1
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Kosenkov AM, Mal'tseva VN, Maiorov SA, Gaidin SG. The role of the endocannabinoid system in the pathogenesis and treatment of epilepsy. Rev Neurosci 2024:revneuro-2024-0114. [PMID: 39660979 DOI: 10.1515/revneuro-2024-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Epilepsy is a group of chronic neurological brain disorders characterized by recurrent spontaneous unprovoked seizures, which are accompanied by significant neurobiological, cognitive, and psychosocial impairments. With a global prevalence of approximately 0.5-1 % of the population, epilepsy remains a serious public health concern. Despite the development and widespread use of over 20 anticonvulsant drugs, around 30 % of patients continue to experience drug-resistant seizures, leading to a substantial reduction in quality of life and increased mortality risk. Given the limited efficacy of current treatments, exploring new therapeutic approaches is critically important. In recent years, Gi-protein-coupled receptors, particularly cannabinoid receptors CB1 and CB2, have garnered increasing attention as promising targets for the treatment seizures and prevention of epilepsy. Emerging evidence suggests a significant role of the cannabinoid system in modulating neuronal activity and protecting against hyperexcitability, underscoring the importance of further research in this area. This review provides up-to-date insights into the pathogenesis and treatment of epilepsy, with a special focus on the role of the cannabinoid system, highlighting the need for continued investigation to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Valentina N Mal'tseva
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
3
|
Precious FK, Chinedu EK, Lucero-Prisno Iii DE, Chaurasia B. Neurosurgical interventions in epilepsy management. Neurosurg Rev 2024; 47:772. [PMID: 39384661 DOI: 10.1007/s10143-024-03036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Fadele Kehinde Precious
- Department of Medicine and Surgery, Faculty of Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Egbo Kingsley Chinedu
- Faculty of Dentistry, College of Medicine, University of Nigeria Teaching Hospital, Utuku-Ozalla, Nigeria
| | - Don Eliseo Lucero-Prisno Iii
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
- Office for Research, Innovation and Extension Services, Southern Leyte State University, Sogod, Southern Leyte, Philippines
- Research and Innovation Office, Biliran Province State University, Naval, Biliran Province, Philippines
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
4
|
Milczarek O, Jarocha D, Starowicz-Filip A, Kasprzycki M, Kijowski J, Mordel A, Kwiatkowski S, Majka M. Bone Marrow Nucleated Cells and Bone Marrow-Derived CD271+ Mesenchymal Stem Cell in Treatment of Encephalopathy and Drug-Resistant Epilepsy. Stem Cell Rev Rep 2024; 20:1015-1025. [PMID: 38483743 DOI: 10.1007/s12015-023-10673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 05/12/2024]
Abstract
The broad spectrum of brain injuries in preterm newborns and the plasticity of the central nervous system prompts us to seek solutions for neurodegeneration to prevent the consequences of prematurity and perinatal problems. The study aimed to evaluate the safety and efficacy of the implantation of autologous bone marrow nucleated cells and bone marrow mesenchymal stem cells in different schemes in patients with hypoxic-ischemic encephalopathy and immunological encephalopathy. Fourteen patients received single implantation of bone marrow nucleated cells administered intrathecally and intravenously, followed by multiple rounds of bone marrow mesenchymal stem cells implanted intrathecally, and five patients were treated only with repeated rounds of bone marrow mesenchymal stem cells. Seizure outcomes improved in most cases, including fewer seizures and status epilepticus and reduced doses of antiepileptic drugs compared to the period before treatment. The neuropsychological improvement was more frequent in patients with hypoxic-ischemic encephalopathy than in the immunological encephalopathy group. Changes in emotional functioning occurred with similar frequency in both groups of patients. In the hypoxic-ischemic encephalopathy group, motor improvement was observed in all patients and the majority in the immunological encephalopathy group. The treatment had manageable toxicity, mainly mild to moderate early-onset adverse events. The treatment was generally safe in the 4-year follow-up period, and the effects of the therapy were maintained after its termination.
