute SE period so as to further explore the function of PSD microtubules. Results Our study revealed 3 principal findings. One, both α- and β-tubulin were decreased from the 3rd to the 30th day (lowest at the 7th day) in the seizure group compared with the controls. Two, both α- and β-tubulin were found to be more downregulated in the TLE-SRS and the TLE-NSRS group than in the control group (especially in the TLE-SRS group). The same trend was also noticed for hippocampal neuron loss. Three, the paclitaxel lowered the chronic SRS rate and increased the expression of PSD β-tubulin in the hippocampus. Conclusions Altogether, these results indicate that the microtubule system of PSD may play an essential role in the development and recurrence of epilepsy, and it may be used as a new target for the prevention and treatment of this refractory disease.
Collapse
Affiliation(s)
- Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhou
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Zhiling Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingfei Cai
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Shu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
18
|
Lee HJ, Park KM. Intrinsic hippocampal and thalamic networks in temporal lobe epilepsy with hippocampal sclerosis according to drug response. Seizure 2020; 76:32-38. [PMID: 31986443 DOI: 10.1016/j.seizure.2020.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this study was to investigate whether intrinsic hippocampal or thalamic networks in patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) were different according to antiepileptic drug (AED) response. METHODS We enrolled 80 patients with TLE with HS and 40 healthy controls. Of the patients with TLE with HS, 43 were classified as a drug-resistant epilepsy (DRE) group, whereas 37 patients were enrolled as a drug-controlled epilepsy (DCE) group. We investigated the structural connectivity of the global brain, intrinsic hippocampal, and intrinsic thalamic networks based on structural volumes in the patients with DRE and DCE, and analyzed the differences between them. RESULTS There were significant alterations of the intrinsic hippocampal network compared with healthy controls. The average degree and the global efficiency were decreased, whereas the characteristic path length was increased in the patients with DRE compared with those in healthy controls. In the patients with DCE, only the small-worldness index was decreased compared with healthy controls. Compared to the patients with DCE, the mean clustering coefficient was increased in the patients with DRE. CONCLUSION We found that the intrinsic hippocampal network in patients with TLE with HS was different according to AED response. The patients with DRE had more severe disruptions of the intrinsic hippocampal network than those with DCE compared with healthy controls. These findings suggested that the hippocampal network might be related to AED response and could be a new biomarker of medical outcome in patients with TLE with HS.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
19
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|
20
|
Involvement of hypoxia-inducible factor-1 alpha in the upregulation of P-glycoprotein in refractory epilepsy. Neuroreport 2019; 30:1191-1196. [PMID: 31634239 DOI: 10.1097/wnr.0000000000001345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To explore the involvement of hypoxia-inducible factor-1 alpha (HIF-1α) in the upregulation of P-glycoprotein (P-gp) in refractory epilepsy. Brain tissue specimens were collected and analyzed for expression of HIF-1α and P-gp using an immunohistochemical (IHC) staining method in both refractory epilepsy group and control group. Correlation between HIF-1α and P-gp expression level in refractory epilepsy group was analyzed. Then, a hypoxia cell model was established by simulating the nerve cell hypoxic microenvironment in the human U251 cell line using cobalt chloride (CoCl2). Western blot analysis was used to detect expression levels of HIF-1α and P-gp in the hypoxic cell model. Finally, expression of HIF-1α and P-gp was detected using real-time quantitative PCR and Western blot, respectively, after U251 hypoxic model cells were infected with HIF-1α siRNA. IHC scores of HIF-1α and P-gp in refractory epilepsy group were significantly higher than that in control group. In addition, the expression of HIF-1α was positively correlated with the expression of P-gp in refractory epilepsy group. Expression levels of HIF-1α and P-gp in U251 cells cultured with 250 µmol/L CoCl2 for 48 hours were significantly higher than that in controls. After transfection with siRNA targeting HIF-1α, expressions of HIF-1α and P-gp at mRNA and protein level were decreased, respectively, in the hypoxia cell model. HIF-1α may be involved in the upregulation of P-gp in refractory epilepsy through inducement of P-gp expression. Therefore, activation of the HIF-1α/P-gp pathway is one hypothesis proposed to explain the pathogenesis of refractory epilepsy.
