1
|
El-Shafei SMA, El-Rahman AAA, Abuelsaad ASA, Al-Khalaf AA, Shehab GMG, Abdel-Aziz AM. Assessment of the potential protective effects of culture filtrate of Trichoderma harzianum to ameliorate the damaged histoarchitecture of brain in epileptic rats. Metab Brain Dis 2024; 39:1363-1385. [PMID: 39115642 DOI: 10.1007/s11011-024-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/14/2024] [Indexed: 10/29/2024]
Abstract
The simultaneous hyperexcitability of the neural network is the most well-known manifestation of epilepsy that causes recurrent seizures. The current study was aimed to examine any potential safety benefits of the culture filtrate of Trichoderma harzianum (ThCF) to ameliorate damaged histoarchitecture of the brain in epileptic rats by assessing seizure intensity scale and behavioral impairments and follow up the spontaneous motor seizures during status epilepticus phases in rats. Twenty-four rats were divided into four groups; control (C), epileptic (EP) valproic acid-treated epileptic (EP-VPA), and epileptic treated with T. harzianum cultured filtrate (ThCF). In addition to a seizure intensity score and behavioral tests, routine H&E and Golgi-Copsch histopathology, were used to examine the cell somas, dendrites, axons, and neural spines. ThCF treatment increased activity and recorded movements during grooming, rearing, and ambulation frequency. Brain tissues of epileptic rats exhibited detached meninges, hypercellularity, mild edema in the cortex and markedly degenerated neurons, degenerated glial cells, and microcyst formation in the hippocampus. Moreover, brains of EP-ThCF were noticed with average blood vessels, and increased dendritogenesis. The current data revealed some of negative effects of epileptogenesis brought on by seizure intensity score and retarded histopathological alterations in the hippocampus. Therefore, the study is forecasting to identify novel active components from the metabolites of T. harzianum with a crucial therapeutic role in various disorders.
Collapse
Affiliation(s)
- Sally M A El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Atef A Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, 61517, El-Minya, Egypt
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Areej A Al-Khalaf
- Plant Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ayman M Abdel-Aziz
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
2
|
Altyar AE, Afzal M, Ghaboura N, Alharbi KS, Alenezi SK, Sayyed N, Kazmi I. Barbaloin Protects Pentylenetetrazol-Induced Cognitive Deficits in Rodents via Modulation of Neurotransmitters and Inhibition of Oxidative-Free-Radicals-Led Inflammation. Pharmaceuticals (Basel) 2024; 17:699. [PMID: 38931365 PMCID: PMC11206990 DOI: 10.3390/ph17060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Epilepsy is defined by an excessive level of activity in the neurons and coordinated bursts of electrical activity, resulting in the occurrence of seizure episodes. The precise cause of epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve neuroinflammation, oxidative stress, and malfunction of the neurotransmitter system. OBJECTIVE The goal of this investigation was to assess barbaloin's protective properties with respect to pentylenetetrazol (PTZ)-)-induced cognitive deficits in rats via antioxidative, anti-inflammatory, and neurotransmitter-modulating effects. METHODS Wistar rats were subjected to PTZ [40 mg/kg (i.p.)], which induced cognitive decline. Behavior assessment using a kindling score, open-field test (OFT), novel object recognition test (NORT), and assays for superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), acetylcholinesterase (AChE), caspase-3, nitric oxide (NO), interleukins-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, nuclear factor kappa-B (NF-κB), Bcl-2 and Bax, and neurotransmitter levels [GABA, DA, NE, and serotonin (5-HT)] were performed. RESULTS The treatment of rats with barbaloin resulted in behavior improvement and significant changes in the levels of GSH, SOD, CAT, MDA, AChE, NO, IL-6, IL-1β, TNF-α, NF-κB, caspase-3, Bcl-2, and Bax compared to the PTZ control group. Barbaloin treatment resulted in notable changes in neurotransmitter levels (GABA, NE, 5-HT, DA) compared to the PTZ group. CONCLUSIONS The ongoing study has gathered evidence indicating that the injection of barbaloin has resulted in significant improvements in cognitive performance in rats. This is achieved by inhibiting oxidative stress, enhancing the activity of natural antioxidant enzymes, reducing cytokine levels, and increasing the levels of neurotransmitters in the brain. These results were detected in comparison to a PTZ control and can be attributed to the potent anti-inflammatory and antioxidant capabilities of barbaloin, which could be linked to its neuroprotective properties. Barbaloin may potentially increase cognitive decline and boost neuronal survival by altering the expression of Bax, caspase-3, Bcl-2.
Collapse
Affiliation(s)
- Ahmad Essam Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Mirzapur-Pole, Saharanpur 247121, India;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box. 80200, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
3
|
Okanari K, Teranishi H, Umeda R, Shikano K, Inoue M, Hanada T, Ihara K, Hanada R. Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model. Behav Brain Res 2024; 464:114920. [PMID: 38403178 DOI: 10.1016/j.bbr.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.
Collapse
Affiliation(s)
- Kazuo Okanari
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Masanori Inoue
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan.
