1
|
Katsanevaki D, Till SM, Buller-Peralta I, Nawaz MS, Louros SR, Kapgal V, Tiwari S, Walsh D, Anstey NJ, Petrović NG, Cormack A, Salazar-Sanchez V, Harris A, Farnworth-Rowson W, Sutherland A, Watson TC, Dimitrov S, Jackson AD, Arkell D, Biswal S, Dissanayake KN, Mizen LAM, Perentos N, Jones MW, Cousin MA, Booker SA, Osterweil EK, Chattarji S, Wyllie DJA, Gonzalez-Sulser A, Hardt O, Wood ER, Kind PC. Key roles of C2/GAP domains in SYNGAP1-related pathophysiology. Cell Rep 2024; 43:114733. [PMID: 39269903 DOI: 10.1016/j.celrep.2024.114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Mutations in SYNGAP1 are a common genetic cause of intellectual disability (ID) and a risk factor for autism. SYNGAP1 encodes a synaptic GTPase-activating protein (GAP) that has both signaling and scaffolding roles. Most pathogenic variants of SYNGAP1 are predicted to result in haploinsufficiency. However, some affected individuals carry missense mutations in its calcium/lipid binding (C2) and GAP domains, suggesting that many clinical features result from loss of functions carried out by these domains. To test this hypothesis, we targeted the exons encoding the C2 and GAP domains of SYNGAP. Rats heterozygous for this deletion exhibit reduced exploration and fear extinction, altered social investigation, and spontaneous seizures-key phenotypes shared with Syngap heterozygous null rats. Together, these findings indicate that the reduction of SYNGAP C2/GAP domain function is a main feature of SYNGAP haploinsufficiency. This rat model provides an important system for the study of ID, autism, and epilepsy.
Collapse
Affiliation(s)
- Danai Katsanevaki
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sally M Till
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Ingrid Buller-Peralta
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Mohammad Sarfaraz Nawaz
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Susana R Louros
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vijayakumar Kapgal
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India; The University of Transdisciplinary Health Sciences and Technology, Bangalore 560065, India
| | - Shashank Tiwari
- Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Darren Walsh
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Natasha J Anstey
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Nina G Petrović
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Alison Cormack
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Vanesa Salazar-Sanchez
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Anjanette Harris
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - William Farnworth-Rowson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Andrew Sutherland
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Thomas C Watson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Siyan Dimitrov
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Adam D Jackson
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Daisy Arkell
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | | | - Kosala N Dissanayake
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Lindsay A M Mizen
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Nikolas Perentos
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Matt W Jones
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| | - Michael A Cousin
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Sam A Booker
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Emily K Osterweil
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Sumantra Chattarji
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Alfredo Gonzalez-Sulser
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India; Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada
| | - Emma R Wood
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India
| | - Peter C Kind
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK; Patrick Wild Centre, University of Edinburgh, EH8 9XD Edinburgh, UK; Centre for Brain Development and Repair, Instem, Bangalore 560065, India.
| |
Collapse
|
2
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Orciani C, Ballesteros C, Troncy E, Berthome C, Bujold K, Bennamoune N, Sparapani S, Pugsley MK, Paquette D, Boulay E, Authier S. The Spontaneous Incidence of Neurological Clinical Signs in Preclinical Species Using Cage-side Observations or High-definition Video Monitoring: A Retrospective Analysis. Int J Toxicol 2024; 43:123-133. [PMID: 38063479 DOI: 10.1177/10915818231218984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.
Collapse
Affiliation(s)
| | | | - Eric Troncy
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | | | | | | | | | | | - Dominique Paquette
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | - Emmanuel Boulay
- Charles River, Laval, QC, Canada
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | - Simon Authier
- Charles River, Laval, QC, Canada
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Sitnikova E. Behavioral and Cognitive Comorbidities in Genetic Rat Models of Absence Epilepsy (Focusing on GAERS and WAG/Rij Rats). Biomedicines 2024; 12:122. [PMID: 38255227 PMCID: PMC10812980 DOI: 10.3390/biomedicines12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Absence epilepsy is a non-convulsive type of epilepsy characterized by the sudden loss of awareness. It is associated with thalamo-cortical impairment, which may cause neuropsychiatric and neurocognitive problems. Rats with spontaneous absence-like seizures are widely used as in vivo genetic models for absence epilepsy; they display behavioral and cognitive problems similar to epilepsy in humans, such as genetic absence epilepsy rats from Strasbourg (GAERS) and Wistar Albino rats from Rijswijk (WAG/Rij). Depression- and anxiety-like behaviors were apparent in GAERS, but no anxiety and depression-like symptoms were found in WAG/Rij rats. Deficits in executive functions and memory impairment in WAG/Rij rats, i.e., cognitive comorbidities, were linked to the severity of epilepsy. Wistar rats can develop spontaneous seizures in adulthood, so caution is advised when using them as a control epileptic strain. This review discusses challenges in the field, such as putative high emotionality in genetically prone rats, sex differences in the expression of cognitive comorbidities, and predictors of cognitive problems or biomarkers of cognitive comorbidities in absence epilepsy, as well as the concept of "the cognitive thalamus". The current knowledge of behavioral and cognitive comorbidities in drug-naive rats with spontaneous absence epilepsy is beneficial for understanding the pathophysiology of absence epilepsy, and for finding new treatment strategies.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| |
Collapse
|
5
|
Sanchez-Brualla I, Ghosh A, Gibatova VA, Quinlan S, Witherspoon E, Vicini S, Forcelli PA. Phenobarbital does not worsen outcomes of neonatal hypoxia on hippocampal LTP on rats. Front Neurol 2023; 14:1295934. [PMID: 38073649 PMCID: PMC10703306 DOI: 10.3389/fneur.2023.1295934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 10/28/2024] Open
Abstract
Introduction Neonatal hypoxia is a common cause of early-life seizures. Both hypoxia-induced seizures (HS), and the drugs used to treat them (e.g., phenobarbital, PB), have been reported to have long-lasting impacts on brain development. For example, in neonatal rodents, HS reduces hippocampal long-term potentiation (LTP), while PB exposure disrupts GABAergic synaptic maturation in the hippocampus. Prior studies have examined the impact of HS and drug treatment separately, but in the clinic, PB is unlikely to be given to neonates without seizures, and neonates with seizures are very likely to receive PB. To address this gap, we assessed the combined and separate impacts of neonatal HS and PB treatment on the development of hippocampal LTP. Methods Male and female postnatal day (P)7 rat pups were subjected to graded global hypoxia (or normoxia as a control) and treated with either PB (or vehicle as a control). On P13-14 (P13+) or P29-37 (P29+), we recorded LTP of the Schaffer collaterals into CA1 pyramidal layer in acute hippocampal slices. We compared responses to theta burst stimulation (TBS) and tetanization induction protocols. Results Under the TBS induction protocol, female rats showed an LTP impairment caused by HS, which appeared only at P29+. This impairment was delayed compared to male rats. While LTP in HS males was impaired at P13+, it normalized by P29+. Under the tetanization protocol, hypoxia produced larger LTP in males compared to female rats. PB injection, under TBS, did not exacerbate the effects of hypoxia. However, with the tetanization protocol, PB - on the background of HS - compensated for these effects, returning LTP to control levels. Discussion These results point to different susceptibility to hypoxia as a function of sex and age, and a non-detrimental effect of PB when administered after hypoxic seizures.
Collapse
Affiliation(s)
- Irene Sanchez-Brualla
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Anjik Ghosh
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Viktoriya A. Gibatova
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Sean Quinlan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Eric Witherspoon
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Ojeda Valencia G, Gregg NM, Huang H, Lundstrom BN, Brinkmann BH, Pal Attia T, Van Gompel JJ, Bernstein MA, In MH, Huston J, Worrell GA, Miller KJ, Hermes D. Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System. J Neurosci 2023; 43:6697-6711. [PMID: 37620159 PMCID: PMC10538586 DOI: 10.1523/jneurosci.2201-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.
Collapse
Affiliation(s)
- Gabriela Ojeda Valencia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Harvey Huang
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Brian N Lundstrom
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | | | - Tal Pal Attia
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - John Huston
- Department of Radiology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
- Department of Neurology, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Kai J Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
- Department of Neurologic Surgery, Mayo Clinic Rochester, Rochester, Minnesota 55902
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, Rochester, Minnesota 55902
| |
Collapse
|
7
|
Burke CT, Vitko I, Straub J, Nylund EO, Gawda A, Blair K, Sullivan KA, Ergun L, Ottolini M, Patel MK, Perez-Reyes E. EpiPro, a Novel, Synthetic, Activity-Regulated Promoter That Targets Hyperactive Neurons in Epilepsy for Gene Therapy Applications. Int J Mol Sci 2023; 24:14467. [PMID: 37833914 PMCID: PMC10572392 DOI: 10.3390/ijms241914467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epileptogenesis is characterized by intrinsic changes in neuronal firing, resulting in hyperactive neurons and the subsequent generation of seizure activity. These alterations are accompanied by changes in gene transcription networks, first with the activation of early-immediate genes and later with the long-term activation of genes involved in memory. Our objective was to engineer a promoter containing binding sites for activity-dependent transcription factors upregulated in chronic epilepsy (EpiPro) and validate it in multiple rodent models of epilepsy. First, we assessed the activity dependence of EpiPro: initial electrophysiology studies found that EpiPro-driven GFP expression was associated with increased firing rates when compared with unlabeled neurons, and the assessment of EpiPro-driven GFP expression revealed that GFP expression was increased ~150× after status epilepticus. Following this, we compared EpiPro-driven GFP expression in two rodent models of epilepsy, rat lithium/pilocarpine and mouse electrical kindling. In rodents with chronic epilepsy, GFP expression was increased in most neurons, but particularly in dentate granule cells, providing in vivo evidence to support the "breakdown of the dentate gate" hypothesis of limbic epileptogenesis. Finally, we assessed the time course of EpiPro activation and found that it was rapidly induced after seizures, with inactivation following over weeks, confirming EpiPro's potential utility as a gene therapy driver for epilepsy.