Collapse
|
21
|
Ohgomori T, Jinno S. The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpine-induced status epileptics. J Comp Neurol 2019; 528:14-31. [PMID: 31237692 DOI: 10.1002/cne.24734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Induction of keratan sulfate in microglia has been found in several animal models of neurological disorders. However, the significance of keratan sulfate-expressing microglia is not fully understood. To address this issue, we analyzed the characteristics of microglia labeled by the 5D4 epitope, a marker of high-sulfated keratan sulfate, in the mouse hippocampus during the latent period after pilocarpine-induced status epilepticus (SE). Only 5D4-negative (5D4- ) microglia were found in the CA1 region of vehicle-treated controls and pilocarpine-treated mice at 1 day after SE onset. A few 5D4+ microglia appeared in the strata oriens and radiatum at 5 days post-SE, and they were distributed into the stratum pyramidale at 14 days post-SE. The expressions of genes related to both anti- and pro-inflammatory cytokines were higher in 5D4+ cells than in 5D4- cells at 5 but not 14 days post-SE. The expressions of genes related to phagocytosis were higher in 5D4+ cells than in 5D4- cells throughout the latent period. The phagocytic activity of microglia, as measured by engulfment of the zymosan bioparticles, was higher in 5D4+ cells than in 5D4- cells. The contact ratios between excitatory synaptic boutons and microglia were also higher in 5D4+ cells than in 5D4- cells at 5 and 14 days post-SE. The excitatory/inhibitory ratios of synaptic boutons within the microglial domain were lower in 5D4+ cells than in 5D4- cells at 14 days post-SE. Our findings indicate that 5D4+ microglia may play some role in epileptogenesis via pruning of excitatory synapses during the latent period after SE.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Song M, Tian F, Xia H, Xie Y. Repulsive guidance molecule a suppresses seizures and mossy fiber sprouting via the FAK‑p120RasGAP‑Ras signaling pathway. Mol Med Rep 2019; 19:3255-3262. [PMID: 30816469 DOI: 10.3892/mmr.2019.9951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 01/21/2019] [Indexed: 11/05/2022] Open
Abstract
Repulsive guidance molecule a (RGMa) is a membrane‑associated glycoprotein that regulates axonal guidance and inhibits axon outgrowth. In our previous study, we hypothesized that RGMa may be involved in temporal lobe epilepsy (TLE) via the repulsive guidance molecule a (RGMa)‑focal adhesion kinase (FAK)‑Ras signaling pathway. To investigate the role of RGMa in epilepsy, recombinant RGMa protein and FAK inhibitor 14 was intracerebroventricularly injected into a pentylenetetrazol (PTZ) kindling model and Timm staining, co‑immunoprecipitation and western blotting analyses were subsequently performed. The results of the present study revealed that intracerebroventricular injection of recombinant RGMa protein reduced the phosphorylation of FAK (Tyr397) and intracerebroventricular injection of FAK inhibitor 14 reduced the interaction between FAK and p120GAP, as wells as Ras expression. Recombinant RGMa protein and FAK inhibitor 14 exerted seizure‑suppressant effects; however, recombinant RGMa protein but not FAK inhibitor 14 suppressed mossy fiber sprouting in the PTZ kindling model. Collectively, these results demonstrated that RGMa may be considered as a potential therapeutic agent for epilepsy, and that RGMa may exert the aforementioned biological effects partly via the FAK‑p120GAP‑Ras signaling pathway.
Collapse
Affiliation(s)
- Mingyu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huang Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanyuan Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Wong VSC, Meadows M, Goldberg D, Willis DE. Semaphorin 3A induces acute changes in membrane excitability in spiral ganglion neurons in vitro. Eur J Neurosci 2019; 50:1741-1758. [PMID: 30706560 DOI: 10.1111/ejn.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/29/2022]
Abstract
The development and survival of spiral ganglion neurons (SGNs) are dependent on multiple trophic factors as well as membrane electrical activity. Semaphorins (Sema) constitute a family of membrane-associated and secreted proteins that have garnered significant attention as a potential SGN "navigator" during cochlea development. Previous studies using mutant mice demonstrated that Sema3A plays a role in the SGN pathfinding. The mechanisms, however, by which Sema3A shapes SGNs firing behavior are not known. In these studies, we found that Sema3A plays a novel role in regulating SGN resting membrane potential and excitability. Using dissociated SGN from pre-hearing (P3-P5) and post-hearing mice (P12-P15), we recorded membrane potentials using whole-cell patch clamp recording techniques in apical and basal SGN populations. Recombinant Sema3A was applied to examine the effects on intrinsic membrane properties and action potentials evoked by current injections. Apical and basal SGNs from newborn mice treated with recombinant Sema3A (100 ng/ml) displayed a higher resting membrane potential, higher threshold, decreased amplitude, and prolonged latency and duration of spikes. Although a similar phenomenon was observed in SGNs from post-hearing mice, the resting membrane potential was essentially indistinguishable before and after Sema3A exposure. Sema3A-mediated changes in membrane excitability were associated with a significant decrease in K+ and Ca2+ currents. Sema3A acts through linopirdine-sensitive K+ channels in apical, but not in the basal SGNs. Therefore, Sema3A induces differential effects in SGN membrane excitability that are dependent on age and location, and constitutes an additional early and novel effect of Sema3A SGNs in vitro.