| |
Collapse
|
4
|
Araki T, Hiragi T, Kuga N, Luo C, Andoh M, Sugao K, Nagata H, Sasaki T, Ikegaya Y, Koyama R. Microglia induce auditory dysfunction after status epilepticus in mice. Glia 2024; 72:274-288. [PMID: 37746760 DOI: 10.1002/glia.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cong Luo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Tchekalarova J, Krushovlieva D, Ivanova P, Kortenska L. Spontaneously hypertensive rats vs. Wistar Kyoto and Wistar rats: an assessment of anxiety, motor activity, memory performance, and seizure susceptibility. Physiol Behav 2023:114268. [PMID: 37308045 DOI: 10.1016/j.physbeh.2023.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Spontaneously hypertensive rats (SHRs) are widely accepted for modeling essential hypertension and Attention deficit hyperactivity disorder (ADHD). However, data concerning central nervous system changes associated with behavioral responses of this strain and usage of Wistar Kyoto (WKY) rats as controls are confounding. The objective of the present study was to assess the impact of anxiety and motor activity on the cognitive responses of SHRs compared to Wistar and WKY rats. In addition, the role of brain-derived neurotrophic factor (BDNF) in the hippocampus on cognitive behavior and seizure susceptibility in the three strains was evaluated. In Experiment#1, SHR demonstrated impulsive responses in the novelty suppression feeding test accompanied by impaired spatial working and associative memory in the Y maze and object recognition test compared with the Wistar rat but not WKY rats. In addition, the WKY rats exhibited diminished activity compared to Wistar rats in an actimeter. In Experiment#2, the seizure susceptibility was assessed by 3-min electroencephalographic (EEG) recording after two consecutive injections of pentylenetetrazol (PTZ) (20+40 mg/kg). The WKY rats were more vulnerable to rhythmic metrazol activity (RMA) than the Wistar rats. In contrast, Wistar rats were more prone to generalized tonic-clonic seizures (GTCS) than WKY rats and SHRs. Control SHR had lower BDNF expression in the hippocampus compared to Wistar rats. However, while the BDNF levels were elevated in the Wistar and WKY rats after PTZ injection, no change in this signaling molecule was observed in the SHR in the seizure condition. The results suggest Wistar rats as a more appropriate control of SHR than WKY rats for studying memory responses mediated by BDNF in the hippocampus. The higher vulnerability to seizures in Wistar and WKY rats compared to SHR might be linked to PTZ-induced decreased expression of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | | | - Petya Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
6
|
Zahra A, Sun Y, Aloysius N, Zhang L. Convulsive behaviors of spontaneous recurrent seizures in a mouse model of extended hippocampal kindling. Front Behav Neurosci 2022; 16:1076718. [PMID: 36620863 PMCID: PMC9816810 DOI: 10.3389/fnbeh.2022.1076718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Growing studies indicate that vigilance states and circadian rhythms can influence seizure occurrence in patients with epilepsy and rodent models of epilepsy. Electrical kindling, referred to brief, repeated stimulations of a limbic structure, is a commonly used model of temporal lobe epilepsy. Kindling via the classic protocol lasting a few weeks does not generally induce spontaneous recurrent seizures (SRS), but extended kindling that applies over the course of a few months has shown to induce SRS in several animal species. Kindling-induced SRS in monkeys and cats were observed mainly during resting wakefulness or sleep, but the behavioral activities associated with SRS in rodent models of extended kindling remain unknown. We aimed to add information in this area using a mouse model of extended hippocampal kindling. Middle-aged C57 black mice experienced ≥80 hippocampal stimulations (delivered twice daily) and then underwent continuous 24 h electroencephalography (EEG)-video monitoring for SRS detection. SRS were recognized by EEG discharges and associated motor seizures. The five stages of the modified Racine scale for mice were used to score motor seizure severities. Seizure-preceding behaviors were assessed in a 3 min period prior to seizure onset and categorized as active and inactive. Three main observations emerged from the present analysis. (1) SRS were found to predominantly manifest as generalized (stage 3-5) motor seizures in association with tail erection or Straub tail. (2) SRS occurrences were not significantly altered by the light on/off cycle. (3) Generalized (stage 3-5) motor seizures were mainly preceded by inactive behaviors such as immobility, standing still, or apparent sleep without evident volitional movement. Considering deeper subcortical structures implicated in genesis of tail erection in other seizure models, we postulate that genesis of generalized motor seizures in extended kindled mice may involve deeper subcortical structures. Our present data together with previous findings from post-status epilepticus models support the notion that ambient cage behaviors are strong influencing factors of SRS occurrence in rodent models of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Anya Zahra
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yuqing Sun
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nancy Aloysius
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada,*Correspondence: Liang Zhang,
| |
Collapse
|
7
|
Essawy AE, El-Sayed SA, Tousson E, Abd El-Gawad HS, Alhasani RH, Abd Elkader HTAE. Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48573-48587. [PMID: 35194715 PMCID: PMC9252962 DOI: 10.1007/s11356-022-19251-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 06/09/2023]
Abstract
Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.
Collapse
Affiliation(s)
- Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Soad Ahmed El-Sayed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | | |
Collapse
|
8
|
Becari C, Pereira GL, Oliveira JAC, Polonis K, Garcia-Cairasco N, Costa-Neto CM, Pereira MGAG. Epilepsy Seizures in Spontaneously Hypertensive Rats After Acoustic Stimulation: Role of Renin-Angiotensin System. Front Neurosci 2020; 14:588477. [PMID: 33424536 PMCID: PMC7787150 DOI: 10.3389/fnins.2020.588477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a common comorbidity observed in individuals with epilepsy. Growing evidence suggests that lower blood pressure is associated with reduced frequency and severity of seizures. In this study, we sought to investigate whether the renin–angiotensin system (RAS), which is a critical regulator of blood pressure, is involved in the pathogenesis of audiogenic epilepsy-related seizures in a hypertensive rat model. Spontaneously hypertensive rats (SHRs) were given RAS inhibitors, angiotensin-converting enzyme (ACE) inhibitor or angiotensin II type I receptor (AT1R) antagonist, for 7 days prior to inducing epileptic seizures by acoustic stimulation. After the pretreatment phase, blood pressure (BP) of SHRs normalized as expected, and there was no difference in systolic and diastolic BP between the pretreated SHRs and normotensive rat group (Wistar). Next, treated and untreated SHRs (a high BP control) were individually subjected to acoustic stimuli twice a day for 2 weeks. The severity of tonic–clonic seizures and the severity of temporal lobe epilepsy seizures (product of forebrain recruitment) were evaluated by the mesencephalic severity index (Rossetti et al. scale) and the limbic index (Racine’s scale), respectively. Seizures were observed in both untreated (a high BP control) SHRs and in SHRs treated with AT1R antagonist and ACE inhibitor. There was no statistical difference in the mesencephalic severity and limbic index between these groups. Our results demonstrate that SHRs present seizure susceptibility with acoustic stimulation. Moreover, although RAS inhibitors effectively reduce blood pressure in SHR, they do not prevent developing epileptic seizures upon acoustic stimulation in SHR. In conclusion, our study shows that RAS is an unlikely link between hypertension and susceptibility to epileptic seizures induced by acoustic stimulation in SHRs, which is in contrast with the anticonvulsant effect of losartan in other animal models of epilepsy.