Collapse
Affiliation(s)
- Cassidy T. Burke
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Justyna Straub
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Elsa O. Nylund
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Agnieszka Gawda
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kathryn Blair
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kyle A. Sullivan
- Computational and Predictive Biology, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lara Ergun
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA (M.K.P.)
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Komoltsev I, Salyp O, Volkova A, Bashkatova D, Shirobokova N, Frankevich S, Shalneva D, Kostyunina O, Chizhova O, Kostrukov P, Novikova M, Gulyaeva N. Posttraumatic and Idiopathic Spike-Wave Discharges in Rats: Discrimination by Morphology and Thalamus Involvement. Neurol Int 2023; 15:609-621. [PMID: 37218977 DOI: 10.3390/neurolint15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The possibility of epileptiform activity generation by the thalamocortical neuronal network after focal brain injuries, including traumatic brain injury (TBI), is actively debated. Presumably, posttraumatic spike-wave discharges (SWDs) involve a cortico-thalamocortical neuronal network. Differentiation of posttraumatic and idiopathic (i.e., spontaneously generated) SWDs is imperative for understanding posttraumatic epileptogenic mechanisms. Experiments were performed on male Sprague-Dawley rats with electrodes implanted into the somatosensory cortex and the thalamic ventral posterolateral nucleus. Local field potentials were recorded for 7 days before and 7 days after TBI (lateral fluid percussion injury, 2.5 atm). The morphology of 365 SWDs (89 idiopathic before craniotomy, and 262 posttraumatic that appeared only after TBI) and their appearance in the thalamus were analyzed. The occurrence of SWDs in the thalamus determined their spike-wave form and bilateral lateralization in the neocortex. Posttraumatic discharges were characterized by more "mature" characteristics as compared to spontaneously generated discharges: higher proportions of bilateral spreading, well-defined spike-wave form, and thalamus involvement. Based on SWD parameters, the etiology could be established with an accuracy of 75% (AUC 0.79). Our results support the hypothesis that the formation of posttraumatic SWDs involves a cortico-thalamocortical neuronal network. The results form a basis for further research of mechanisms associated with posttraumatic epileptiform activity and epileptogenesis.
Collapse
Affiliation(s)
- Ilia Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Olga Salyp
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Aleksandra Volkova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Daria Bashkatova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Shirobokova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Stepan Frankevich
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Daria Shalneva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olga Kostyunina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olesya Chizhova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Pavel Kostrukov
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Margarita Novikova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| |
Collapse
|
9
|
Barker-Haliski M, Pitsch J, Galanopoulou AS, Köhling R. A companion to the preclinical common data elements for phenotyping seizures and epilepsy in rodent models. A report of the TASK3-WG1C: Phenotyping working group of the ILAE/AES joint translational task force. Epilepsia Open 2022. [PMID: 36461665 DOI: 10.1002/epi4.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rüdiger Köhling
- Oscar-Langendorff-Institut für Physiologie, Universitätsmedizin Rostock, Rostock, Germany
| |
Collapse
|
10
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
11
|
Taylor JA, Smith ZZ, Barth DS. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex. J Neurophysiol 2022; 128:1152-1167. [PMID: 36169203 PMCID: PMC9621715 DOI: 10.1152/jn.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures. Yet, SWDs are ubiquitous in inbred and outbred rats, suggesting they reflect normal brain function. We hypothesized that SWDs represent oscillatory neural ensemble activity underlying sensory encoding. To test this hypothesis, we simultaneously mapped SWDs from wide areas (8 × 8 mm) of both hemispheres in anesthetized rats, using 256-electrode epicortical arrays that covered primary and secondary somatosensory, auditory and visual cortex bilaterally. We also recorded the laminar pattern of SWDs with linear microelectrode arrays. We compared the spatial and temporal organization of SWDs to somatosensory-evoked potentials (SEPs), as well as auditory- and visual-evoked potentials (AEPs and VEPs) to examine similarities and/or differences between sensory-evoked and spontaneous oscillations in the same animals. We discovered that SWDs are confined to the facial representation of primary and secondary somatosensory cortex (SI and SII, respectively), areas that are preferentially engaged during environmental exploration in the rat. Furthermore, these oscillations exhibit highly synchronized bilateral traveling waves in SI and SII, simultaneously forming closely matched spread patterns in both hemispheres. We propose that SWDs could reflect a previously unappreciated capacity for rat somatosensory cortex to perform precise spatial and temporal analysis of rapidly changing sensory input at the level of large neural ensembles synchronized both within and between the cerebral hemispheres.NEW & NOTEWORTHY We simultaneously mapped electrocortical SWDs from both cerebral hemispheres of Sprague-Dawley rats and discovered that they reflect systematic activation of the facial representation of somatosensory cortex. SWDs form mirror spatiotemporal patterns in both hemispheres that are precisely aligned in both space and time. Our data suggest that SWDs may reflect a substrate by which large neural ensembles perform precise spatiotemporal processing of rapidly changing somatosensory input.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachary Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
12
|
Klippel Zanona Q, Alves Marconi G, de Sá Couto Pereira N, Lazzarotto G, Luiza Ferreira Donatti A, Antonio Cortes de Oliveira J, Garcia-Cairasco N, Elisa Calcagnotto M. Absence-like seizures, cortical oscillations abnormalities and decreased anxiety-like behavior in Wistar Audiogenic Rats with cortical microgyria. Neuroscience 2022; 500:26-40. [DOI: 10.1016/j.neuroscience.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
13
|
Lisgaras CP, Scharfman HE. Robust chronic convulsive seizures, high frequency oscillations, and human seizure onset patterns in an intrahippocampal kainic acid model in mice. Neurobiol Dis 2022; 166:105637. [PMID: 35091040 PMCID: PMC9034729 DOI: 10.1016/j.nbd.2022.105637] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 01/21/2023] Open
Abstract
Intrahippocampal kainic acid (IHKA) has been widely implemented to simulate temporal lobe epilepsy (TLE), but evidence of robust seizures is usually limited. To resolve this problem, we slightly modified previous methods and show robust seizures are common and frequent in both male and female mice. We employed continuous wideband video-EEG monitoring from 4 recording sites to best demonstrate the seizures. We found many more convulsive seizures than most studies have reported. Mortality was low. Analysis of convulsive seizures at 2-4 and 10-12 wks post-IHKA showed a robust frequency (2-4 per day on average) and duration (typically 20-30 s) at each time. Comparison of the two timepoints showed that seizure burden became more severe in approximately 50% of the animals. We show that almost all convulsive seizures could be characterized as either low-voltage fast or hypersynchronous onset seizures, which has not been reported in a mouse model of epilepsy and is important because these seizure types are found in humans. In addition, we report that high frequency oscillations (>250 Hz) occur, resembling findings from IHKA in rats and TLE patients. Pathology in the hippocampus at the site of IHKA injection was similar to mesial temporal lobe sclerosis and reduced contralaterally. In summary, our methods produce a model of TLE in mice with robust convulsive seizures, and there is variable progression. HFOs are robust also, and seizures have onset patterns and pathology like human TLE. SIGNIFICANCE: Although the IHKA model has been widely used in mice for epilepsy research, there is variation in outcomes, with many studies showing few robust seizures long-term, especially convulsive seizures. We present an implementation of the IHKA model with frequent convulsive seizures that are robust, meaning they are >10 s and associated with complex high frequency rhythmic activity recorded from 2 hippocampal and 2 cortical sites. Seizure onset patterns usually matched the low-voltage fast and hypersynchronous seizures in TLE. Importantly, there is low mortality, and both sexes can be used. We believe our results will advance the ability to use the IHKA model of TLE in mice. The results also have important implications for our understanding of HFOs, progression, and other topics of broad interest to the epilepsy research community. Finally, the results have implications for preclinical drug screening because seizure frequency increased in approximately half of the mice after a 6 wk interval, suggesting that the typical 2 wk period for monitoring seizure frequency is insufficient.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| |
Collapse
|
14
|
Sitnikova E. Sleep Disturbances in Rats With Genetic Pre-disposition to Spike-Wave Epilepsy (WAG/Rij). Front Neurol 2021; 12:766566. [PMID: 34803898 PMCID: PMC8602200 DOI: 10.3389/fneur.2021.766566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Wistar Albino Glaxo Rijswijk (WAG/Rij) rats are widely used in basic and pre-clinical studies as a valid genetic model of absence epilepsy. Adult WAG/Rij rats exhibit generalized 8–10-Hz spike-wave discharges (SWDs) in the electroencephalogram. SWDs are known to result from thalamocortical circuit dysfunction, and this implies an intimate relationship between slow-wave EEG activity, sleep spindles, and SWDs. The present mini review summarizes relevant research on sleep-related disturbances associated with spike-wave epilepsy in WAG/Rij rats in the domain of slow-wave sleep EEG and microarousals. It also discusses enhancement of the intermediate stage of sleep. In general, sleep EEG studies provide important information about epileptogenic processes related to spike-wave epilepsy.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
15
|
Löscher W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs With Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front Pharmacol 2021; 12:730257. [PMID: 34776956 PMCID: PMC8580162 DOI: 10.3389/fphar.2021.730257] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 01/09/2023] Open
Abstract
Rationally designed multi-target drugs (also termed multimodal drugs, network therapeutics, or designed multiple ligands) have emerged as an attractive drug discovery paradigm in the last 10-20 years, as potential therapeutic solutions for diseases of complex etiology and diseases with significant drug-resistance problems. Such agents that modulate multiple targets simultaneously are developed with the aim of enhancing efficacy or improving safety relative to drugs that address only a single target or to combinations of single-target drugs. Although this strategy has been proposed for epilepsy therapy >25 years ago, to my knowledge, only one antiseizure medication (ASM), padsevonil, has been intentionally developed as a single molecular entity that could target two different mechanisms. This novel drug exhibited promising effects in numerous preclinical models of difficult-to-treat seizures. However, in a recent randomized placebo-controlled phase IIb add-on trial in treatment-resistant focal epilepsy patients, padsevonil did not separate from placebo in its primary endpoints. At about the same time, a novel ASM, cenobamate, exhibited efficacy in several randomized controlled trials in such patients that far surpassed the efficacy of any other of the newer ASMs. Yet, cenobamate was discovered purely by phenotype-based screening and its presumed dual mechanism of action was only described recently. In this review, I will survey the efficacy of single-target vs. multi-target drugs vs. combinations of drugs with multiple targets in the treatment and prevention of epilepsy. Most clinically approved ASMs already act at multiple targets, but it will be important to identify and validate new target combinations that are more effective in drug-resistant epilepsy and eventually may prevent the development or progression of epilepsy.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany, and Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
16
|
Kumar U, Li L, Bragin A, Engel J. Spike and wave discharges and fast ripples during posttraumatic epileptogenesis. Epilepsia 2021; 62:1842-1851. [PMID: 34155626 DOI: 10.1111/epi.16958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The goal of the present study was to determine whether spike and wave discharges (SWDs) and SWDs with superimposed fast ripples (SWDFRs) could be biomarkers of posttraumatic epileptogenesis. METHODS Fluid percussion injury was conducted on 13-14-week old male Sprague Dawley rats. Immediately after traumatic brain injury (TBI), they were implanted with microelectrodes in the neocortex, hippocampus, and striatum bilaterally. Age-matched sham rats with the same electrode implantation montage acted as controls. Wideband brain electrical activity was recorded intermittently from Day 1 of TBI, and continued from 2 to 21 weeks after TBI. SWD and SWDFR analysis was performed during the first 2 weeks to investigate whether the occurrence of this pattern predicted development of epilepsy. The remaining 3-21 weeks were used for identifying which rats became epileptic (E+ group) and which did not (E- group). RESULTS The E+ group (n = 9) showed a significant increase in SWD rate in prefrontal cortex during Weeks 1 and 2 after TBI. The E- group showed a significant increase in SWD rate only in the second week. One hundred percent of rats in the E+ group displayed SWDFRs beginning from the first week after TBI. The SWDFR pattern was observed in all recorded brain areas: prefrontal and perilesional cortices, hippocampus, and striatum. None of rats in the E- group showed coexistence of fast ripples with SWDs. SIGNIFICANCE Occurrence of SWDFRs after TBI, but not an increase in the rate of SWDs, could be a noninvasive electroencephalographic biomarker of posttraumatic epileptogenesis.