Collapse
Affiliation(s)
| | - Marc Meadows
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - David Goldberg
- The Burke Neurological Institute, White Plains, New York
| | - Dianna E Willis
- The Burke Neurological Institute, White Plains, New York.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
24
|
Ofer I, LeRose C, Mast H, LeVan P, Metternich B, Egger K, Urbach H, Schulze-Bonhage A, Wagner K. Association between seizure freedom and default mode network reorganization in patients with unilateral temporal lobe epilepsy. Epilepsy Behav 2019; 90:238-246. [PMID: 30538081 DOI: 10.1016/j.yebeh.2018.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 01/10/2023]
Abstract
RATIONALE The spontaneous synchronized activity and intrinsic organization of the Default Mode Network (DMN) has been found to be altered because of epileptic activity of temporal lobe origin. Thus, the aim of the present study was to compare DMN's topological properties in patients with seizure-free (SF) and not seizure-free (NSF) temporal lobe epilepsy (TLE). METHODS Functional connectivity within the DMN was determined from an 8-minute resting state functional magnetic resonance imaging (fMRI) in 27 patients with TLE (12 SF, 15 NSF) and 15 healthy controls (HC). The DMN regions of interest were extracted according to the automated anatomical labeling (AAL) atlas. Network properties were assessed using standard graph-theoretical measures. RESULTS Analyses revealed, irrespectively of focus lateralization, borderline significance for longer paths (p = 0.049) and in trend reduced local efficiency within the DMN of SF when compared with that of NSF (p = 0.075). The SF and NSF patients did not differ in global network topology from HC (p > 0.05). At the nodal network level, the degree of central hubs was significantly reduced in SF when compared with that in NSF (0.002 ≤ p ≤ 0.080) and HC (0.001 ≤ p ≤ 0.066) while simultaneously, right anterior superior temporal gyrus revealed significantly higher degree in SF than in NSF (p = 0.005) and HC (p = 0.016). CONCLUSION Seizure freedom seems to be associated with hub redistributions that may underlie longer paths and (in trend) reduced local efficiency of the network. An associated slower system response might reduce the probability of a rapid spread of epileptic discharges over the whole network and may help to prevent hypersynchronous neuronal activity in brain networks that may result in epileptic seizures.
Collapse
Affiliation(s)
- Isabell Ofer
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany.
| | | | - Hansjoerg Mast
- Faculty of Medicine, University of Freiburg, Germany; Department of Neuroradiology, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| | - Pierre LeVan
- Faculty of Medicine, University of Freiburg, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Germany
| | - Birgitta Metternich
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| | - Karl Egger
- Faculty of Medicine, University of Freiburg, Germany; Department of Neuroradiology, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| | - Horst Urbach
- Faculty of Medicine, University of Freiburg, Germany; Department of Neuroradiology, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| | - Kathrin Wagner
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
25
|
Rutland JW, Feldman RE, Delman BN, Panov F, Fields MC, Marcuse LV, Hof PR, Lin HM, Balchandani P. Subfield-specific tractography of the hippocampus in epilepsy patients at 7 Tesla. Seizure 2018; 62:3-10. [PMID: 30245458 PMCID: PMC6221989 DOI: 10.1016/j.seizure.2018.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE MRI-negative epilepsy patients could benefit from advanced imaging techniques such as high-resolution diffusion magnetic resonance imaging (dMRI). Our aim was to perform hippocampal subfield-specific tractography and quantify connectivity of the subfields in MRI-negative patients. Abnormal connectivity of the hippocampal subfields may help inform seizure focus hypothesis and provide information to guide surgical intervention. METHODS Hippocampal structural imaging and dMRI was acquired in 25 drug resistant MRI-negative patients and 25 healthy volunteers. The hippocampi of each subject was segmented on high-resolution structural images and dMRI-based probabilistic tractography was performed in each subfield. The degrees of connectivity and fiber densities of the hippocampal subfields were quantified and compared between epilepsy patients and healthy volunteers. RESULTS We were able to perform subfield-specific hippocampal tractography in each subject that participated in this study. These methods identified some hippocampal subfields that are abnormally connected in MRI-negative patients. In particular patients suspected of left temporal seizure focus exhibited increased connectivity of certain ipsilateral subfields, especially the subiculum, presubiculum, and parasubiculum, and reduced connectivity of some contralateral subfields, such as CA1 and subiculum. CONCLUSIONS Our data suggest that the hippocampal subfields are connected in distinct ways in different types of epilepsy. These results may provide important information that could help inform seizure focus hypothesis and in the surgical treatment of MRI-negative patients. These observations suggest that high-resolution dMRI-based tractography of the hippocampal subfields can detect subtle abnormalities in otherwise normal-appearing MRI-negative patients.