Collapse
Affiliation(s)
- Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giorgia Lemes Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - José A C Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Katarzyna Polonis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marilia G A G Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
9
|
Bernard C. Circadian/multidien Molecular Oscillations and Rhythmicity of Epilepsy (MORE). Epilepsia 2020; 62 Suppl 1:S49-S68. [PMID: 33063860 DOI: 10.1111/epi.16716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022]
Abstract
The occurrence of seizures at specific times of the day has been consistently observed for centuries in individuals with epilepsy. Electrophysiological recordings provide evidence that seizures have a higher probability of occurring at a given time during the night and day cycle in individuals with epilepsy here referred to as the seizure rush hour. Which mechanisms underlie such circadian rhythmicity of seizures? Why don't they occur every day at the same time? Which mechanisms may underlie their occurrence outside the rush hour? In this commentary, I present a hypothesis: MORE - Molecular Oscillations and Rhythmicity of Epilepsy, a conceptual framework to study and understand the mechanisms underlying the circadian rhythmicity of seizures and their probabilistic nature. The core of the hypothesis is the existence of ~24-hour oscillations of gene and protein expression throughout the body in different cells and organs. The orchestrated molecular oscillations control the rhythmicity of numerous body events, such as feeding and sleep. The concept developed here is that molecular oscillations may favor seizure genesis at preferred times, generating the condition for a seizure rush hour. However, the condition is not sufficient, as other factors are necessary for a seizure to occur. Studying these molecular oscillations may help us understand seizure genesis mechanisms and find new therapeutic targets and predictive biomarkers. The MORE hypothesis can be generalized to comorbidities and the slower multidien (week/month period) rhythmicity of seizures, a phenomenon addressed in another article in this issue of Epilepsia.
Collapse
Affiliation(s)
- Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| |
Collapse
|
10
|
Yuan X, Fu Z, Ji P, Guo L, Al-Ghamdy AO, Alkandiri A, Habotta OA, Abdel Moneim AE, Kassab RB. Selenium Nanoparticles Pre-Treatment Reverse Behavioral, Oxidative Damage, Neuronal Loss and Neurochemical Alterations in Pentylenetetrazole-Induced Epileptic Seizures in Mice. Int J Nanomedicine 2020; 15:6339-6353. [PMID: 32922005 PMCID: PMC7455605 DOI: 10.2147/ijn.s259134] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Epilepsy is a chronic neurological condition characterized by behavioral, molecular, and neurochemical alterations. Current antiepileptic drugs are associated with various adverse impacts. The main goal of the current study is to investigate the possible anticonvulsant effect of selenium nanoparticles (SeNPs) against pentylenetetrazole (PTZ)-mediated epileptic seizures in mice hippocampus. Sodium valproate (VPA) was used as a standard anti-epileptic drug. Methods Mice were assigned into five groups (n=15): control, SeNPs (5 mg/kg, orally), PTZ (60 mg/kg, intraperitoneally), SeNPs+PTZ and VPA (200 mg/kg)+PTZ. All groups were treated for 10 days. Results PTZ injection triggered a state of oxidative stress in the hippocampal tissue as represented by the elevated lipoperoxidation, heat shock protein 70 level, and nitric oxide formation while decreased glutathione level and antioxidant enzymes activity. Additionally, the blotting analysis showed downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the epileptic mice. A state of neuroinflammation was recorded following the developed seizures represented by the increased pro-inflammatory cytokines. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions. At the neurochemical level, acetylcholinesterase activity and monoamines content were decreased in the epileptic mice, accompanied by high glutamate and low GABA levels in the hippocampal tissue. However, SeNP supplementation was found to delay the onset and decreased the duration of tonic, myoclonic, and generalized seizures following PTZ injection. Moreover, SeNPs were found to provide neuroprotection through preventing the development of oxidative challenge via the upregulation of Nrf2 and HO-1, inhibiting the inflammatory response and apoptotic cascade. Additionally, SeNPs reversed the changes in the activity and levels of neuromodulators following the development of epileptic seizures. Conclusion The obtained results suggest that SeNPs could be used as a promising anticonvulsant drug due to its potent antioxidant, anti-inflammatory, and neuromodulatory activities.
Collapse
Affiliation(s)
- Xiaona Yuan
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Zhenshuai Fu
- Department of ICU, Sunshine Union Hospital, Weifang City, Shandong Province 261000, People's Republic of China
| | - Pengfei Ji
- Department of Ophthalmology, Zhengzhou Second Hospital, Zhengzhou City, Henan Province 450000, People's Republic of China
| | - Lubo Guo
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China
| | - Ali O Al-Ghamdy
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah, Saudi Arabia
| | - Ali Alkandiri
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, People's Republic of China.,Laboratory Technology Department, College of Technological Studies, Safat 13092, Kuwait
| | - Ola A Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan 11795, Egypt
| |
Collapse
|
11
|
Abstract
Stress is ubiquitous in chronic medical conditions; however, the connections to psychiatric and neurologic conditions are not always clearly established. Epilepsy is a unique illness that is intimately intertwined with stress and anxiety not only as a result of the disease process but also as a cause of disease exacerbation. Anxiety and depression also involve stress management and often overlap with epilepsy. Anxiety symptoms themselves may be present as intrinsic aspects of seizure phenomena, either during the events or closely related to them. The pathways of stress and anxiety involve the hypothalamic pituitary adrenal (HPA) axis and explain at least in part how stress may lead to worsening seizure control. Ultimately, the study of stress, anxiety, and epilepsy offers insight into mind and body connections, and furthers understanding of neuropsychiatric illness.
Collapse
|
12
|
Casillas-Espinosa PM, Shultz SR, Braine EL, Jones NC, Snutch TP, Powell KL, O’Brien TJ. Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Prog Neurobiol 2019; 182:101677. [DOI: 10.1016/j.pneurobio.2019.101677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
|
13
|
Ivanova N, Tchekalarova J. The Potential Therapeutic Capacity of Inhibiting the Brain Renin-Angiotensin System in the Treatment of Co-Morbid Conditions in Epilepsy. CNS Drugs 2019; 33:1101-1112. [PMID: 31680223 DOI: 10.1007/s40263-019-00678-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epilepsy is one of the most prevalent neurological diseases and although numerous novel anticonvulsants have been approved, the proportion of patients who are refractory to medical treatment of seizures and have progressive co-morbidities such as cognitive impairment and depression remains at about 20-30%. In the last decade, extensive research has identified a therapeutic capacity of the components of the brain renin-angiotensin system (RAS) in seizure- and epilepsy-related phenomena. Alleviating the activity of RAS in the central nervous system is considered to be a potential adjuvant strategy for the treatment of numerous detrimental consequences of epileptogenesis. One of the main advantages of RAS is associated with its modulatory influence on different neurotransmitter systems, thereby exerting a fine-tuning control mechanism for brain excitability. The most recent scientific findings regarding the involvement of the components of brain RAS show that angiotensin II (Ang II), angiotensin-converting enzyme (ACE), Ang II type 1 (AT1) and type 2 (AT2) receptors are involved in the control of epilepsy and its accompanying complications, and therefore they are currently of therapeutic interest in the treatment of this disease. However, data on the role of different components of brain RAS on co-morbid conditions in epilepsy, including hypertension, are insufficient. Experimental and clinical findings related to the involvement of Ang II, ACE, AT1, and AT2 receptors in the control of epilepsy and accompanying complications may point to new therapeutic opportunities and adjuvants for the treatment of common co-morbid conditions of epilepsy.