Collapse
Affiliation(s)
- Udaya Kumar
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Lin Li
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurobiology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
17
|
Tatum S, Smith ZZ, Taylor JA, Poulsen DJ, Dudek FE, Barth DS. Sensitivity of unilateral- versus bilateral-onset spike-wave discharges to ethosuximide and carbamazepine in the fluid percussion injury rat model of traumatic brain injury. J Neurophysiol 2021; 125:2166-2177. [PMID: 33949882 DOI: 10.1152/jn.00098.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unilateral-onset spike-wave discharges (SWDs) following fluid percussion injury (FPI) in rats have been used for nearly two decades as a model for complex partial seizures in human posttraumatic epilepsy (PTE). This study determined if SWDs with a unilateral versus bilateral cortical onset differed. In this experiment, 2-mo-old rats received severe FPI (3 atm) or sham surgery and were instrumented for chronic video-electrocorticography (ECoG) recording (up to 9 mo). The antiseizure drug, carbamazepine (CBZ), and the antiabsence drug, ethosuximide (ETX), were administered separately to determine if they selectively suppressed unilateral- versus bilateral-onset SWDs, respectively. SWDs did not significantly differ between FPI and sham rats on any measured parameter (wave-shape, frequency spectrum, duration, or age-related progression), including unilateral (∼17%) versus bilateral (∼83%) onsets. SWDs with a unilateral onset preferentially originated ipsilateral to the craniotomy in both FPI and sham rats, suggesting that the unilateral-onset SWDs were related to surgical injury and not specifically to FPI. ETX profoundly suppressed SWDs with either unilateral or bilateral onsets, and CBZ had no effect on either type of SWD. These results suggest that SWDs with either a unilateral or bilateral onset have a pharmacosensitivity similar to absence seizures and are very different from the complex partial seizures of PTE. Therefore, SWDs with a unilateral onset after FPI are not a model of the complex partial seizures that occur in PTE, and their use for finding new treatments for PTE could be counterproductive, particularly if their close similarity to normal brain oscillations is not acknowledged.NEW & NOTEWORTHY Unilateral-onset spike-wave discharges (SWDs) in rats have been used to model complex partial seizures in human posttraumatic epilepsy (PTE), compared to bilateral-onset SWDs thought to reflect human absence seizures. Here, we show that both unilateral- and bilateral-onset SWDs following traumatic brain injury are suppressed by the antiabsence drug ethosuximide and are unaffected by the antiseizure drug carbamazepine. We propose that unilateral-onset SWDs are not useful for studying mechanisms of, or treatments for, PTE.
Collapse
Affiliation(s)
- Sean Tatum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachariah Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - David J Poulsen
- Department of Neurosurgery, University at Buffalo Jacob's School of Medicine and Biomedical Sciences, Buffalo, New York
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
18
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2021; 72:767-800. [PMID: 32817274 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
19
|
Statistical Model-Based Classification to Detect Patient-Specific Spike-and-Wave in EEG Signals. COMPUTERS 2020. [DOI: 10.3390/computers9040085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spike-and-wave discharge (SWD) pattern detection in electroencephalography (EEG) is a crucial signal processing problem in epilepsy applications. It is particularly important for overcoming time-consuming, difficult, and error-prone manual analysis of long-term EEG recordings. This paper presents a new method to detect SWD, with a low computational complexity making it easily trained with data from standard medical protocols. Precisely, EEG signals are divided into time segments for which the continuous Morlet 1-D wavelet decomposition is computed. The generalized Gaussian distribution (GGD) is fitted to the resulting coefficients and their variance and median are calculated. Next, a k-nearest neighbors (k-NN) classifier is trained to detect the spike-and-wave patterns, using the scale parameter of the GGD in addition to the variance and the median. Experiments were conducted using EEG signals from six human patients. Precisely, 106 spike-and-wave and 106 non-spike-and-wave signals were used for training, and 96 other segments for testing. The proposed SWD classification method achieved 95% sensitivity (True positive rate), 87% specificity (True Negative Rate), and 92% accuracy. These promising results set the path for new research to study the causes underlying the so-called absence epilepsy in long-term EEG recordings.
Collapse
|
20
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Volkova AA, Levshina IP, Novikova MR, Manolova AO, Gulyaeva NV. Differential early effects of traumatic brain injury on spike-wave discharges in Sprague-Dawley rats. Neurosci Res 2020; 166:42-54. [PMID: 32461140 DOI: 10.1016/j.neures.2020.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/07/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.
Collapse
Affiliation(s)
- Ilia G Komoltsev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| | - Stepan O Frankevich
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia I Shirobokova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Aleksandra A Volkova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Irina P Levshina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Margarita R Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Anna O Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia.
| | - Natalia V Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, 43 Donskaya Str., 115419 Moscow, Russia.
| |
Collapse
|
21
|
Smyk MK, van Luijtelaar G. Circadian Rhythms and Epilepsy: A Suitable Case for Absence Epilepsy. Front Neurol 2020; 11:245. [PMID: 32411068 PMCID: PMC7198737 DOI: 10.3389/fneur.2020.00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/13/2020] [Indexed: 11/16/2022] Open
Abstract
Many physiological processes such as sleep, hormonal secretion, or thermoregulation, are expressed as daily rhythms orchestrated by the circadian timing system. A powerful internal clock mechanism ensures proper synchronization of vital functions within an organism on the one hand, and between the organism and the external environment on the other. Some of the pathological processes developing in the brain and body are subjected to circadian modulation as well. Epilepsy is one of the conditions which symptoms often worsen at a very specific time of a day. Variation in peak occurrence depends on the syndrome and localization of the epileptic focus. Moreover, the timing of some types of seizures is closely related to the sleep-wake cycle, one of the most prominent circadian rhythms. This review focuses on childhood absence epilepsy (CAE), a genetic generalized epilepsy syndrome, in which both, the circadian and sleep influences play a significant role in manifestation of symptoms. Human and animal studies report rhythmical occurrence of spike-wave discharges (SWDs), an EEG hallmark of CAE. The endogenous nature of the SWDs rhythm has been confirmed experimentally in a genetic animal model of the disease, rats of the WAG/Rij strain. Well-known detrimental effects of circadian misalignment were demonstrated to impact the severity of ongoing epileptic activity. SWDs are vigilance-dependent in both humans and animal models, occurring most frequently during passive behavioral states and light slow-wave sleep. The relationship with the sleep-wake cycle seems to be bidirectional, while sleep shapes the rhythm of seizures, epileptic phenotype changes sleep architecture. Circadian factors and the sleep-wake states dependency have a potential as add-ons in seizures' forecasting. Stability of the rhythm of recurrent seizures in individual patients has been already used as a variable which refines existing algorithms for seizures' prediction. On the other hand, apart from successful pharmacological approach, circadian hygiene including sufficient sleep and avoidance of internal desynchronization or sleep loss, may be beneficial for patients with epilepsy in everyday management of seizures.
Collapse
Affiliation(s)
- Magdalena K Smyk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
22
|
Epilepsy and aging. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 31753149 DOI: 10.1016/b978-0-12-804766-8.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The intersection of epilepsy and aging has broad, significant implications. Substantial increases in seizures occur both in the elderly population, who are at a higher risk of developing new-onset epilepsy, and in those with chronic epilepsy who become aged. There are notable gaps in our understanding of aging and epilepsy at the basic and practical levels, which have important consequences. We are in the early stages of understanding the complex relationships between epilepsy and other age-related brain diseases such as stroke, dementia, traumatic brain injury (TBI), and cancer. Furthermore, the clinician must recognize that the presentation and treatment of epilepsy in the elderly are different from those of younger populations. Given the developing awareness of the problem and the capabilities of contemporary, multidisciplinary approaches to advance understanding about the biology of aging and epilepsy, it is reasonable to expect that we will unravel some of the intricacies of epilepsy in the elderly; it is also reasonable to expect that these gains will lead to further improvements in our understanding and treatment of epilepsy for all age groups.