Collapse
Affiliation(s)
- John W Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Rebecca E Feldman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N Delman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fedor Panov
- Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States
| | - Madeline C Fields
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| | - Lara V Marcuse
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| | - Patrick R Hof
- Department of Neuroscience, Mount Sinai Hospital, New York, NY, United States
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Mount Sinai Hospital, New York, NY, United States
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Fukumura S, Sasaki M, Kataoka-Sasaki Y, Oka S, Nakazaki M, Nagahama H, Morita T, Sakai T, Tsutsumi H, Kocsis JD, Honmou O. Intravenous infusion of mesenchymal stem cells reduces epileptogenesis in a rat model of status epilepticus. Epilepsy Res 2018; 141:56-63. [PMID: 29475054 DOI: 10.1016/j.eplepsyres.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/22/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Status epilepticus (SE) causes neuronal cell death, aberrant mossy fiber sprouting (MFS), and cognitive deteriorations. The present study tested the hypothesis that systemically infused mesenchymal stem cells (MSCs) reduce epileptogenesis by inhibiting neuronal cell death and suppressing aberrant MFS, leading to cognitive function preservation in a rat model of epilepsy. METHODS SE was induced using the lithium-pilocarpine injection model. The seizure frequency was scored using a video-monitoring system and the Morris water maze test was carried out to evaluate cognitive function. Comparisons were made between MSCs- and vehicle-infused rats. Immunohistochemical staining was performed to detect Green fluorescent protein (GFP)+ MSCs and to quantify the number of GAD67+ and NeuN+ neurons in the hippocampus. Manganese-enhanced magnetic resonance imaging (MEMRI) and Timm staining were also performed to assess the MFS. RESULTS MSC infusion inhibited epileptogenesis and preserved cognitive function after SE. The infused GFP+ MSCs were accumulated in the hippocampus and were associated with the preservation of GAD67+ and NeuN+ hippocampal neurons. Furthermore, the MSC infusion suppressed the aberrant MFS in the hippocampus as evidenced by MEMRI and Timm staining. CONCLUSIONS This study demonstrated that the intravenous infusion of MSCs mitigated epileptogenesis, thus advancing MSCs as an effective approach for epilepsy in clinical practice.
Collapse
Affiliation(s)
- Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroshi Nagahama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Tomonori Morita
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Takuro Sakai
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
27
|
|
28
|
Preglej L, Marinković K, Hećimović H. Differences in emotional stimuli processing in subjects with MTLE with and without depression. Epilepsy Behav 2017; 74:87-93. [PMID: 28732260 DOI: 10.1016/j.yebeh.2017.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
In healthy people, a preference in attention maintenance and memory for words with emotional valence comparing to neutral words has been shown. The pattern of emotional stimuli processing may be different in people with mesial temporal lobe epilepsy (MTLE) and it may be sensitive to the presence of depressive symptoms. In order to explore these possibilities, we applied the emotional spatial cueing attentional task and the free recall memory task to participants (N=39) with MTLE and compared them with healthy controls. We hypothesized that the pattern of maintaining attention and remembering emotional words is different in people with MTLE. Current literature indicates that this pattern will change from positive bias in the controls, though no emotional bias in the participants with MTLE without depression (MTLE-d), and in this work we examined this pattern in the participants with MTLE with depressive symptoms (MTLE+d). Our results show that in both attention and memory, control subjects exhibit positive emotional bias, the subjects with MTLE-d show nonemotional bias and the subjects with MTLE+d have bias away from positive words. Participants with MTLE+d maintained attention for positive words shorter than others. Participants with MTLE+d had worse recall for positive words than the participants with MTLE-d and for all words when compared to controls. We found that faster attention disengagement from positive words and worse memory for positive words is associated with elevated levels of depressive symptoms.