Collapse
Affiliation(s)
- Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria.
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
14
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
15
|
Targeting the Mouse Ventral Hippocampus in the Intrahippocampal Kainic Acid Model of Temporal Lobe Epilepsy. eNeuro 2018; 5:eN-NWR-0158-18. [PMID: 30131968 PMCID: PMC6102375 DOI: 10.1523/eneuro.0158-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model—with respect to seizures, cognitive impairment, affective deficits, and histopathology—to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.
Collapse
|
16
|
Matos HDC, Koike BDV, Pereira WDS, de Andrade TG, Castro OW, Duzzioni M, Kodali M, Leite JP, Shetty AK, Gitaí DLG. Rhythms of Core Clock Genes and Spontaneous Locomotor Activity in Post- Status Epilepticus Model of Mesial Temporal Lobe Epilepsy. Front Neurol 2018; 9:632. [PMID: 30116220 PMCID: PMC6082935 DOI: 10.3389/fneur.2018.00632] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The interaction of Mesial Temporal Lobe Epilepsy (mTLE) with the circadian system control is apparent from an oscillatory pattern of limbic seizures, daytime's effect on seizure onset and the efficacy of antiepileptic drugs. Moreover, seizures per se can interfere with the biological rhythm output, including circadian oscillation of body temperature, locomotor activity, EEG pattern as well as the transcriptome. However, the molecular mechanisms underlying this cross-talk remain unclear. In this study, we systematically evaluated the temporal expression of seven core circadian transcripts (Bmal1, Clock, Cry1, Cry2, Per1, Per2, and Per3) and the spontaneous locomotor activity (SLA) in post-status epilepticus (SE) model of mTLE. Twenty-four hour oscillating SLA remained intact in post-SE groups although the circadian phase and the amount and intensity of activity were changed in early post-SE and epileptic phases. The acrophase of the SLA rhythm was delayed during epileptogenesis, a fragmented 24 h rhythmicity and extended active phase length appeared in the epileptic phase. The temporal expression of circadian transcripts Bmal1, Cry1, Cry2, Per1, Per2, and Per3 was also substantially altered. The oscillatory expression of Bmal1 was maintained in rats imperiled to SE, but with lower amplitude (A = 0.2) and an advanced acrophase in the epileptic phase. The diurnal rhythm of Cry1 and Cry2 was absent in the early post-SE but was recovered in the epileptic phase. Per1 and Per2 rhythmic expression were disrupted in post-SE groups while Per3 presented an arrhythmic profile in the epileptic phase, only. The expression of Clock did not display rhythmic pattern in any condition. These oscillating patterns of core clock genes may contribute to hippocampal 24 h cycling and, consequently to seizure periodicity. Furthermore, by using a pool of samples collected at 6 different Zeitgeber Times (ZT), we found that all clock transcripts were significantly dysregulated after SE induction, except Per3 and Per2. Collectively, altered SLA rhythm in early post-SE and epileptic phases implies a possible role for seizure as a nonphotic cue, which is likely linked to activation of hippocampal–accumbens pathway. On the other hand, altered temporal expression of the clock genes after SE suggests their involvement in the MTLE.
Collapse
Affiliation(s)
- Heloisa de Carvalho Matos
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | | | - Wanessa Dos Santos Pereira
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Tiago G de Andrade
- Laboratory of Molecular Chronobiology, Federal University of Alagoas, Arapiraca, Brazil.,Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil
| | - Olagide W Castro
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Marcelo Duzzioni
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, United States
| | - Maheedhar Kodali
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Joao P Leite
- Faculty of Medicine, Federal University of Alagoas, Maceio, Brazil
| | - Ashok K Shetty
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel L G Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Brazil.,Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
17
|
Chronic agomelatine treatment prevents comorbid depression in the post-status epilepticus model of acquired epilepsy through suppression of inflammatory signaling. Neurobiol Dis 2018; 115:127-144. [PMID: 29653194 DOI: 10.1016/j.nbd.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammatory signal molecules are suggested to be involved in the mechanism underlying comorbid depression in epilepsy. In the present study, we tested the hypothesis that the novel antidepressant agomelatine, a potent melatonin MT1 and MT2 receptor agonist and serotonin 5HT2C receptor antagonist, can prevent depressive symptoms developed during the chronic epileptic phase by suppressing an inflammatory response. Chronic treatment with agomelatine (40 mg/kg, i.p.) was initiated an hour after the kainate acid (KA)-induced status epilepticus (SE) and maintained for a period of 10 weeks in Wistar rats. Registration of spontaneous motor seizures was performed through a video (24 h/day) and EEG monitoring. Antidepressant activity of agomelatine was explored in the splash test, sucrose preference test (SPT) and forced swimming test (FST) while anxiolytic effect was observed through the novelty suppression-feeding test (NSFT) during chronic phase in epileptic rats. The frequency of motor seizures detected by video and EEG recording did not differ between vehicle and Ago group. Rats with registered spontaneous motor seizures showed symptoms typical for depressive behavior that included decreased grooming, anhedonia during the dark period and hopeless-like behavior. Epileptic rats exhibited also anxiety with novelty-induced hypophagia. This behavioral deficit correlated with increased signal markers of inflammation (plasma levels of interleukin (IL)-1β and activated glia in brain), while plasma corticosterone levels were not changed. Agomelatine treatment during epileptogenesis exerted a clear antidepressant effect by suppressing all behavioral hallmarks, reducing plasma IL-1β levels and preventing microgliosis and astrogliosis in specific limbic regions. The present results suggest that agomelatine treatment starting after SE can provide an effective therapy of comorbid depression in chronic epileptic condition through suppression of inflammatory signaling.