Collapse
|
23
|
Grosenbaugh DK, Joshi S, Fitzgerald MP, Lee KS, Wagley PK, Koeppel AF, Turner SD, McConnell MJ, Goodkin HP. A deletion in Eml1 leads to bilateral subcortical heterotopia in the tish rat. Neurobiol Dis 2020; 140:104836. [PMID: 32179177 PMCID: PMC7814471 DOI: 10.1016/j.nbd.2020.104836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Children with malformations of cortical development (MCD) are at risk for epilepsy, developmental delays, behavioral disorders, and intellectual disabilities. For a subset of these children, antiseizure medications or epilepsy surgery may result in seizure freedom. However, there are limited options for treating or curing the other conditions, and epilepsy surgery is not an option in all cases of pharmacoresistant epilepsy. Understanding the genetic and neurobiological mechanisms underlying MCD is a necessary step in elucidating novel therapeutic targets. The tish (telencephalic internal structural heterotopia) rat is a unique model of MCD with spontaneous seizures, but the underlying genetic mutation(s) have remained unknown. DNA and RNA-sequencing revealed that a deletion encompassing a previously unannotated first exon markedly diminished Eml1 transcript and protein abundance in the tish brain. Developmental electrographic characterization of the tish rat revealed early-onset of spontaneous spike-wave discharge (SWD) bursts beginning at postnatal day (P) 17. A dihybrid cross demonstrated that the mutant Eml1 allele segregates with the observed dysplastic cortex and the early-onset SWD bursts in monogenic autosomal recessive frequencies. Our data link the development of the bilateral, heterotopic dysplastic cortex of the tish rat to a deletion in Eml1.
Collapse
Affiliation(s)
- Denise K Grosenbaugh
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Suchitra Joshi
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Mark P Fitzgerald
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kevin S Lee
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander F Koeppel
- Center for Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Stephen D Turner
- Center for Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, United States.
| | - Howard P Goodkin
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, United States; Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
24
|
Jain S, LaFrancois JJ, Botterill JJ, Alcantara-Gonzalez D, Scharfman HE. Adult neurogenesis in the mouse dentate gyrus protects the hippocampus from neuronal injury following severe seizures. Hippocampus 2019; 29:683-709. [PMID: 30672046 PMCID: PMC6640126 DOI: 10.1002/hipo.23062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/29/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
Previous studies suggest that reducing the numbers of adult-born neurons in the dentate gyrus (DG) of the mouse increases susceptibility to severe continuous seizures (status epilepticus; SE) evoked by systemic injection of the convulsant kainic acid (KA). However, it was not clear if the results would be the same for other ways to induce seizures, or if SE-induced damage would be affected. Therefore, we used pilocarpine, which induces seizures by a different mechanism than KA. Also, we quantified hippocampal damage after SE. In addition, we used both loss-of-function and gain-of-function methods in adult mice. We hypothesized that after loss-of-function, mice would be more susceptible to pilocarpine-induced SE and SE-associated hippocampal damage, and after gain-of-function, mice would be more protected from SE and hippocampal damage after SE. For loss-of-function, adult neurogenesis was suppressed by pharmacogenetic deletion of dividing radial glial precursors. For gain-of-function, adult neurogenesis was increased by conditional deletion of pro-apoptotic gene Bax in Nestin-expressing progenitors. Fluoro-Jade C (FJ-C) was used to quantify neuronal injury and video-electroencephalography (video-EEG) was used to quantify SE. Pilocarpine-induced SE was longer in mice with reduced adult neurogenesis, SE had more power and neuronal damage was greater. Conversely, mice with increased adult-born neurons had shorter SE, SE had less power, and there was less neuronal damage. The results suggest that adult-born neurons exert protective effects against SE and SE-induced neuronal injury.
Collapse
Affiliation(s)
- Swati Jain
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute of Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
25
|
Spontaneous Recurrent Absence Seizure-like Events in Wild-Caught Rats. J Neurosci 2019; 39:4829-4841. [PMID: 30971439 DOI: 10.1523/jneurosci.1167-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 03/09/2019] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
Absence epilepsy is a heritable human neurological disorder characterized by brief nonconvulsive seizures with behavioral arrest, moderate-to-severe loss of consciousness (absence), and distinct spike-wave discharges (SWDs) in the EEG and electrocorticogram (ECoG). Genetic models of this disorder have been created by selectively inbreeding rats for absence seizure-like events with similar electrical and behavioral characteristics. However, these events are also common in outbred laboratory rats, raising concerns about whether SWD/immobility accurately reflects absence epilepsy as opposed to "normal" rodent behavior. We hypothesized that, if SWD/immobility models absence seizures, it would not exist in wild-caught rats due to the pressures of natural selection. To test this hypothesis, we compared chronic video/electrocorticogram recordings from male and female wild-caught (Brown-Norway [BN]) rats to recordings from laboratory outbred BN, outbred Long-Evans, and inbred WAG/Rij rats (i.e., a model of absence epilepsy). Wild-caught BN rats displayed absence-like SWD/immobility events that were highly similar to outbred BN rats in terms of spike-wave morphology, frequency, diurnal rhythmicity, associated immobility, and sensitivity to the anti-absence drug, ethosuximide; however, SWD bursts were less frequent and of shorter duration in wild-caught and outbred BN rats than the outbred Long-Evans and inbred WAG/Rij strains. We conclude that SWD/immobility in rats does not represent absence seizures, although they appear to have many similarities. In wild rats, SWD/immobility appears to represent normal brain activity that does not reduce survival in natural environments, a conclusion that logically extends to outbred laboratory rats and possibly to those that have been inbred to model absence epilepsy.SIGNIFICANCE STATEMENT Spike-wave discharges (SWDs), behavioral arrest, and diminished consciousness are cardinal signs of seizures in human absence epilepsy and are used to model this disorder in inbred rats. These characteristics, however, are routinely found in outbred laboratory rats, leading to debate on whether SWD/immobility is a valid model of absence seizures. The SWD/immobility events in wild-caught rats appear equivalent to those found in outbred and inbred rat strains, except for lower incidence and shorter durations. Our results indicate that the electrophysiological and behavioral characteristics of events underlying hypothetical absence epilepsy in rodent models are found in wild rats captured in their natural environment. Other criteria beyond observation of SWDs and associated immobility are required to objectively establish absence epilepsy in rat models.
Collapse
|
26
|
Sepulveda-Rodriguez A, Li P, Khan T, Ma JD, Carlone CA, Bozzelli PL, Conant KE, Forcelli PA, Vicini S. Electroconvulsive Shock Enhances Responsive Motility and Purinergic Currents in Microglia in the Mouse Hippocampus. eNeuro 2019; 6:ENEURO.0056-19.2019. [PMID: 31058213 PMCID: PMC6498419 DOI: 10.1523/eneuro.0056-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia are in a privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. Hippocampal microglia become activated after prolonged, damaging seizures known as status epilepticus (SE). However, since SE causes both hyperactivity and injury of neurons, the mechanisms triggering this activation remain unclear, as does the relevance of the microglial activation to the ensuing epileptogenic processes. In this study, we use electroconvulsive shock (ECS) to study the effect of neuronal hyperactivity without neuronal degeneration on mouse hippocampal microglia. Unlike SE, ECS did not alter hippocampal CA1 microglial density, morphology, or baseline motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices, and similarly upregulated expression of the chemokine C-C motif chemokine ligand 2 (CCL2). Whole-cell patch-clamp recordings of hippocampal CA1sr microglia showed that ECS enhanced purinergic currents mediated by P2X7 receptors in the absence of changes in passive properties or voltage-gated currents, or changes in receptor expression. This differs from previously described alterations in intrinsic characteristics which coincided with enhanced purinergic currents following SE. These ECS-induced effects point to a "seizure signature" in hippocampal microglia characterized by altered purinergic signaling. These data demonstrate that ictal activity per se can drive alterations in microglial physiology without neuronal injury. These physiological changes, which up until now have been associated with prolonged and damaging seizures, are of added interest as they may be relevant to electroconvulsive therapy (ECT), which remains a gold-standard treatment for depression.
Collapse
Affiliation(s)
- Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Pinggan Li
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tahiyana Khan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - James D Ma
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - Colby A Carlone
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| |
Collapse
|
27
|
Komoltsev IG, Frankevich SO, Shirobokova NI, Volkova AA, Levshina IP, Novikova MR, Manolova AO, Gulyaeva NV. [Early electrophysiological consequences of dosed traumatic-brain injury in rats]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:21-26. [PMID: 30698540 DOI: 10.17116/jnevro201811810221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To analyze the pathological electrical activity during the acute period after traumatic brain injury (TBI) and to search for potential morphological correlates of this activity in the neocortex and hippocampus. MATERIAL AND METHODS The study was performed on male Sprague Dawley rats. TBI was modeled using a lateral hydrodynamic impact in the sensorimotor cortex area. ECoG was continuously recorded one week before and one week after TBI. A histological analysis was performed one week after TBI. Brain slices were Nissl stained as well as immunohistochemically stained for astrocytes (GFAP) and microglia (Isolectin B4). The damage to the neocortex and hippocampus was evaluated. RESULTS AND CONCLUSION The slowdown of the background activity one and six hours after TBI and appearance of epileptiform activity in a half of animals one week after TBI were shown. The number of discharges was correlated with the area of astrocyte gliosis in the neocortex and with the number of dark (ischemic-like) neurons in the hippocampus. Microglial activation did not correlate with the epileptiform activity. These data are important to understanding early mechanisms of post-trauma epileptogenesis.