Collapse
Affiliation(s)
- Lidija Preglej
- The Accredited Private Classical High School, Zagreb, Croatia; University of Zagreb, Croatia.
| | - Ksenija Marinković
- Department of Psychology, San Diego State University, San Diego, CA, United States; Department of Radiology, University of California at San Diego, San Diego, CA, United States.
| | - Hrvoje Hećimović
- Neuro Center, Zagreb, Croatia; Neuromed Campus, J. Kepler University, Linz, Austria; University Nord, Varaždin, Croatia.
| |
Collapse
|
29
|
Gulyaeva NV. Staging of neuroplasticity alterations during epileptogenesis (temporal lobe epileply as an example). Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:10-16. [DOI: 10.17116/jnevro20171179210-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Song MY, Tian FF, Dang J, Huang WJ, Guo JL. Possible Role of Protein CPG15 in Hippocampal Mossy Fiber Sprouting Under Conditions of Pentylenetetrazole Kindling. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kim JB, Suh SI, Kim JH. Volumetric and shape analysis of hippocampal subfields in unilateral mesial temporal lobe epilepsy with hippocampal atrophy. Epilepsy Res 2015; 117:74-81. [DOI: 10.1016/j.eplepsyres.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/11/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
|
32
|
Huang Y, Wu X, Guo J, Yuan J. Myocyte-specific enhancer binding factor 2A expression is downregulated during temporal lobe epilepsy. Int J Neurosci 2015; 126:786-96. [PMID: 26439092 DOI: 10.3109/00207454.2015.1062003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myocyte-specific enhancer binding factor 2A (MEF2A) is a multifunctional nuclear protein that regulates synaptogenesis, dendritic morphogenesis, and neuronal survival. This study aimed to investigate the expression pattern of MEF2A in epileptogenic processes. MEF2A expression was detected in 20 temporal neocortex tissue samples from patients with temporal lobe epilepsy (TLE) and 20 samples from trauma patients without epilepsy by real-time quantitative polymerase chain reaction, immunohistochemistry, double-label immunofluorescent staining, and western blot analysis. In addition, the expression patterns of MEF2A in the hippocampus and adjacent cortex of a lithium-pilocarpine-induced TLE rat model and control rats were examined. MEF2A was found to be expressed in the nuclei of neurons but not in the dendrites of neurons and astrocytes. MEF2A expression was significantly downregulated in temporal neocortex of humans and rats with TLE compared to the control groups. In addition, in the lithium-pilocarpine-induced TLE model, MEF2A expression dynamically decreased within 2 months. Taken together, these data suggest that MEF2A is involved in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Yunyi Huang
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Xuling Wu
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Jing Guo
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Jinxian Yuan
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| |
Collapse
|
33
|
Huang Y. Up-regulated cytoplasmic FMRP-interacting protein 1 in intractable temporal lobe epilepsy patients and a rat model. Int J Neurosci 2015; 126:542-551. [PMID: 26000921 DOI: 10.3109/00207454.2015.1038711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytoplasmic FMRP-interacting protein 1 (CYFIP1) is a multifunctional protein which expresses highly at excitatory synapses and can locally regulate actin cytoskeletal dynamics, spine morphology and synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor lateral diffusion. Altered synaptic actin plays a role in the pathogenesis of epilepsy. The aim of this study was to investigate the expression pattern of CYFIP1 in temporal lobe epilepsy (TLE). Protein and mRNA expression levels were compared in temporal lobe tissue from patients with TLE versus trauma patients without TLE using quantitative real-time polymerase chain reaction (qRT-PCR), double-label immunofluorescence and Western blot analysis. We have further determined the expression pattern of Cyfip1 mRNA and protein in the hippocampus and adjacent cortex of a common rat model of TLE, lithium-pilocarpine treatment, compared to control rats. CYFIP1 expression was significantly up-regulated in the temporal neocortex of patients with intractable TLE and pilocarpine-treated rats compared to control groups. CYFIP1 localizes to the cytoplasm of neurons, and is not expressed in the astrocytes. Furthermore, CYFIP1 expression levels increased significantly in the two months after pilocarpine treatment, which corresponds to the period of epileptogenesis. Thus, our results indicate that CYFIP1 may be involved in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Yunyi Huang
- a Department of Neurology, The Second Affiliated Hospital , Chongqing Medical University , Chongqing , China
| |
Collapse
|
34
|
Wang D, Ren M, Guo J, Yang G, Long X, Hu R, Shen W, Wang X, Zeng K. The inhibitory effects of Npas4 on seizures in pilocarpine-induced epileptic rats. PLoS One 2014; 9:e115801. [PMID: 25536221 PMCID: PMC4275263 DOI: 10.1371/journal.pone.0115801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023] Open
Abstract
To explore the effects of neuronal Per-Arnt-Sim domain protein 4 (Npas4) on seizures in pilocarpine-induced epileptic rats, Npas4 expression was detected by double-label immunofluorescence, immunohistochemistry, and Western blotting in the brains of pilocarpine-induced epileptic model rats at 6 h, 24 h, 72 h, 7 d, 14 d, 30 d, and 60 d after status epilepticus. Npas4 was localized primarily in the nucleus and in the cytoplasm of neurons. The Npas4 protein levels increased in the acute phase of seizures (between 6 h and 72 h) and decreased in the chronic phases (between 7 d and 60 d) in the rat model. Npas4 expression was knocked down by specific siRNA interference. Then, the animals were treated with pilocarpine, and the effects on seizures were evaluated on the 7th day. The onset latencies of pilocarpine-induced seizures were decreased, while the seizure frequency, duration and attack rate increased in these rats. Our study indicates that Npas4 inhibits seizure attacks in pilocarpine-induced epileptic rats.