Collapse
|
18
|
Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy. Brain Res Bull 2017; 134:109-120. [PMID: 28716398 DOI: 10.1016/j.brainresbull.2017.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis.
Collapse
|
19
|
Tchekalarova J, Atanasova D, Nenchovska Z, Atanasova M, Kortenska L, Gesheva R, Lazarov N. Agomelatine protects against neuronal damage without preventing epileptogenesis in the kainate model of temporal lobe epilepsy. Neurobiol Dis 2017; 104:1-14. [PMID: 28438504 DOI: 10.1016/j.nbd.2017.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 01/20/2023] Open
Abstract
Recent studies about the novel antidepressant agomelatine, which is a mixed MT1 and MT2 melatonin receptor agonist and 5HT2C serotonin receptor antagonist possessing an anticonvulsant and neuroprotective action, suggest that it may have potential to contribute against epileptogenesis and epilepsy-induced memory impairment. In order to ascertain whether protection of some brain structures could suppress epileptogenesis, in the present study, we evaluated the effect of chronic post-status treatment with agomelatine on epileptogenesis, behavioral and neuronal damage induced by kainate acid (KA) status epilepticus (SE). Agomelatine/vehicle treatment (40mg/kg, i.p.) started one hour after SE and continued up to 10weeks in Wistar rats. Latency for onset of spontaneous motor seizures (SMS) and their frequency was detected by a 24-h video-recording. Locomotor activity, anxiety and hippocampus-dependent spatial memory in open field (OF), elevated plus maze (EPM), light-dark test (LDT) and radial arm maze (RAM) test, respectively, were evaluated during the last two weeks after SE. Agomelatine significantly decreased the latency for onset of SMS and increased the seizure frequency during the 2nd and the 3rd week of treatment. The MT1 and MT2 receptor agonist and serotonin 5HT2C receptor antagonist exacerbated the KA-induced hyperlocomotion and impulsive behavior and it was unable to prevent spatial memory impairment of epileptic rats. However, agomelatine induced a neuroprotection in the dorsal hippocampus, specifically in the CA1, septal CA2 and partially in the CA3c region, the hilus of the dentate gyrus, piriform cortex and septo-temporal and temporal basolateral amygdala. Our findings suggest that the beneficial impact against SE-induced neuronal loss exerted by agomelatine is not crucial for the suppression of epileptogenesis and its deleterious consequences in KA model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria
| | - Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, Pleven 5800, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rumyana Gesheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria; Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
20
|
Russo E, Leo A, Scicchitano F, Donato A, Ferlazzo E, Gasparini S, Cianci V, Mignogna C, Donato G, Citraro R, Aguglia U, De Sarro G. Cerebral small vessel disease predisposes to temporal lobe epilepsy in spontaneously hypertensive rats. Brain Res Bull 2017; 130:245-250. [PMID: 28214547 DOI: 10.1016/j.brainresbull.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
The link between cerebral small vessel disease (CSVD) and epilepsy has been poorly investigated. Some reports suggest that CSVD may predispose to temporal lobe epilepsy (TLE). Aim of this study was to evaluate whether spontaneously hypertensive rats (SHRs), an established model of systemic hypertension and CSVD, have a propensity to develop TLE more than generalized seizures. To this aim, amygdala kindling, as a model of TLE, and pentylenetetrazole (PTZ)-induced kindling, as a model of generalized seizures, have been used to ascertain whether SHRs are more prone to TLE as compared to Wistar Kyoto control rats. While young SHRs (without CSVD) do not differ from their age-matched controls in both models, old SHRs (with CSVD) develop stage 5 seizures in the amygdala kindling model (TLE) faster than age-matched control rats without CSVD. At odds, no differences between old SHRs and age-matched controls was observed in the development of PTZ kindling. Enalapril pre-treatment prevented the development of CSVD and normalized kindling development to control levels in SHRs. No difference was observed in the response to pharmacological treatment with carbamazepine or losartan. Overall, our study suggests that uncontrolled hypertension leading to CSVD might represent a risk factor for TLE. Further experimental studies are needed to unravel other risk factors that, along with CSVD, may predispose to TLE.
Collapse
Affiliation(s)
- Emilio Russo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| | - Antonio Leo
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Francesca Scicchitano
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Annalidia Donato
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Edoardo Ferlazzo
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy; Medical and Surgical Sciences Department, School of Medicine, Magna Græcia University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Sara Gasparini
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy; Medical and Surgical Sciences Department, School of Medicine, Magna Græcia University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Chiara Mignogna
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Giuseppe Donato
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Umberto Aguglia
- Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy; Medical and Surgical Sciences Department, School of Medicine, Magna Græcia University of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| |
Collapse
|
21
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
22
|
Tchekalarova JD, Ivanova N, Atanasova D, Pechlivanova DM, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A. Long-Term Treatment with Losartan Attenuates Seizure Activity and Neuronal Damage Without Affecting Behavioral Changes in a Model of Co-morbid Hypertension and Epilepsy. Cell Mol Neurobiol 2016; 36:927-941. [PMID: 26464042 DOI: 10.1007/s10571-015-0278-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/28/2015] [Indexed: 02/03/2023]
Abstract
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.