Collapse
Affiliation(s)
- I G Komoltsev
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| | - S O Frankevich
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - N I Shirobokova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - A A Volkova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - I P Levshina
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - M R Novikova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - A O Manolova
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia; Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department, Moscow, Russia
| |
Collapse
|
28
|
Pfammatter JA, Bergstrom RA, Wallace EP, Maganti RK, Jones MV. A predictive epilepsy index based on probabilistic classification of interictal spike waveforms. PLoS One 2018; 13:e0207158. [PMID: 30399183 PMCID: PMC6219811 DOI: 10.1371/journal.pone.0207158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
Quantification of interictal spikes in EEG may provide insight on epilepsy disease burden, but manual quantification of spikes is time-consuming and subject to bias. We present a probability-based, automated method for the classification and quantification of interictal events, using EEG data from kainate- and saline-injected mice (C57BL/6J background) several weeks post-treatment. We first detected high-amplitude events, then projected event waveforms into Principal Components space and identified clusters of spike morphologies using a Gaussian Mixture Model. We calculated the odds-ratio of events from kainate- versus saline-treated mice within each cluster, converted these values to probability scores, P(kainate), and calculated an Hourly Epilepsy Index for each animal by summing the probabilities for events where the cluster P(kainate) > 0.5 and dividing the resultant sum by the record duration. This Index is predictive of whether an animal received an epileptogenic treatment (i.e., kainate), even if a seizure was never observed. We applied this method to an out-of-sample dataset to assess epileptiform spike morphologies in five kainate mice monitored for ~1 month. The magnitude of the Index increased over time in a subset of animals and revealed changes in the prevalence of epileptiform (P(kainate) > 0.5) spike morphologies. Importantly, in both data sets, animals that had electrographic seizures also had a high Index. This analysis is fast, unbiased, and provides information regarding the salience of spike morphologies for disease progression. Future refinement will allow a better understanding of the definition of interictal spikes in quantitative and unambiguous terms.
Collapse
Affiliation(s)
- Jesse A. Pfammatter
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rachel A. Bergstrom
- Department of Biology, Beloit College, Beloit, Wisconsin, United States of America
| | - Eli P. Wallace
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mathew V. Jones
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
29
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
30
|
Billard MW, Bahari F, Kimbugwe J, Alloway KD, Gluckman BJ. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. eNeuro 2018; 5:ENEURO.0261-18.2018. [PMID: 30627656 PMCID: PMC6325560 DOI: 10.1523/eneuro.0261-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
A multielectrode system that can address widely separated targets at multiple sites across multiple brain regions with independent implant angling is needed to investigate neural function and signaling in systems and circuits of small animals. Here, we present the systemDrive, a novel multisite, multiregion microdrive that is capable of moving microwire electrode bundles into targets along independent and nonparallel drive trajectories. Our design decouples the stereotaxic surgical placement of individual guide cannulas for each trajectory from the placement of a flexible drive structure. This separation enables placement of many microwire multitrodes along widely spaced and independent drive axes with user-set electrode trajectories and depths from a single microdrive body, and achieves stereotaxic precision with each. The system leverages tight tube-cannula tolerances and geometric constraints on flexible drive axes to ensure concentric alignment of electrode bundles within guide cannulas. Additionally, the headmount and microdrive both have an open-center design to allow for the placement of additional sensing modalities. This design is the first, in the context of small rodent chronic research, to provide the capability to finely position microwires through multiple widely distributed cell groups, each with stereotaxic precision, along arbitrary and nonparallel trajectories that are not restricted to emanate from a single source. We demonstrate the use of the systemDrive in male Long-Evans rats to observe simultaneous single-unit and multiunit activity from multiple widely separated sleep-wake regulatory brainstem cell groups, along with cortical and hippocampal activity, during free behavior over multiple many-day continuous recording periods.
Collapse
Affiliation(s)
- Myles W. Billard
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - Fatemeh Bahari
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - John Kimbugwe
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - Kevin D. Alloway
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
- Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania 16802
| | - Bruce J. Gluckman
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
- Department of Neurosurgery, Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
31
|
Ndode-Ekane XE, Matthiesen L, Bañuelos-Cabrera I, Palminha CAP, Pitkänen A. T-cell infiltration into the perilesional cortex is long-lasting and associates with poor somatomotor recovery after experimental traumatic brain injury. Restor Neurol Neurosci 2018; 36:485-501. [PMID: 29889085 DOI: 10.3233/rnn-170811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND T-lymphocyte (T-cell) invasion into the brain parenchyma is a major consequence of traumatic brain injury (TBI). However, the role of T-cells in the post-TBI functional outcome and secondary inflammatory processes is unknown. We explored the dynamics of T-cell infiltration into the cortex after TBI to establish whether the infiltration relates to post-injury functional impairment/recovery and progression of the secondary injury. METHOD TBI was induced in rats by lateral fluid-percussion injury, and the acute functional impairment was assessed using the neuroscore. Animals were killed between 1-90 d post-TBI for immunohistochemical analysis of T-cell infiltration (CD3), chronic macrophage/microglial reaction (CD68), blood-brain barrier (BBB) dysfunction (IgG), and endophenotype of the cortical injury. Furthermore, the occurrence of spontaneous seizures and spike-and-wave discharges were assessed using video-electroencephalography. RESULTS The number of T-cells peaked at 2-d post-TBI, and then dramatically decreased by 7-d post-TBI (5% of 2-d value). Unexpectedly, chronic T-cell infiltration at 1 or 3 months post-TBI did not correlate with the severity of chronic inflammation (p > 0.05) or BBB dysfunction (p > 0.05). Multiple regression analysis indicated that inflammation and BBB dysfunction is associated with 48% of the perilesional T-cell infiltration even at the chronic time-point (r = 0.695, F = 6.54, p < 0.05). The magnitude of T-cell infiltration did not predict the pathologic endophenotype of cortical injury, but the higher the number of T-cells in the cortex, the poorer the recovery index based on the neuroscore (r = - 0.538, p < 0.05). T-cell infiltration was not associated with the number or duration of age-related spike-and-wave discharges (SWD). Nevertheless, the higher the number of SWD, the poorer the recovery index (r = - 0.767, p < 0.5). CONCLUSIONS These findings suggest that acute infiltration of T-cells into the brain parenchyma after TBI is a contributing factor to poor post-injury recovery.
Collapse
Affiliation(s)
| | - Liz Matthiesen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| | | | | | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| |
Collapse
|
32
|
Missault S, Anckaerts C, Blockx I, Deleye S, Van Dam D, Barriche N, De Pauw G, Aertgeerts S, Valkenburg F, De Deyn PP, Verhaeghe J, Wyffels L, Van der Linden A, Staelens S, Verhoye M, Dedeurwaerdere S. Neuroimaging of Subacute Brain Inflammation and Microstructural Changes Predicts Long-Term Functional Outcome after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:768-788. [PMID: 30032713 DOI: 10.1089/neu.2018.5704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is currently a lack of prognostic biomarkers to predict the different sequelae following traumatic brain injury (TBI). The present study investigated the hypothesis that subacute neuroinflammation and microstructural changes correlate with chronic TBI deficits. Rats were subjected to controlled cortical impact (CCI) injury, sham surgery, or skin incision (naïve). CCI-injured (n = 18) and sham-operated rats (n = 6) underwent positron emission tomography (PET) imaging with the translocator protein 18 kDa (TSPO) radioligand [18F]PBR111 and diffusion tensor imaging (DTI) in the subacute phase (≤3 weeks post-injury) to quantify inflammation and microstructural alterations. CCI-injured, sham-operated, and naïve rats (n = 8) underwent behavioral testing in the chronic phase (5.5-10 months post-injury): open field and sucrose preference tests, two one-week video-electroencephalogram (vEEG) monitoring periods, pentylenetetrazole (PTZ) seizure susceptibility tests, and a Morris water maze (MWM) test. In vivo imaging revealed pronounced neuroinflammation, decreased fractional anisotropy, and increased diffusivity in perilesional cortex and ipsilesional hippocampus of CCI-injured rats. Behavioral analysis revealed disinhibition, anhedonia, increased seizure susceptibility, and impaired learning in CCI-injured rats. Subacute TSPO expression and changes in DTI metrics significantly correlated with several chronic deficits (Pearson's |r| = 0.50-0.90). Certain specific PET and DTI parameters had good sensitivity and specificity (area under the receiver operator characteristic [ROC] curve = 0.85-1.00) to distinguish between TBI animals with and without particular behavioral deficits. Depending on the investigated behavioral deficit, PET or DTI data alone, or the combination, could very well predict the variability in functional outcome data (adjusted R2 = 0.54-1.00). Taken together, both TSPO PET and DTI seem promising prognostic biomarkers to predict different chronic TBI sequelae.
Collapse
Affiliation(s)
- Stephan Missault
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium .,2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Cynthia Anckaerts
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Ines Blockx
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Steven Deleye
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Debby Van Dam
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Nora Barriche
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Glenn De Pauw
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Stephanie Aertgeerts
- 1 Experimental Laboratory of Translational Neuroscience and Otolaryngology, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Femke Valkenburg
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Peter Paul De Deyn
- 4 Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG) , Groningen, The Netherlands
| | - Jeroen Verhaeghe
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Leonie Wyffels
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium .,5 Department of Nuclear Medicine, University Hospital Antwerp , Edegem, Belgium
| | - Annemie Van der Linden
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Steven Staelens
- 3 Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Marleen Verhoye
- 2 Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| | - Stefanie Dedeurwaerdere
- 6 Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp , Wilrijk, Belgium
| |
Collapse
|
33
|
Brady RD, Casillas-Espinosa PM, Agoston DV, Bertram EH, Kamnaksh A, Semple BD, Shultz SR. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis 2018; 123:8-19. [PMID: 30121231 DOI: 10.1016/j.nbd.2018.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.