Collapse
Affiliation(s)
- Olga Milczarek
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland.
| | - Danuta Jarocha
- Hematology Department, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Starowicz-Filip
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
- Faculty of Medicine, Department of Psychology, Jagiellonian University Medicl College, Cracow, Poland
| | - Maciej Kasprzycki
- Students' Scientific Group at the Department of Pediatric Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Jacek Kijowski
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Anna Mordel
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Stanisław Kwiatkowski
- Faculty of Medicine, Department of Children's Neurosurgery, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| | - Marcin Majka
- Faculty of Medicine, Department of Transplantation, Jagiellonian University Medical College Institute of Pediatrics, Cracow, Poland
| |
Collapse
|
5
|
Shaikh TG, Hasan SFS, Ahmed H, Kazi AI, Mansoor R. The role of angiotensin receptor blockers in treating epilepsy: a review. Neurol Sci 2024; 45:1437-1445. [PMID: 38079018 DOI: 10.1007/s10072-023-07249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 03/16/2024]
Abstract
Epilepsy is a chronic brain disease with a global prevalence of 70 million people. According to the World Health Organization, roughly 5 million new cases are diagnosed every year. Anti-seizure drugs are the treatment of choice. However, in roughly one third of the patients, these drugs fail to produce the desired effect. As a result, finding novel treatments for epilepsy becomes inevitable. Recently, angiotensin receptor blockers have been proposed as a treatment to reduce the over-excitation of neurons in epilepsy. For this purpose, we conducted a review using Medline/PubMed and Google Scholar using the relevant search terms and extracted the relevant data in a table. Our review suggests that this novel approach has a very high potential to treat epilepsy, especially in those patients who fail to respond to conventional treatment options. However, more extensive and human-based trials should be conducted to reach a decisive conclusion. Nevertheless, the use of ARBs in patients with epilepsy should be carefully monitored keeping the adverse effects in mind.
Collapse
Affiliation(s)
- Taha Gul Shaikh
- Dow Medical College, Dow University of Health Sciences, Karachi, Sindh, Pakistan.
| | | | - Hiba Ahmed
- Dow Medical College, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Amal Iqbal Kazi
- Dow Medical College, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Ruhma Mansoor
- Dow Medical College, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| |
Collapse
|
6
|
Perriguey M, Succar ME, Clément A, Lagarde S, Ribes O, Dode X, Rheims S, Bartolomei F. High-purified cannabidiol efficacy and safety in a cohort of adult patients with various types of drug-resistant epilepsies. Rev Neurol (Paris) 2024; 180:147-153. [PMID: 37806886 DOI: 10.1016/j.neurol.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 10/10/2023]
Abstract
About 30% of patients with epilepsy are drug resistant. Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS) and tuberous sclerosis complex (TSC) are diseases for which high-purified-cannabidiol (CBD) known as Epidiolex® (GW pharma) can be prescribed in add-on of other medications in case of drug-resistance. Currently, there are only a few recent data in the literature about the efficacy and safety of CBD in other forms of refractory epilepsies especially focal epilepsies in adults. We report retrospectively the experience of high-purified-CBD use in two French reference medical centers for epilepsy in various forms of drug-resistant epilepsy. We distinguished two groups of patients: group A with epileptic encephalopathies and group B with focal or multifocal epilepsy. Safety and efficacy (% of responder patients) were evaluated. Finally, 73 patients (51 in group A and 22 in group B) used high-purified CBD as an add-on treatment for their drug-resistant epilepsy. Patients in group A were significantly younger (P=0.0155), with a longer exposition of treatment (P=0.0497) than group B and with higher doses (P=0.0300). Respectively, 15 patients (29.4%) and five patients (22.7%) were responders during the follow-up period (P=0.552). The association with clobazam was more frequent in responders than in non-responder patients (16 patients [80%] versus four [20%]). The most frequent side effect was somnolence. At the end of follow-up, 15 patients in group A (29.4%) and nine patients in group B (40.1%) had stopped the high-purified-CBD treatment due to aggravation of seizure, absence of positive effects, or adverse events. This study showed no significant difference regarding the type of drug-resistant epilepsy and suggests that this treatment may be of interest for all types of drug-resistant epilepsy.