Collapse
Affiliation(s)
- Jana D Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | - Natasha Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Daniela M Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| | - Valentin Lozanov
- Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria
| | - Alexander Stoynev
- Department of Pathophysiology, Medical Faculty, MU-Sofia, Sofia, Bulgaria
| |
Collapse
|
23
|
Comparative power spectrum analysis of EEG activity in spontaneously hypertensive and Wistar rats in kainate model of temporal model of epilepsy. Brain Res Bull 2016; 124:62-75. [DOI: 10.1016/j.brainresbull.2016.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 11/23/2022]
|
24
|
Tchekalarova J, Nenchovska Z, Atanasova D, Atanasova M, Kortenska L, Stefanova M, Alova L, Lazarov N. Consequences of long-term treatment with agomelatine on depressive-like behavior and neurobiological abnormalities in pinealectomized rats. Behav Brain Res 2016; 302:11-28. [DOI: 10.1016/j.bbr.2015.12.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/24/2015] [Accepted: 12/27/2015] [Indexed: 12/29/2022]
|
25
|
Tchekalarova J, Shishmanova M, Atanasova D, Stefanova M, Alova L, Lazarov N, Georgieva K. Effect of endurance training on seizure susceptibility, behavioral changes and neuronal damage after kainate-induced status epilepticus in spontaneously hypertensive rats. Brain Res 2015; 1625:39-53. [PMID: 26319691 DOI: 10.1016/j.brainres.2015.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 02/02/2023]
Abstract
The therapeutic efficacy of regular physical exercises in an animal model of epilepsy and depression comorbidity has been confirmed previously. In the present study, we examined the effects of endurance training on susceptibility to kainate (KA)-induced status epilepticus (SE), behavioral changes and neuronal damage in spontaneously hypertensive rats (SHRs). Male SHRs were randomly divided into two groups. One group was exercised on a treadmill with submaximal loading for four weeks and the other group was sedentary. Immediately after the training period, SE was evoked in half of the sedentary and trained rats by KA, while the other half of the two groups received saline. Basal systolic (SP), diastolic (DP) and mean arterial pressure (MAP) of all rats were measured at the beginning and at the end of the training period. Anxiety, memory and depression-like behaviour were evaluated a month after SE. The release of 5-HT in the hippocampus was measured using a liquid scintillation method and neuronal damage was analyzed by hematoxylin and eosin staining. SP and MAP of exercised SHRs decreased in comparison with the initial values. The increased resistance of SHRs to KA-induced SE was accompanied by an elongated latent seizure-free period, improved object recognition memory and antidepressant effect after the training program. While the anticonvulsant and positive behavioral effects of endurance training were accompanied by an increase of 5-HT release in the hippocampus, it did not exert neuroprotective activity. Our results indicate that prior exercise is an effective means to attenuate KA-induced seizures and comorbid behavioral changes in a model of hypertension and epilepsy suggesting a potential influence of hippocampal 5-HT on a comorbid depression. However, this beneficial impact does not prevent the development of epilepsy and concomitant brain damage.
Collapse
Affiliation(s)
- J Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Bulgaria.
| | - M Shishmanova
- Department of Pharmacology and Drug Toxicology, Medical University - Plovdiv, Bulgaria
| | - D Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Bulgaria
| | - M Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Bulgaria
| | - L Alova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Bulgaria
| | - N Lazarov
- Department of Anatomy, Medical University - Sofia, Bulgaria
| | - K Georgieva
- Department of Physiology, Medical University - Plovdiv, Bulgaria
| |
Collapse
|
26
|
Gruenbaum SE, Wang H, Zaveri HP, Tang AB, Lee TSW, Eid T, Dhaher R. Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy Behav 2015; 51:96-103. [PMID: 26262937 PMCID: PMC4663049 DOI: 10.1016/j.yebeh.2015.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/14/2022]
Abstract
The prevalence of depression and suicide is increased in patients with mesial temporal lobe epilepsy (MTLE); however, the underlying mechanism remains unknown. Anhedonia, a core symptom of depression that is predictive of suicide, is common in patients with MTLE. Glutamine synthetase, an astrocytic enzyme that metabolizes glutamate and ammonia to glutamine, is reduced in the amygdala in patients with epilepsy and depression and in suicide victims. Here, we sought to develop a novel model of anhedonia in MTLE by testing the hypothesis that deficiency in glutamine synthetase in the central nucleus of the amygdala (CeA) leads to epilepsy and comorbid anhedonia. Nineteen male Sprague-Dawley rats were implanted with an osmotic pump infusing either the glutamine synthetase inhibitor methionine sulfoximine [MSO (n=12)] or phosphate buffered saline [PBS (n=7)] into the right CeA. Seizure activity was monitored by video-intracranial electroencephalogram (EEG) recordings for 21days after the onset of MSO infusion. Sucrose preference, a measure of anhedonia, was assessed after 21days. Methionine sulfoximine-infused rats exhibited recurrent seizures during the monitoring period and showed decreased sucrose preference over days when compared with PBS-infused rats (p<0.01). Water consumption did not differ between the PBS-treated group and the MSO-treated group. Neurons were lost in the CeA, but not the medial amygdala, lateral amygdala, basolateral amygdala, or the hilus of the dentate gyrus, in the MSO-treated rats. The results suggest that decreased glutamine synthetase activity in the CeA is a possible common cause of anhedonia and seizures in TLE. We propose that the MSO CeA model can be used for mechanistic studies that will lead to the development and testing of novel drugs to prevent seizures, depression, and suicide in patients with TLE.
Collapse
Affiliation(s)
- Shaun E. Gruenbaum
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hitten P. Zaveri
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amber B. Tang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tih-Shih W. Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Ivanova NM, Atanasova D, Pechlivanova DM, Mitreva R, Lazarov N, Stoynev AG, Tchekalarova JD. Long-term intracerebroventricular infusion of angiotensin II after kainate-induced status epilepticus: Effects on epileptogenesis, brain damage, and diurnal behavioral changes. Epilepsy Behav 2015; 51:1-12. [PMID: 26245156 DOI: 10.1016/j.yebeh.2015.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/06/2023]
Abstract
Our previous studies revealed that Angiotensin (Ang) II has anticonvulsant effects in acute seizure models. However, data on its role in experimental models of epilepsy are missing. In the present study, we tested whether posttreatment with Ang II after kainate (KA)-induced status epilepticus (SE) can affect epileptogenesis, concomitant behavioral changes, and brain damage. The Wistar rats were intracerebroventricularly infused via osmotic mini-pumps with Ang II (1.52μg/μl/day for 28days) after SE. Spontaneous motor seizures (SMS) were video-recorded for up to three months. Locomotor activity, anxiety, and depression-like behavior were evaluated during the last week of drug infusion, while spatial memory was assessed during the 3rd month after SE. Angiotensin II decreased the latency for onset of the first SMS and increased the frequency of SMS two months after SE. The continuous peptide infusion exacerbated the KA-induced hyperactivity and caused depression-like behavior. The reduced anxiety of KA-treated rats was alleviated by Ang II exposure. The KA-induced deficit in the hippocampal-dependent spatial memory was not influenced by Ang II. However, Ang II partially prevented the neuronal damage in the hippocampus, specifically in the CA1 area. The role of AT1 and AT2 receptor activation in the effects of the octapeptide is discussed.