Collapse
Affiliation(s)
- Rhys D Brady
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Pablo M Casillas-Espinosa
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia.
| | - Denes V Agoston
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Edward H Bertram
- Department of Neurology, University of Virginia, P.O. Box 800394, Charlottesville, VA 22908-0394, USA
| | - Alaa Kamnaksh
- Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Bridgette D Semple
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| | - Sandy R Shultz
- Departments of Neuroscience and Medicine, Central Clinical School, Monash University, VIC 3004, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC 3052, Australia
| |
Collapse
|
34
|
Gauvin DV, Zimmermann ZJ, Yoder J, Harter M, Holdsworth D, Kilgus Q, May J, Dalton J, Baird TJ. A predictive index of biomarkers for ictogenesis from tier I safety pharmacology testing that may warrant tier II EEG studies. J Pharmacol Toxicol Methods 2018; 94:50-63. [PMID: 29751085 DOI: 10.1016/j.vascn.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
Three significant contributions to the field of safety pharmacology were recently published detailing the use of electroencephalography (EEG) by telemetry in a critical role in the successful evaluation of a compound during drug development (1] Authier, Delatte, Kallman, Stevens & Markgraf; JPTM 2016; 81:274-285; 2] Accardi, Pugsley, Forster, Troncy, Huang & Authier; JPTM; 81: 47-59; 3] Bassett, Troncy, Pouliot, Paquette, Ascaha, & Authier; JPTM 2016; 70: 230-240). These authors present a convincing case for monitoring neocortical biopotential waveforms (EEG, ECoG, etc) during preclinical toxicology studies as an opportunity for early identification of a central nervous system (CNS) risk during Investigational New Drug (IND) Enabling Studies. This review is about "ictogenesis" not "epileptogenesis". It is intended to characterize overt behavioral and physiological changes suggestive of drug-induced neurotoxicity/ictogenesis in experimental animals during Tier 1 safety pharmacology testing, prior to first dose administration in man. It is the presence of these predictive or comorbid biomarkers expressed during the requisite conduct of daily clinical or cage side observations, and in early ICH S7A Tier I CNS, pulmonary and cardiovascular safety study designs that should initiate an early conversation regarding Tier II inclusion of EEG monitoring. We conclude that there is no single definitive clinical marker for seizure liability but plasma exposures might add to set proper safety margins when clinical convulsions are observed. Even the observation of a study-related full tonic-clonic convulsion does not establish solid ground to require the financial and temporal investment of a full EEG study under the current regulatory standards. PREFATORY NOTE For purposes of this review, we have adopted the FDA term "sponsor" as it refers to any person who takes the responsibility for and initiates a nonclinical investigations of new molecular entities; FDA uses the term "sponsor" primarily in relation to investigational new drug application submissions.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States.
| | - Zachary J Zimmermann
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Joshua Yoder
- Neurobehavioral Science and MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Marci Harter
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - David Holdsworth
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Quinn Kilgus
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jonelle May
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Jill Dalton
- Safety Pharmacology, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| | - Theodore J Baird
- Drug Safety Assessment, MPI Research (A Charles Rivers Company), Mattawan, MI, United States
| |
Collapse
|
35
|
Sheybani L, Birot G, Contestabile A, Seeck M, Kiss JZ, Schaller K, Michel CM, Quairiaux C. Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy. J Neurosci 2018; 38:3776-3791. [PMID: 29555850 PMCID: PMC6705908 DOI: 10.1523/jneurosci.2193-17.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 11/21/2022] Open
Abstract
Most research on focal epilepsy focuses on mechanisms of seizure generation in the primary epileptic focus (EF). However, neurological deficits that are not directly linked to seizure activity and that may persist after focus removal are frequent. The recruitment of remote brain regions of an epileptic network (EN) is recognized as a possible cause, but a profound lack of experimental evidence exists concerning their recruitment and the type of pathological activities they exhibit. We studied the development of epileptic activities at the large-scale in male mice of the kainate model of unilateral temporal lobe epilepsy using high-density surface EEG and multiple-site intracortical recordings. We show that, along with focal spikes and fast ripples that remain localized to the injected hippocampus (i.e., the EF), a subpopulation of spikes that propagate across the brain progressively emerges even before the expression of seizures. The spatiotemporal propagation of these generalized spikes (GSs) is highly stable within and across animals, defining a large-scale EN comprising both hippocampal regions and frontal cortices. Interestingly, GSs are often concomitant with muscular twitches. In addition, while fast ripples are, as expected, highly frequent in the EF, they also emerge in remote cortical regions and in particular in frontal regions where GSs propagate. Finally, we demonstrate that these remote interictal activities are dependent on the focus in the early phase of the disease but continue to be expressed after focus silencing at later stages. Our results provide evidence that neuronal networks outside the initial focus are progressively altered during epileptogenesis.SIGNIFICANCE STATEMENT It has long been held that the epileptic focus is responsible for triggering seizures and driving interictal activities. However, focal epilepsies are associated with heterogeneous symptoms, calling into question the concept of a strictly focal disease. Using the mouse model of hippocampal sclerosis, this work demonstrates that focal epilepsy leads to the development of pathological activities specific to the epileptic condition, notably fast ripples, that appear outside of the primary epileptic focus. Whereas these activities are dependent on the focus early in the disease, focus silencing fails to control them in the chronic stage. Thus, dynamical changes specific to the epileptic condition are built up outside of the epileptic focus along with disease progression, which provides supporting evidence for network alterations in focal epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Gwenaël Birot
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | | | - Margitta Seeck
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| | - Karl Schaller
- Neurosurgery Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland, and
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland
- Neurology Clinic, Department of Clinical Neuroscience, University Hospital Geneva, 1206 Geneva, Switzerland
- Center for Biomedical Imaging, Lausanne and Geneva, 1015 Lausanne, Switzerland
| | - Charles Quairiaux
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Campus Biotech, University of Geneva, 1202 Geneva, Switzerland,
- Department of Fundamental Neuroscience, Faculty of Medicine, 1206 Geneva, Switzerland
| |
Collapse
|
36
|
Berzhanskaya J, Phillips MA, Gorin A, Lai C, Shen J, Colonnese MT. Disrupted Cortical State Regulation in a Rat Model of Fragile X Syndrome. Cereb Cortex 2018; 27:1386-1400. [PMID: 26733529 DOI: 10.1093/cercor/bhv331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Children with Fragile X syndrome (FXS) have deficits of attention and arousal. To begin to identify the neural causes of these deficits, we examined juvenile rats lacking the Fragile X mental retardation protein (FMR-KO) for disruption of cortical activity related to attention and arousal. Specifically, we examined the switching of visual cortex between activated and inactivated states that normally occurs during movement and quiet rest, respectively. In both wild-type and FMR-KO rats, during the third and fourth postnatal weeks cortical activity during periods of movement was dominated by an activated state with prominent 18-52 Hz activity. However, during quiet rest, when activity in wild-type rats became dominated by the inactivated state (3-9 Hz activity), FMR-KO rat cortex abnormally remained activated, resulting in increased high-frequency and reduced low-frequency power during rest. Firing rate correlations revealed reduced synchronization in FMR-KO rats, particularly between fast-spiking interneurons, that developmentally precede cortical state defects. Together our data suggest that disrupted inhibitory connectivity impairs the ability of visual cortex to regulate exit from the activated state in a behaviorally appropriate manner, potentially contributing to disrupted attention and sensory processing observed in children with FXS by making it more difficult to decrease cortical drive by unattended stimuli.
Collapse
Affiliation(s)
- Julia Berzhanskaya
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Marnie A Phillips
- Department of Pharmacology and Physiology and Institute for Neuroscience
| | - Alexis Gorin
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Chongxi Lai
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | - Jing Shen
- Department of Electrical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC 20052, USA
| | | |
Collapse
|
37
|
Smith ZZ, Benison AM, Bercum FM, Dudek FE, Barth DS. Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus. J Neurophysiol 2018; 119:1818-1835. [PMID: 29442558 DOI: 10.1152/jn.00721.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although convulsive seizures occurring during pilocarpine-induced epileptogenesis have received considerable attention, nonconvulsive seizures have not been closely examined, even though they may reflect the earliest signs of epileptogenesis and potentially guide research on antiepileptogenic interventions. The definition of nonconvulsive seizures based on brain electrical activity alone has been controversial. Here we define and quantify electrographic properties of convulsive and nonconvulsive seizures in the context of the acquired epileptogenesis that occurs after pilocarpine-induced status epilepticus (SE). Lithium-pilocarpine was used to induce the prolonged repetitive seizures characteristic of SE; when SE was terminated with paraldehyde, seizures returned during the 2-day period after pilocarpine treatment. A distinct latent period ranging from several days to >2 wk was then measured with continuous, long-term video-EEG. Nonconvulsive seizures dominated the onset of epileptogenesis and consistently preceded the first convulsive seizures but were still present later. Convulsive and nonconvulsive seizures had similar durations. Postictal depression (background suppression of the EEG) lasted for >100 s after both convulsive and nonconvulsive seizures. Principal component analysis was used to quantify the spectral evolution of electrical activity that characterized both types of spontaneous recurrent seizures. These studies demonstrate that spontaneous nonconvulsive seizures have electrographic properties similar to convulsive seizures and confirm that nonconvulsive seizures link the latent period and the onset of convulsive seizures during post-SE epileptogenesis in an animal model. Nonconvulsive seizures may also reflect the earliest signs of epileptogenesis in human acquired epilepsy, when intervention could be most effective. NEW & NOTEWORTHY Nonconvulsive seizures usually represent the first bona fide seizure following a latent period, dominate the early stages of epileptogenesis, and change in severity in a manner consistent with the progressive nature of epileptogenesis. This analysis demonstrates that nonconvulsive and convulsive seizures have different behavioral outcomes but similar electrographic signatures. Alternatively, epileptiform spike-wave discharges fail to recapitulate several key seizure features and represent a category of electrical activity separate from nonconvulsive seizures in this model.