Collapse
Affiliation(s)
- M Perriguey
- Aix-Marseille University, Marseille, France; Epilepsy and Clinical Neurophysiology Department, Timone Hospital, Assistance publique-Hôpitaux de Marseille, Marseille, France
| | - M El Succar
- Department of pharmacy, hospices civils de Lyon, Lyon, France
| | - A Clément
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Epilepsy and Clinical Neurophysiology Department, Timone Hospital, Assistance publique-Hôpitaux de Marseille, Marseille, France
| | - S Lagarde
- Aix-Marseille University, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Epilepsy and Clinical Neurophysiology Department, Timone Hospital, Assistance publique-Hôpitaux de Marseille, Marseille, France
| | - O Ribes
- Department of pharmacy, hospices civils de Lyon, Lyon, France
| | - X Dode
- Department of pharmacy, hospices civils de Lyon, Lyon, France
| | - S Rheims
- Department of Functional Neurology and Epileptology, hospices civils de Lyon and Lyon 1 University, Lyon, France; Lyon Neurosciences Research Center, CRNL Inserm U1028, CNRS UMR5292 and Lyon 1 University, Lyon, France
| | - F Bartolomei
- Aix-Marseille University, Marseille, France; Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Epilepsy and Clinical Neurophysiology Department, Timone Hospital, Assistance publique-Hôpitaux de Marseille, Marseille, France.
| |
Collapse
|
7
|
Kassahun Bekele B, Nebieridze A, Moses Daniel I, Byiringiro C, Nazir A, Algawork Kibru E, Wojtara M, Uwishema O. Epilepsy in Africa: a multifaceted perspective on diagnosis, treatment, and community support. Ann Med Surg (Lond) 2024; 86:624-627. [PMID: 38222688 PMCID: PMC10783313 DOI: 10.1097/ms9.0000000000001536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Epilepsy is the most widespread neurological disorder in Africa, affecting an estimated 25 million people. The disorder is characterized by recurrent seizures, which can be caused by a variety of factors, including past trauma, central nervous system infections, and genetic disorders. Diagnosis and treatment of epilepsy are challenging in African patients due to several factors, including the low socioeconomic status of the residents and limited access to appropriate medication. Phenobarbital remains the only drug widely available to patients, but it is not always effective and can have significant side effects. In addition to the medical challenges, individuals with epilepsy also face a lot of social stigmas in Africa. Widespread superstitions and false beliefs lead to prejudices against these people, making it difficult for them to live fulfilling social lives. With the development of new treatment modalities, such as gene therapy, stem cell therapy, and P-glycoprotein inhibitors, it is more important now than ever to increase the research output for the African region to create the best possible treatment and maximize patient outcomes.