Collapse
Affiliation(s)
- Natasha M Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | - Rumyana Mitreva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
28
|
Tchekalarova J, Loyens E, Smolders I. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats. Epilepsy Behav 2015; 46:66-71. [PMID: 25922088 DOI: 10.1016/j.yebeh.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/14/2022]
Abstract
In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Ellen Loyens
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
29
|
Vagus Nerve Stimulation has Antidepressant Effects in the Kainic Acid Model for Temporal Lobe Epilepsy. Brain Stimul 2015; 8:13-20. [DOI: 10.1016/j.brs.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
|
30
|
Tchekalarova JD, Ivanova NM, Pechlivanova DM, Atanasova D, Lazarov N, Kortenska L, Mitreva R, Lozanov V, Stoynev A. Antiepileptogenic and neuroprotective effects of losartan in kainate model of temporal lobe epilepsy. Pharmacol Biochem Behav 2014; 127:27-36. [DOI: 10.1016/j.pbb.2014.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 11/26/2022]
|
31
|
Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Exp Neurol 2014; 263:263-71. [PMID: 25220610 DOI: 10.1016/j.expneurol.2014.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 01/21/2023]
Abstract
Among the comorbidities observed in epilepsy patients depression is the most frequent one. Likewise, depression by itself is accompanied by an increased risk to develop epilepsy. Both epilepsy and depression are characterized by a high incidence of pharmacoresistance, which might be based on overactivity of multidrug transporters like P-glycoprotein at the blood-brain barrier. Using genetically modified mice in preclinical epilepsy research is pivotal for investigating this bidirectional relationship. In the present study, we used the sucrose consumption test (SCT) in the pilocarpine and the intrahippocampal kainate mouse post-status epilepticus model to reveal anhedonic behavior, i.e. hyposensitivity to pleasure, as a key symptom of depression. Mice were repetitively investigated by SCT during early epilepsy and the chronic phase of the disease, during which response to antidepressant drug treatment was assessed. SCT revealed long-lasting anhedonia in both models. Anhedonia appeared to be pharmacoresistant, as neither chronic treatment with imipramine in the pilocarpine model nor chronic treatment with fluoxetine in the kainate model could annihilate the differences in sucrose consumption between control and epileptic mice. Moreover, knock-out of P-glycoprotein did not improve the treatment effect of fluoxetine. In conclusion, our findings show for the first time that the SCT is suited for detection of depression-like behavior in mouse models of temporal-lobe epilepsy. Both models might serve as tools to further investigate the neurobiology and pharmacology of epilepsy-associated pharmacoresistant depression.
Collapse
|
32
|
Petkova Z, Tchekalarova J, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Popov D, Markova P, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Treatment with melatonin after status epilepticus attenuates seizure activity and neuronal damage but does not prevent the disturbance in diurnal rhythms and behavioral alterations in spontaneously hypertensive rats in kainate model of temporal lobe epilepsy. Epilepsy Behav 2014; 31:198-208. [PMID: 24440891 DOI: 10.1016/j.yebeh.2013.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/14/2013] [Accepted: 12/15/2013] [Indexed: 11/16/2022]
Abstract
Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10mg/kg diluted in drinking water, 8weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.
Collapse
Affiliation(s)
- Zlatina Petkova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Daniela Pechlivanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Slavianka Moyanova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rumiana Mitreva
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Deyan Popov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Petya Markova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Valentin Lozanov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Dimitrina Atanasova
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikolai Lazarov
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Alexander Stoynev
- Institute of Neurobiology, Acad. G. Bonchev Str., Bl. 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
33
|
Tchekalarova J, Ivanova N, Pechlivanova D, Ilieva K, Atanasova M. Strain-dependent effects of sub-chronically infused losartan against kainic acid-induced seizures, oxidative stress, and heat shock protein 72 expression. Cell Mol Neurobiol 2014; 34:133-42. [PMID: 24146309 DOI: 10.1007/s10571-013-9994-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/26/2013] [Indexed: 01/25/2023]
Abstract
We studied the involvement of angiotensin (Ang) II AT1 receptors in the pathophysiology of kainate (KA)-induced neurotoxicity, focusing on the regulation of the oxidative stress state and expression of HSP 72 in the frontal cortex and hippocampus in two strains, spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The KA injection was executed after the rats were infused subcutaneously via osmotic mini-pumps with losartan (10 mg/kg day) for 14 days. Losartan delayed the onset of KA-induced seizures in SHRs but not in Wistar rats without affecting the seizure intensity score. This selective AT1 receptor antagonist decreased the lipid peroxidation only in naive SHRs. However, it attenuated the KA-induced increase in lipid peroxidation in both SHRs and Wistar rats. The adaptive enhancement of cytosolic superoxide dismutase (SOD) activity in KA-treated SHRs was recovered to control level after sub-chronic losartan infusion while no change in mitochondrial SOD activity was detected in the two strains. Both losartan and KA produced a higher expression of HSP 72 in the hippocampus of the two strains compared to naive rats infused with vehicle. Taken together, our findings demonstrate that the efficacy of a sub-chronic systemic losartan infusion in preventing the KA-induced seizure activity and neurotoxicity is more pronounced in SHRs, considered as a model of essential hypertension, than in normotenisve Wistar rats. The results suggest that the blockade of AT1 receptors, commonly used as a strategy for prevention of high blood pressure, may be useful as an adjunctive treatment in status epilepticus to reduce oxidative stress and neurotoxicity.