Collapse
Affiliation(s)
- Zachariah Z Smith
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - Alexander M Benison
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - Florencia M Bercum
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine , Salt Lake City, Utah
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado , Boulder, Colorado
| |
Collapse
|
38
|
Perinatal Immune Activation Produces Persistent Sleep Alterations and Epileptiform Activity in Male Mice. Neuropsychopharmacology 2018; 43:482-491. [PMID: 28984294 PMCID: PMC5770773 DOI: 10.1038/npp.2017.243] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/17/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023]
Abstract
Increasing evidence suggests a role for inflammation in neuropsychiatric conditions, including autism spectrum disorder (ASD). Previous work in rodents has established that immune activation during critical developmental periods can cause phenotypes that reproduce core features of ASD, including decreased social interaction, aberrant communication, and increased repetitive behavior. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders, motor hyperactivity, and seizures. Here we use a 'two-hit' immune-activation paradigm to determine whether perinatal immune activation can also produce these comorbid features in mice. In this paradigm, we treated timed-pregnant mice with polyinosinic:polycytidylic acid (Poly I:C), which simulates a viral infection, on gestational day 12.5 according to an established maternal immune activation regimen. A subset of the offspring also received a second 'hit' of lipopolysaccharide (LPS), which simulates a bacterial infection, on postnatal day 9. At 6 weeks of age, mice were implanted with wireless telemetry transmitters that enabled continuous measurements of electroencephalography (EEG), electromyography (EMG), locomotor activity, and subcutaneous temperature. Effects at 7 and 12 weeks of age were compared. Both prenatal Poly I:C and postnatal LPS produced changes in locomotor activity and temperature patterns, increases in slow-wave sleep, and shifts in EEG spectral power, several of which persisted at 12 weeks of age. Postnatal LPS also produced persistent increases in spontaneous bursts of epileptiform activity (spike-wave discharges) that occurred predominantly during sleep. Our findings demonstrate that early-life immune activation can lead to long-lasting physiologic perturbations that resemble medical comorbidities often seen in ASD and other neuropsychiatric conditions.
Collapse
|
39
|
Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia-Cairasco N, Ikeda A, de Curtis M, Galanopoulou AS, Kelly KM. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:10-27. [PMID: 29105073 DOI: 10.1111/epi.13903] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 01/13/2023]
Abstract
In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Department of Neurology, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery and Regional Epilepsy Center, University of Washington, Seattle, Washington, U.S.A
| | | | | | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Marco de Curtis
- Epileptology and Experimental Neurophysiology Unit, Institutes of Hospitality and Care of a Scientific Nature (IRCCS) Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Kevin M Kelly
- Brain Injury and Epilepsy Research Laboratory, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
40
|
|
41
|
Kielbinski M, Setkowicz Z, Gzielo K, Węglarz W, Janeczko K. Altered Electroencephalography Spectral Profiles in Rats with Different Patterns of Experimental Brain Dysplasia. Birth Defects Res 2017; 110:303-316. [DOI: 10.1002/bdr2.1131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Michal Kielbinski
- Department of Neuroanatomy, Institute of Zoology; Jagiellonian University; Krakow Poland
| | - Zuzanna Setkowicz
- Department of Neuroanatomy, Institute of Zoology; Jagiellonian University; Krakow Poland
| | - Kinga Gzielo
- Department of Neuroanatomy, Institute of Zoology; Jagiellonian University; Krakow Poland
| | - Władysław Węglarz
- Department of Magnetic Resonance Imaging; Institute of Nuclear Physics, Polish Academy of Sciences; Krakow Poland
| | - Krzysztof Janeczko
- Department of Neuroanatomy, Institute of Zoology; Jagiellonian University; Krakow Poland
| |
Collapse
|
42
|
Keita Alassane S, Nicolau-Travers ML, Menard S, Andreoletti O, Cambus JP, Gaudre N, Wlodarczyk M, Blanchard N, Berry A, Abbes S, Colongo D, Faye B, Augereau JM, Lacroux C, Iriart X, Benoit-Vical F. Young Sprague Dawley rats infected by Plasmodium berghei: A relevant experimental model to study cerebral malaria. PLoS One 2017; 12:e0181300. [PMID: 28742109 PMCID: PMC5524346 DOI: 10.1371/journal.pone.0181300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of human malaria yet is still poorly understood. Mouse models have been developed to address the subject. However, their relevance to mimic human pathogenesis is largely debated. Here we study an alternative cerebral malaria model with an experimental Plasmodium berghei Keyberg 173 (K173) infection in Sprague Dawley rats. As in Human, not all infected subjects showed cerebral malaria, with 45% of the rats exhibiting Experimental Cerebral Malaria (ECM) symptoms while the majority (55%) of the remaining rats developed severe anemia and hyperparasitemia (NoECM). These results allow, within the same population, a comparison of the noxious effects of the infection between ECM and severe malaria without ECM. Among the ECM rats, 77.8% died between day 5 and day 12 post-infection, while the remaining rats were spontaneously cured of neurological signs within 24-48 hours. The clinical ECM signs observed were paresis quickly evolving to limb paralysis, global paralysis associated with respiratory distress, and coma. The red blood cell (RBC) count remained normal but a drastic decrease of platelet count and an increase of white blood cell numbers were noted. ECM rats also showed a decrease of glucose and total CO2 levels and an increase of creatinine levels compared to control rats or rats with no ECM. Assessment of the blood-brain barrier revealed loss of integrity, and interestingly histopathological analysis highlighted cyto-adherence and sequestration of infected RBCs in brain vessels from ECM rats only. Overall, this ECM rat model showed numerous clinical and histopathological features similar to Human CM and appears to be a promising model to achieve further understanding the CM pathophysiology in Humans and to evaluate the activity of specific antimalarial drugs in avoiding/limiting cerebral damages from malaria.
Collapse
Affiliation(s)
- Sokhna Keita Alassane
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Marie-Laure Nicolau-Travers
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Sandie Menard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Jean-Pierre Cambus
- Laboratoire Hématologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Noémie Gaudre
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Myriam Wlodarczyk
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Nicolas Blanchard
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Sarah Abbes
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | | | - Babacar Faye
- UFR Sciences de la Santé, Université Gaston Berger, St Louis, Sénégal
| | - Jean-Michel Augereau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, Toulouse, France
| | - Xavier Iriart
- CPTP (Centre de Physiopathologie de Toulouse Purpan), INSERM U1043, CNRS UMR5282, Université de Toulouse III, Toulouse, France
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Toulouse, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, Toulouse, France
- Université de Toulouse, UPS, INPT, Toulouse, France
| |
Collapse
|
43
|
Taylor JA, Rodgers KM, Bercum FM, Booth CJ, Dudek FE, Barth DS. Voluntary Control of Epileptiform Spike-Wave Discharges in Awake Rats. J Neurosci 2017; 37:5861-5869. [PMID: 28522734 PMCID: PMC6596506 DOI: 10.1523/jneurosci.3235-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/21/2022] Open
Abstract
Genetically inherited absence epilepsy in humans is typically characterized by brief (seconds) spontaneous seizures, which involve spike-wave discharges (SWDs) in the EEG and interruption of consciousness and ongoing behavior. Genetic (inbred) models of this disorder in rats have been used to examine mechanisms, comorbidities, and antiabsence drugs. SWDs have also been proposed as models of complex partial seizures (CPSs) following traumatic brain injury (post-traumatic epilepsy). However, the ictal characteristics of these rat models, including SWDs and associated immobility, are also prevalent in healthy outbred laboratory rats. We therefore hypothesized that SWDs are not always associated with classically defined absence seizures or CPSs. To test this hypothesis, we used operant conditioning in male rats to determine whether outbred strains, Sprague Dawley and Long-Evans, and/or the inbred WAG/Rij strain (a rat model of heritable human absence epilepsy) could exercise voluntary control over these epileptiform events. We discovered that both inbred and outbred rats could shorten the duration of SWDs to obtain a reward. These results indicate that SWD and associated immobility in rats may not reflect the obvious cognitive/behavioral interruption classically associated with absence seizures or CPSs in humans. One interpretation of these results is that human absence seizures and perhaps CPSs could permit a far greater degree of cognitive capacity than often assumed and might be brought under voluntary control in some cases. However, these results also suggest that SWDs and associated immobility may be nonepileptic in healthy outbred rats and reflect instead voluntary rodent behavior unrelated to genetic manipulation or to brain trauma.SIGNIFICANCE STATEMENT Our evidence that inbred and outbred rats learn to control the duration of spike-wave discharges (SWDs) suggests a voluntary behavior with maintenance of consciousness. If SWDs model mild absence seizures and/or complex partial seizures in humans, then an opportunity may exist for operant control complementing or in some cases replacing medication. Their equal occurrence in outbred rats also implies a major potential confound for behavioral neuroscience experiments, at least in adult rats where SWDs are prevalent. Alternatively, the presence and voluntary control of SWDs in healthy outbred rats could indicate that these phenomena do not always model heritable absence epilepsy or post-traumatic epilepsy in humans, and may instead reflect typical rodent behavior.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Krista M Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Florencia M Bercum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309,
| |
Collapse
|
44
|
Sick T, Wasserman J, Bregy A, Sick J, Dietrich WD, Bramlett HM. Increased Expression of Epileptiform Spike/Wave Discharges One Year after Mild, Moderate, or Severe Fluid Percussion Brain Injury in Rats. J Neurotrauma 2017; 34:2467-2474. [PMID: 28388862 DOI: 10.1089/neu.2016.4826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we describe increased expression of cortical epileptiform spike/wave discharges (SWD) in rats one year after mild, moderate, or severe fluid percussion traumatic brain injury (fpTBI). Groups of rats consisted of animals that had received mild, moderate, or severe fpTBI, or sham operation one year earlier than electrocorticography (ECoG) recordings. In addition, we included a group of age-matched naïve animals. ECoG was recorded from awake animals using epidural electrodes implanted on the injured hemisphere (right), sham-operated hemisphere (right), or right hemisphere in naïve animals. The SWDs were detected automatically using Fast Fourier Transformation and a novel algorithm for comparing changes in spectral power to control (nonepileptical) ECoG. The fpTBI resulted in increased expression of SWDs one year after injury compared with sham-operated or naïve animals. The number of SWD-containing ECoG epochs recorded in a 1 h recording session were: naïve 12.9 ± 10.3, n = 8, sham 23.6 ± 8.2, n = 10, mild TBI 78.9 ± 23.9, n = 10, moderate TBI 61.3 ± 32.5, n = 12, severe TBI 72.5 ± 28.3, n = 11 (mean ± standard error of the mean). Increased expression of SWDs was not related to injury severity. SWDs were observed to a lesser extent even in sham-operated and naïve animals. The data indicate that fpTBI exacerbates expression of SWDs in the rat and that this increase may be observed at least one year after injury. As others have discussed, the spontaneous occurrence of these epileptiform events in rodents limits the use of this model for investigations of acquired epilepsy, at least of the nonconvulsive type, after TBI.