Collapse
Affiliation(s)
- Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- George Washington University, Milken Institute of Public Health, Washington, DC
- Addis Ababa University, School of Medicine, Addis Ababa, Ethiopia
| | - Anano Nebieridze
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- David Tvildiani Medical University, Tbilisi, Georgia
| | - Itopa Moses Daniel
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- University of Ilorin, College of Health Sciences, Nigeria
| | - Clever Byiringiro
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Adventist School of Medicine of East-Central Africa—ASOME-HEALTH, Mogadishu, Somalia
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Pakistan
| | - Ermias Algawork Kibru
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Addis Ababa University, School of Medicine, Addis Ababa, Ethiopia
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- University of Michigan Medical School; Ann Arbor, MI
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, NY
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Rahimian Z, Sadrian S, Shahisavandi M, Aligholi H, Zarshenas MM, Abyar A, Zeraatpisheh Z, Asadi-Pooya AA. Antiseizure Effects of Peganum harmala L. and Lavandula angustifolia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4121998. [PMID: 38089644 PMCID: PMC10715855 DOI: 10.1155/2023/4121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Peganum harmala L. and Lavandula angustifolia are two traditional herbs with probable antiseizure effects. This study evaluated the effects of these two herbal extracts on pentylenetetrazol- (PTZ-) induced seizures in mice. We prepared hydroalcoholic extracts using P. harmala seeds and the aerial parts of L. angustifolia and then randomly divided 190 mice into 19 groups. Normal saline (10 mg/kg), diazepam (2 mg/kg), P. harmala (2.5, 5, 10, 15, 30, 45, and 60 mg/kg), and L. angustifolia (200, 400, 600, and 800 mg/kg) were intraperitoneally (IP) administrated 30 min before an IP administration of PTZ (90 mg/kg). Animals were observed for behavioral changes for one hour. In addition, the effects of flumazenil and naloxone on the antiseizure activity of P. harmala and L. angustifolia were assessed. P. harmala showed antiseizure activity at the dose of 10 mg/kg; it prolonged the seizure latency and decreased the seizure duration. The mortality protection rate was 90% for this herbal extract. L. angustifolia (600 mg/kg) prolonged the seizure latency and decreased both seizure duration and mortality. Neither flumazenil nor naloxone significantly reversed the antiseizure activities of P. harmala and L. angustifolia. In mice, the hydroalcoholic extracts of P. harmala and L. angustifolia showed antiseizure activity against PTZ-induced seizures. We could not delineate the exact antiseizure mechanisms of these extracts in the current study.
Collapse
Affiliation(s)
- Zahra Rahimian
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedHassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abyar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A. Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Meirinho S, Rodrigues M, Santos AO, Falcão A, Alves G. Nose-to-brain delivery of perampanel formulated in a self-microemulsifying drug delivery system improves anticonvulsant and anxiolytic activity in mice. Int J Pharm 2023:123145. [PMID: 37330157 DOI: 10.1016/j.ijpharm.2023.123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Perampanel (PER) is a potent third-generation antiepileptic drug only available for oral administration. Additionally, PER has shown potential in managing epilepsy comorbidities such as anxiety. Previously, we demonstrated that the intranasal (IN) administration of PER, loaded in a self-microemulsifying drug delivery system (SMEDDS), improved brain-targeting and exposure in mice. Herein, we investigated PER brain biodistribution, its anticonvulsant and anxiolytic effects, and its potential olfactory and neuromotor toxicity after IN administration to mice (1 mg/kg). PER showed a rostral-caudal brain biodistribution pattern when administered intranasally. At short times post-nasal dosing, high PER concentrations were found in olfactory bulbs (olfactory bulbs/plasma ratios of 1.266 ± 0.183 and 0.181 ± 0.027 after IN and intravenous administrations, respectively), suggesting that a fraction of the drug directly reaches brain through the olfactory pathway. In maximal electroshock seizure test, IN PER protected 60% of mice against seizure development, a substantially higher value than the 20% protected after receiving oral PER. . PER also demonstrated anxiolytic effects in open field and elevated plus maze tests. Buried food-seeking test showed no signs of olfactory toxicity. Neuromotor impairment was found in rotarod and open field tests at the times of PER maximum concentrations after IN and oral administrations. Nevertheless, neuromotor performance was improved after repeated administrations. Compared with IN vehicle, PER IN administration decreased brain levels of L-glutamate (0.91 ± 0.13 mg/mL vs 0.64 ± 0.12 mg/mL) and nitric oxide (100 ± 15.62% vs 56.62 ± 4.95%), without interfering in GABA levels. Altogether, these results suggest that the IN PER delivery through the developed SMEDDS can be a safe and promising alternative to oral treatment, which support the design of clinical studies to evaluate the IN PER delivery to treat epilepsy and neurological-related conditions as anxiety.