Collapse
Affiliation(s)
- Jane Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, Sofia, 1113, Bulgaria,
| | | | | | | | | |
Collapse
|
34
|
Prendergast BJ, Onishi KG, Patel PN, Stevenson TJ. Circadian arrhythmia dysregulates emotional behaviors in aged Siberian hamsters. Behav Brain Res 2013; 261:146-57. [PMID: 24333374 DOI: 10.1016/j.bbr.2013.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Emotional behaviors are influenced by the circadian timing system. Circadian disruptions are associated with depressive-like symptoms in clinical and preclinical populations. Circadian rhythm robustness declines markedly with aging and may contribute to susceptibility to emotional dysregulation in aged individuals. The present experiments used a model of chronic circadian arrhythmia generated noninvasively, via a series of circadian-disruptive light treatments, to investigate interactions between circadian desynchrony and aging on depressive- and anxiety-like behaviors, and on limbic neuroinflammatory gene expression that has been linked with emotionality. We also examined whether a social manipulation (group housing) would attenuate effects of arrhythmia on emotionality. In aged (14-18 months of age) male Siberian hamsters, circadian arrhythmia increased behavioral despair and decreased social motivation, but decreased exploratory anxiety. These effects were not evident in younger (5-9 months of age) hamsters. Social housing (3-5 hamsters/cage) abolished the effects of circadian arrhythmia on emotionality. Circadian arrhythmia alone was without effect on hippocampal or cortical interleukin-1β (IL-1β) and indoleamine 2,3-dioxygenase (Ido) mRNA expression in aged hamsters, but social housing decreased hippocampal IL-1β and Ido mRNAs. The data demonstrate that circadian disruption can negatively impact affective state, and that this effect is pronounced in older individuals. Although clear associations between circadian arrhythmia and constitutive limbic proinflammatory activity were not evident, the present data suggest that social housing markedly inhibits constitutive hippocampal IL-1β and Ido activity, which may contribute to the ameliorating effects of social housing on a number of emotional behaviors.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA; Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Kenneth G Onishi
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA
| | - Priyesh N Patel
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Tyler J Stevenson
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
35
|
Atanasova M, Petkova Z, Pechlivanova D, Dragomirova P, Blazhev A, Tchekalarova J. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins. Pharmacol Biochem Behav 2013; 111:44-50. [DOI: 10.1016/j.pbb.2013.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
36
|
Tchekalarova J, Petkova Z, Pechlivanova D, Moyanova S, Kortenska L, Mitreva R, Lozanov V, Atanasova D, Lazarov N, Stoynev A. Prophylactic treatment with melatonin after status epilepticus: effects on epileptogenesis, neuronal damage, and behavioral changes in a kainate model of temporal lobe epilepsy. Epilepsy Behav 2013; 27:174-87. [PMID: 23435277 DOI: 10.1016/j.yebeh.2013.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Melatonin is a potent antioxidant which showed anticonvulsant activities both in experimental and clinical studies. In the present study, we examined the effect of melatonin treatment (10mg/kg/day, diluted in drinking water, 8 weeks) during epileptogenesis on the consequences of a kainate (KA)-induced status epilepticus (SE) in rats. Melatonin increased the latency in the appearance of spontaneous recurrent seizures (SRSs) and decreased their frequency only during the treatment period. The behavioral alterations associated with hyperactivity, depression-like behavior during the light phase, and deficits in hippocampus-dependent working memory were positively affected by melatonin treatment in rats with epilepsy. Melatonin reduced the neuronal damage in the CA1 area of the hippocampus and piriform cortex and recovered the decrease of hippocampal serotonin (5-HT) level in rats with epilepsy. Taken together, long-term melatonin treatment after SE was unable to suppress the development of epileptogenesis. However, it showed a potential in reducing some of the deleterious alterations that develop during the chronic epileptic state in a diurnal phase-dependent mode.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Acad G Bonchev Str, Bl 23, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Epps SA, Weinshenker D. Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol 2012; 85:135-46. [PMID: 22940575 DOI: 10.1016/j.bcp.2012.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/12/2022]
Abstract
Clinical evidence shows a strong, bidirectional comorbidity between depression and epilepsy that is associated with decreased quality of life and responsivity to pharmacotherapies. At present, the neurobiological underpinnings of this comorbidity remain hazy. To complicate matters, anticonvulsant drugs can cause mood disturbances, while antidepressant drugs can lower seizure threshold, making it difficult to treat patients suffering from both depression and epilepsy. Animal models have been created to untangle the mechanisms behind the relationship between these disorders and to serve as screening tools for new therapies targeted to treat both simultaneously. These animal models are based on chemical interventions (e.g. pentylenetetrazol, kainic acid, pilocarpine), electrical stimulations (e.g. kindling, electroshock), and genetic/selective breeding paradigms (e.g. genetically epilepsy-prone rats (GEPRs), genetic absence epilepsy rat from Strasbourg (GAERS), WAG/Rij rats, swim lo-active rats (SwLo)). Studies on these animal models point to some potential mechanisms that could explain epilepsy and depression comorbidity, such as various components of the dopaminergic, noradrenergic, serotonergic, and GABAergic systems, as well as key brain regions, like the amygdala and hippocampus. These models have also been used to screen possible therapies. The purpose of the present review is to highlight the importance of animal models in research on comorbid epilepsy and depression and to explore the contributions of these models to our understanding of the mechanisms and potential treatments for these disorders.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
38
|
Inostroza M, Cid E, Menendez de la Prida L, Sandi C. Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats. PLoS One 2012; 7:e38959. [PMID: 22720001 PMCID: PMC3376131 DOI: 10.1371/journal.pone.0038959] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/16/2012] [Indexed: 11/24/2022] Open
Abstract
Affective symptoms such as anxiety and depression are frequently observed in patients with epilepsy. The mechanisms of comorbidity of epilepsy and affective disorders, however, remain unclear. Diverse models are traditionally used in epilepsy research, including the status epilepticus (SE) model in rats, which are aimed at generating chronic epileptic animals; however, the implications of different SE models and rat strains in emotional behaviors has not been reported. To address this issue, we examined the emotional sequelae of two SE models of temporal lobe epilepsy (TLE)--the lithium-pilocarpine (LIP) model and the kainic acid (KA) model--in two different rat strains (Wistar and Sprague-Dawley), which differ significantly in the pattern and extent of TLE-associated brain lesions. We found differences between LIP- and KA-treated animals in tests for depression-like and anxiety-like behaviors, as well as differences in plasma corticosterone levels. Whereas only LIP-treated rats displayed increased motivation to consume saccharin, both SE models led to reduced motivation for social contact, with LIP-treated animals being particularly affected. Evaluation of behavior in the open field test indicated very low levels of anxiety in LIP-treated rats and a mild decrease in KA-treated rats compared to controls. After exposure to a battery of behavioral tests, plasma corticosterone levels were increased only in LIP-treated animals. This hyperactivity in the hypothalamus-pituitary-adrenocortical (HPA) axis was highly correlated with performance in the open field test and the social interaction test, suggesting that comorbidity of epilepsy and emotional behaviors might also be related to other factors such as HPA axis function. Our results indicate that altered emotional behaviors are not inherent to the epileptic condition in experimental TLE; instead, they likely reflect alterations in anxiety levels related to model-dependent dysregulation of the HPA axis.
Collapse
Affiliation(s)
- Marion Inostroza
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
- Departamento de Psicología, Universidad de Chile, Santiago, Chile
| | - Elena Cid
- Instituto Cajal, Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Federal de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|