Collapse
Affiliation(s)
- Dan Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Min Ren
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jiamei Guo
- Department of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guang Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xianghua Long
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Rong Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Wenjing Shen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Kebin Zeng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
- * E-mail:
| |
Collapse
|
35
|
Bujarski KA, Wozniak G, Kobylarz EJ. Cognitive impairment predicts social disability in persons with epilepsy. JOURNAL OF EPILEPTOLOGY 2014. [DOI: 10.1515/joepi-2015-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SUMMARYIntroduction.Cognitive dysfunction is one of the main comorbidities of epilepsy which co-exists with seizures and contributes to the adverse impact of the disease on employment, education and interpersonal relationships. A fundamental question regarding cognitive dysfunction in epilepsy goes as follows: in comparison to seizures, what role does cognitive dysfunction play in causing social disability? The purpose of this review was to evaluate our understanding of the role cognitive impairment plays in social disability in persons with epilepsy (PWE). We systematically searched the medical literature and identified studies which assessed the impact of seizures and cognitive function on some aspect of social disability in PWE.Results and Discussion.We identified 12 studies which adequately measured all variables in non-surgical cohorts, and 9 studies of cohorts following epilepsy surgery. We found evidence from non-surgical and from surgical series that cognitive variables strongly correlate with levels of social disability.Conclusions.We conclude that efforts to better understand the origins of cognitive dysfunction in epilepsy and subsequently at developing treatment modalities will be needed in order to reduce the degree of social disability caused by the condition.
Collapse
|
36
|
Song MY, Tian FF, Wang YZ, Huang X, Guo JL, Ding DX. Potential roles of the RGMa-FAK-Ras pathway in hippocampal mossy fiber sprouting in the pentylenetetrazole kindling model. Mol Med Rep 2014; 11:1738-44. [PMID: 25420768 PMCID: PMC4270322 DOI: 10.3892/mmr.2014.2993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
Mossy fiber sprouting (MFS) is a unique feature of chronic epilepsy. However, the molecular signals underlying MFS are still unclear. The repulsive guidance molecule A (RGMa) appears to contribute to axon growth and axonal guidance, and may exert its biological effects by dephosphorylating focal adhesion kinase (FAK) at Tyr397, then regulating the activation of Ras. The objective of this study was to explore the expression patterns of RGMa, FAK (Tyr397) and Ras in epileptogenesis, and their correlation with MFS. The epileptic models were established by intraperitoneal pentylenetetrazole (PTZ) injection of Sprague-Dawley rats. At 3 days and at 1, 2, 4 and 6 weeks after the first PTZ injection, Timm staining was scored at different time points in the CA3 region of the hippocampus and dentate gyrus. The protein levels of RGMa, FAK (Tyr397) and Ras were analyzed at different time points in the CA3 region of the hippocampus using immunofluorescence, immunohistochemistry and western blot analysis. Compared with the control (saline-injected) group, the expression of RGMa in the CA3 area was significantly downregulated (P<0.05) from 3 days and still maintained the low expression at 6 weeks in the PTZ group. The expression of FAK (Tyr397) and Ras was upregulated (P<0.05) in the PTZ groups. The Timm score in the CA3 region was significantly higher than that in the control group at different time points and reached a peak at 4 weeks. In the CA3 region, no obvious distinction was observed at the different time points in the control group. To the best of our knowledge, these are the first results to indicate that the RGMa-FAK-Ras pathway may be involved in MFS and the development of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ming-Yu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fa-Fa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Zhong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia-Ling Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dong-Xue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
37
|
Barron DS, Fox PT, Pardoe H, Lancaster J, Price LR, Blackmon K, Berry K, Cavazos JE, Kuzniecky R, Devinsky O, Thesen T. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy. NEUROIMAGE-CLINICAL 2014; 7:273-80. [PMID: 25610790 PMCID: PMC4300013 DOI: 10.1016/j.nicl.2014.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 01/07/2023]
Abstract
Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses. A thalamic disease model informed connectivity analyses in temporal lobe epilepsy. No patient vs. control group differences in thalamic connection strength were observed. Yet thalamic functional connection strength predicted seizure onset laterality. Lack of group difference should not deter constrained assessment in individuals. Meta-analytic disease models successfully guide individual patient biomarker development.