Collapse
Affiliation(s)
- Thomas Sick
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
- 2 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Department of Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida
| | - Joseph Wasserman
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Amade Bregy
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Justin Sick
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
- 2 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Department of Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida
- 4 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Helen M Bramlett
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
- 2 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Department of Neuroscience Program, University of Miami Miller School of Medicine , Miami, Florida
- 4 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
- 5 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
- 6 Center for Computational Science, University of Miami , Miami, Florida
| |
Collapse
|
45
|
Boehringer R, Polygalov D, Huang AJ, Middleton SJ, Robert V, Wintzer ME, Piskorowski RA, Chevaleyre V, McHugh TJ. Chronic Loss of CA2 Transmission Leads to Hippocampal Hyperexcitability. Neuron 2017; 94:642-655.e9. [DOI: 10.1016/j.neuron.2017.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 02/16/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
46
|
Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. NEUROPHOTONICS 2017; 4:011007. [PMID: 27725948 PMCID: PMC5050254 DOI: 10.1117/1.nph.4.1.011007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/13/2016] [Indexed: 05/05/2023]
Abstract
Visualization of whole brain activity during epileptic seizures is essential for both fundamental research into the disease mechanisms and the development of efficient treatment strategies. It has been previously discussed that pathological synchronization originating from cortical areas may reinforce backpropagating signaling from the thalamic neurons, leading to massive seizures through enhancement of high frequency neural activity in the thalamocortical loop. However, the study of deep brain neural activity is challenging with the existing functional neuroimaging methods due to lack of adequate spatiotemporal resolution or otherwise insufficient penetration into subcortical areas. To investigate the role of thalamocortical activity during epileptic seizures, we developed a new functional neuroimaging framework based on spatiotemporal correlation of volumetric optoacoustic hemodynamic responses with the concurrent electroencephalogram recordings and anatomical brain landmarks. The method is shown to be capable of accurate three-dimensional mapping of the onset, spread, and termination of the epileptiform events in a 4-aminopyridine acute model of focal epilepsy. Our study is the first to demonstrate entirely noninvasive real-time visualization of synchronized epileptic foci in the whole mouse brain, including the neocortex and subcortical structures, thus opening new vistas in systematic studies toward the understanding of brain signaling and the origins of neurological disorders.
Collapse
Affiliation(s)
- Sven Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Thomas Felix Fehm
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Technical University of Munich, Faculty of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
| | - Xose Luís Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 20 Penn Street, HSF II, Baltimore, Maryland 21201, United States
| | - Daniel Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Technical University of Munich, Faculty of Medicine, Ismaninger Str. 22, 81675 Munich, Germany
- Address all correspondence to: Daniel Razansky, E-mail:
| |
Collapse
|
47
|
Reid AY, Bragin A, Giza CC, Staba RJ, Engel J. The progression of electrophysiologic abnormalities during epileptogenesis after experimental traumatic brain injury. Epilepsia 2016; 57:1558-1567. [PMID: 27495360 PMCID: PMC5207033 DOI: 10.1111/epi.13486] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) accounts for 20% of acquired epilepsies. Experimental models are important for studying epileptogenesis. We previously reported that repetitive high-frequency oscillations with spikes (rHFOSs) occur early after lateral fluid percussion injury (FPI) and may be a biomarker for PTE. The objective of this study was to use multiple electrodes in rat hippocampal and neocortical regions to describe the long-term electroencephalographic and behavioral evolution of rHFOSs and epileptic seizures after traumatic brain injury (TBI). METHODS Adult male rats underwent mild, moderate, or severe FPI or sham injury followed by video-electroencephalography (EEG) recordings with a combination of 16 neocortical and hippocampal electrodes at an early, intermediate, or late time-point after injury, up to 52 weeks. Recordings were analyzed for the presence of rHFOSs and seizures. RESULTS Analysis was done on 28 rats with FPI and 7 shams. Perilesional rHFOSs were recorded in significantly more rats after severe (70.3%) than mild (20%) injury or shams (14.3%). Frequency of occurrence was significantly highest in the early (10.8/h) versus late group (3.2/h). Late focal seizures originating from the same electrodes were recorded in significantly more rats in the late (87.5%) versus early period (22.2%), occurring almost exclusively in injured rats. Seizure duration increased significantly over time, averaging 19 s at the beginning of the early period and 27 s at the end of the late period. Seizure frequency also increased significantly over time, from 4.4 per week in the early group to 26.4 per week in the late group. Rarely, rats displayed early seizures or generalized seizures. SIGNIFICANCE FPI results in early rHFOSs and later spontaneous focal seizures arising from peri-lesional neocortex, supporting its use as a model for PTE. Epilepsy severity increased over time and was related to injury severity. The association between early rHFOSs and later focal seizures suggests that rHFOSs may be a potential noninvasive biomarker of PTE.
Collapse
Affiliation(s)
- Aylin Y Reid
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A..
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Christopher C Giza
- Department of Neurosurgery and Pediatric Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, U.S.A
- Mattel Children's Hospital - UCLA, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Richard J Staba
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, U.S.A
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, U.S.A
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
48
|
Sensory hypo-excitability in a rat model of fetal development in Fragile X Syndrome. Sci Rep 2016; 6:30769. [PMID: 27465362 PMCID: PMC4964352 DOI: 10.1038/srep30769] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is characterized by sensory hyper-sensitivity, and animal models suggest that neuronal hyper-excitability contributes to this phenotype. To understand how sensory dysfunction develops in FXS, we used the rat model (FMR-KO) to quantify the maturation of cortical visual responses from the onset of responsiveness prior to eye-opening, through age equivalents of human juveniles. Rather than hyper-excitability, visual responses before eye-opening had reduced spike rates and an absence of early gamma oscillations, a marker for normal thalamic function at this age. Despite early hypo-excitability, the developmental trajectory of visual responses in FMR-KO rats was normal, and showed the expected loss of visually evoked bursting at the same age as wild-type, two days before eye-opening. At later ages, during the third and fourth post-natal weeks, signs of mild hyper-excitability emerged. These included an increase in the visually-evoked firing of regular spiking, presumptive excitatory, neurons, and a reduced firing of fast-spiking, presumptive inhibitory, neurons. Our results show that early network changes in the FMR-KO rat arise at ages equivalent to fetal humans and have consequences for excitability that are opposite those found in adults. This suggests identification and treatment should begin early, and be tailored in an age-appropriate manner.
Collapse
|
49
|
Yu KJ, Kuzum D, Hwang SW, Kim BH, Juul H, Kim NH, Won SM, Chiang K, Trumpis M, Richardson AG, Cheng H, Fang H, Thomson M, Bink H, Talos D, Seo KJ, Lee HN, Kang SK, Kim JH, Lee JY, Huang Y, Jensen FE, Dichter MA, Lucas TH, Viventi J, Litt B, Rogers JA. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. NATURE MATERIALS 2016; 15:782-791. [PMID: 27088236 PMCID: PMC4919903 DOI: 10.1038/nmat4624] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
Collapse
Affiliation(s)
- Ki Jun Yu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Duygu Kuzum
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA 92093
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea
| | - Bong Hoon Kim
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Halvor Juul
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nam Heon Kim
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ken Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Michael Trumpis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Andrew G. Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
| | - Hui Fang
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marissa Thomson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hank Bink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyung Jin Seo
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hee Nam Lee
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL 61801, USA
| | - Seung-Kyun Kang
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jae-Hwan Kim
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jung Yup Lee
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- Champaign, Urbana, IL 61801, USA
| | - Younggang Huang
- Department of Mechanical Engineering and Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Frances E. Jensen
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc A. Dichter
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H. Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- To whom correspondence should be addressed. or
| | - John A. Rogers
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- To whom correspondence should be addressed. or
| |
Collapse
|
50
|
Bragin A, Li L, Almajano J, Alvarado-Rojas C, Reid AY, Staba RJ, Engel J. Pathologic electrographic changes after experimental traumatic brain injury. Epilepsia 2016; 57:735-45. [PMID: 27012461 PMCID: PMC5081251 DOI: 10.1111/epi.13359] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate possible electroencephalography (EEG) correlates of epileptogenesis after traumatic brain injury (TBI) using the fluid percussion model. METHODS Experiments were conducted on adult 2- to 4-month-old male Sprague-Dawley rats. Two groups of animals were studied: (1) the TBI group with depth and screw electrodes implanted immediately after the fluid percussion injury (FPI) procedure, and (2) a naive age-matched control group with the same electrode implantation montage. Pairs of tungsten microelectrodes (50 μm outer diameter) and screw electrodes were implanted in neocortex inside the TBI core, areas adjacent to TBI, and remote areas. EEG activity, recorded on the day of FPI, and continuously for 2 weeks, was analyzed for possible electrographic biomarkers of epileptogenesis. Video-EEG monitoring was also performed continuously in the TBI group to capture electrographic and behavioral seizures until the caps came off (28-189 days), and for 1 week, at 2, 3, and 6 months of age, in the control group. RESULTS Pathologic high-frequency oscillations (pHFOs) with a central frequency between 100 and 600 Hz, were recorded from microelectrodes, beginning during the first two post-FPI weeks, in 7 of 12 animals in the TBI group (58%) and never in the controls. pHFOs only occurred in cortical areas within or adjacent to the TBI core. These were associated with synchronous multiunit discharges and popSpikes, duration 15-40 msec. Repetitive pHFOs and EEG spikes (rHFOSs) formed paroxysmal activity, with a unique arcuate pattern, in the frequency band 10-16 Hz in the same areas as isolated pHFOs, and these events were also recorded by screw electrodes. Although loss of caps prevented long-term recordings from all rats, pHFOs and rHFOSs occurred during the first 2 weeks in all four animals that later developed seizures, and none of the rats without these events developed late seizures. SIGNIFICANCE pHFOs, similar to those associated with epileptogenesis in the status rat model of epilepsy, may also reflect epileptogenesis after FPI. rHFOSs could be noninvasive biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Lin Li
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Joyel Almajano
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Catalina Alvarado-Rojas
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Aylin Y. Reid
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Richard J. Staba
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, U.S.A
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, U.S.A
- Departments of Psychiatry and Biobehavioral Medicine, University of California Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|