Collapse
Affiliation(s)
- Daniel S Barron
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Yale University School of Medicine, New Haven, CT, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; South Texas Veterans Health Care System, San Antonio, TX, USA ; Department of Neurology, University of TX Health Science Center, San Antonio, TX, USA ; State Key Lab for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong
| | - Heath Pardoe
- Department of Neurology, New York University, New York, NY, USA
| | - Jack Lancaster
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA ; Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Larry R Price
- College of Education, Texas State University, San Marcos, TX, USA ; College of Science, Texas State University, San Marcos, TX, USA
| | - Karen Blackmon
- Department of Neurology, New York University, New York, NY, USA
| | - Kristen Berry
- Department of Neurology, New York University, New York, NY, USA
| | - Jose E Cavazos
- Department of Neurology, University of TX Health Science Center, San Antonio, TX, USA ; San Antonio Epilepsy Center of Excellence, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Ruben Kuzniecky
- Department of Neurology, New York University, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University, New York, NY, USA
| | - Thomas Thesen
- Department of Neurology, New York University, New York, NY, USA
| |
Collapse
|
38
|
Beydoun A, D’Souza J, Hebert D, Doty P. Lacosamide: pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev Neurother 2014; 9:33-42. [DOI: 10.1586/14737175.9.1.33] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Ghotbedin Z, Janahmadi M, Mirnajafi-Zadeh J, Behzadi G, Semnanian S. Electrical Low Frequency Stimulation of the Kindling Site Preserves the Electrophysiological Properties of the Rat Hippocampal CA1 Pyramidal Neurons From the Destructive Effects of Amygdala Kindling: The Basis for a Possible Promising Epilepsy Therapy. Brain Stimul 2013; 6:515-23. [DOI: 10.1016/j.brs.2012.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/29/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
|
40
|
Dedeurwaerdere S, Fang K, Chow M, Shen YT, Noordman I, van Raay L, Faggian N, Porritt M, Egan G, O'Brien T. Manganese-enhanced MRI reflects seizure outcome in a model for mesial temporal lobe epilepsy. Neuroimage 2013; 68:30-8. [DOI: 10.1016/j.neuroimage.2012.11.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022] Open
|
41
|
Zhu Q, Wang L, Xiao Z, Xiao F, Luo J, Zhang X, Peng X, Wang X, Sun H. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats. Brain Res 2013. [DOI: 10.1016/j.brainres.2012.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Functional network changes in hippocampal CA1 after status epilepticus predict spatial memory deficits in rats. J Neurosci 2012; 32:11365-76. [PMID: 22895719 DOI: 10.1523/jneurosci.1516-12.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Status epilepticus (SE) is a common neurological emergency, which has been associated with subsequent cognitive impairments. Neuronal death in hippocampal CA1 is thought to be an important mechanism of these impairments. However, it is also possible that functional interactions between surviving neurons are important. In this study we recorded in vivo single-unit activity in the CA1 hippocampal region of rats while they performed a spatial memory task. From these data we constructed functional networks describing pyramidal cell interactions. To build the networks, we used maximum entropy algorithms previously applied only to in vitro data. We show that several months following SE pyramidal neurons display excessive neuronal synchrony and less neuronal reactivation during rest compared with those in healthy controls. Both effects predict rat performance in a spatial memory task. These results provide a physiological mechanism for SE-induced cognitive impairment and highlight the importance of the systems-level perspective in investigating spatial cognition.
Collapse
|
43
|
Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol 2012; 31:170-7. [PMID: 22285841 DOI: 10.1016/j.matbio.2012.01.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.
Collapse
Affiliation(s)
- W Christopher Risher
- Cell Biology Department, Duke University Medical Center, Durham, NC 27710, United States
| | | |
Collapse
|
44
|
Ono T, Galanopoulou AS. Epilepsy and epileptic syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:99-113. [PMID: 22411237 DOI: 10.1007/978-1-4614-0653-2_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common neurological disorders. In most patients with epilepsy, seizures respond to available medications. However, a significant number of patients, especially in the setting of medically-intractable epilepsies, may experience different degrees of memory or cognitive impairment, behavioral abnormalities or psychiatric symptoms, which may limit their daily functioning. As a result, in many patients, epilepsy may resemble a neurodegenerative disease. Epileptic seizures and their potential impact on brain development, the progressive nature of epileptogenesis that may functionally alter brain regions involved in cognitive processing, neurodegenerative processes that relate to the underlying etiology, comorbid conditions or epigenetic factors, such as stress, medications, social factors, may all contribute to the progressive nature of epilepsy. Clinical and experimental studies have addressed the pathogenetic mechanisms underlying epileptogenesis and neurodegeneration.We will primarily focus on the findings derived from studies on one of the most common causes of focal onset epilepsy, the temporal lobe epilepsy, which indicate that both processes are progressive and utilize common or interacting pathways. In this chapter we will discuss some of these studies, the potential candidate targets for neuroprotective therapies as well as the attempts to identify early biomarkers of progression and epileptogenesis, so as to implement therapies with early-onset disease-modifying effects.
Collapse
Affiliation(s)
- Tomonori Ono
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
45
|
Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:194790. [PMID: 21837247 PMCID: PMC3151516 DOI: 10.1155/2012/194790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus
Collapse
|
46
|
Transplantation of Neural Stem Cells Overexpressing Cardiotrophin-1 Inhibits Sprouting of Hippocampal Mossy Fiber in a Rat Model of Status Epilepticus. Cell Biochem Biophys 2011; 61:367-70. [DOI: 10.1007/s12013-011-9219-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Musto AE, Gjorstrup P, Bazan NG. The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia 2011; 52:1601-8. [PMID: 21569016 DOI: 10.1111/j.1528-1167.2011.03081.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Temporal lobe epilepsy, one of the most common epilepsy syndromes, is characterized by hippocampal hyperexcitability and progressive seizure susceptibility. Omega-3 fatty acids are involved in neuronal excitability and have anticonvulsant properties. We studied the effect of docosahexaenoic acid (DHA) or its derived lipid mediator, neuroprotectin D1 (NPD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid), in evoked seizures using a rapid kindling model of temporal lobe epilepsy. METHODS DHA or NPD1 was administered in rodents with or without kindling acquisition. Locomotor seizures and evoked epileptiform hippocampal activity immediately after hippocampal stimulations were analyzed. KEY FINDINGS DHA or NPD1 limits hippocampal electrically induced hyperexcitability. Seizures induced by kindling triggered NPD1 synthesis in the hippocampus. Supplying its precursor, DHA, or direct injection of NPD1 into the third ventricle resulted in attenuation of kindling progression and hippocampal hyperexcitability. SIGNIFICANCE The significance of NPD1 in temporal lobe epilepsy could open new pathways for understanding the initiation and propagation of seizures and the role this lipid mediator plays in the neuronal network.
Collapse
Affiliation(s)
- Alberto E Musto
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
48
|
Wang Y, Khanna R. VOLTAGE-GATED CALCIUM CHANNELS ARE NOT AFFECTED BY THE NOVEL ANTI-EPILEPTIC DRUG LACOSAMIDE. Transl Neurosci 2011; 2:13-22. [PMID: 21949591 PMCID: PMC3178266 DOI: 10.2478/s13380-011-0002-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The novel anti-epileptic drug lacosamide targets two proteins - voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP-2) - suggesting dual modes of action for lacosamide. We recently identified the neurite outgrowth and axonal guidance protein CRMP-2 as a novel partner and regulator of the presynaptic N-type voltage-gated Ca(2+) channel (CaV2.2) [Brittain et al., J. Biol. Chem. 284: 31375-31390 (2009)]. Here we examined the effects of lacosamide on voltage-gated Ba(2+) channels. Lacosamide did not affect Ba(2+) currents via N- and P/Q- channels in rat hippocampal neurons or L-type Ca(2+) channels in a mouse CNS neuronal cell line, respectively. N-type Ba(2+) currents, augmented by CRMP-2 expression, were also unaffected by acute or chronic lacosamide exposure. These results establish that the anti-epileptic mode of action of lacosamide does not involve these voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Paul and Carole Stark Neurosciences, Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Paul and Carole Stark Neurosciences, Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
49
|
Pallud J, Häussler U, Langlois M, Hamelin S, Devaux B, Deransart C, Depaulis A. Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy. Hippocampus 2011; 21:334-43. [DOI: 10.1002/hipo.20795] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
50
|
Vivash L, Tostevin A, Liu D, Dalic L, Dedeurwaerdere S, Hicks R, Williams D, Myers D, O'Brien T. Changes in hippocampal GABAA/cBZR density during limbic epileptogenesis: Relationship to cell loss and mossy fibre sprouting. Neurobiol Dis 2011; 41:227-36. [DOI: 10.1016/j.nbd.2010.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/10/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022] Open
|