Collapse
Affiliation(s)
- Sara Meirinho
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI-IPG - Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, 6300-559 Guarda, Portugal
| | - Adriana O Santos
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
10
|
Asadi-Pooya AA. Precision Medicine in Epilepsy Management; GET Application (Gene, Epilepsy, Treatment). Clin Neuropharmacol 2023; 46:95-97. [PMID: 37191562 DOI: 10.1097/wnf.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
OBJECTIVES The aim was to develop a prototype of an application (app) that identifies the significance of discovered genes for further consideration in the treatment plan of patients with epilepsy (precision medicine). METHODS MEDLINE was systematically searched for related publications from inception to April 1, 2022. The following search strategy was implemented (title/abstract): "epilepsy" AND "precision" AND "medicine." The following data were extracted: genes, phenotypes associated with those genes, and the recommended treatments. Two other databases were searched to cross-check the retrieved data and add to the data: https://www.genecards.org and https://medlineplus.gov/genetics. Also, the original articles of the identified genes were retrieved. Genes with specific treatment strategies (ie, any specific drug to be selected or to be avoided and also any other specific therapies [eg, diets, supplements, etc]) were selected. RESULTS A database of 93 genes, which are associated with various epilepsy syndromes and for which specific treatment strategies have been suggested, was developed. CONCLUSIONS A Web-based app (a search engine) was developed accordingly that is freely available at http://get.yektaparnian.ir/, GET (Gene, Epilepsy, Treatment). When a patient comes to the clinic with a genetic diagnosis and a specific gene is identified, the physician enters the gene name into the search box, and the app shows whether this genetic epilepsy needs a specific treatment. This endeavor would benefit from input by experts in the field, and the Web site should be developed more comprehensively.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Shiraz University of Medical Sciences, Shiraz, Iran; and Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
11
|
Henshall DC, Arzimanoglou A, Dedeurwaerdere S, Guerrini R, Jozwiak S, Kokaia M, Lerche H, Pitkänen A, Ryvlin P, Simonato M, Sisodiya SM. Shaping the future of European epilepsy research: Final meeting report from EPICLUSTER. Epilepsy Res 2023; 189:107068. [PMID: 36549242 DOI: 10.1016/j.eplepsyres.2022.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Collaboration is essential to the conduct of basic, applied and clinical research and its translation into the technologies and treatments urgently needed to improve the lives of people living with brain diseases and the health professionals who care for them. EPICLUSTER was formed in 2019 by the European Brain Research Area (EBRA) to support the coordination of epilepsy research in Europe. A key objective was to provide a platform to discuss shared research priorities by bringing together scientists and clinicians with multiple stakeholders including patient organisations and industry and the networks and infrastructures that provide healthcare and support research. Additional objectives were to facilitate access and sharing of data and biosamples, working together to ensure epilepsy is a priority for research funding, and embedding a culture of public and patient involvement (PPI) among epilepsy researchers. In this meeting report, we summarise the shared research priorities discussed by the leadership of EPICLUSTER at the recent final meeting. We also briefly review the discussion on patient and industry priorities, guidance on starting PPI for epilepsy researchers, and the sustainability of funding and infrastructures needed to ensure a comprehensive stakeholder-embedded community for epilepsy research.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics and FutureNeuro SFI Centre, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin D02 YN77, Ireland.
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, University Hospital of Lyon-HCL, Coordinator of the ERN EpiCARE, Lyon, France and Epilepsy Research Unit, Children's Hospital Sant Joan de Déu, Member of the ERN EpiCARE, Universitat de Barcelona, Barcelona, Spain
| | | | - Renzo Guerrini
- Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Viale Pieraccini 24, 50139 Firenze, Italy
| | - Sergiusz Jozwiak
- The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University, Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, FIN-70 211, Kuopio, Finland
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Champ de l'Air Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; Division of Neuroscience, San Raffaele Hospital, Via Olgettina 58, 20132 Milan, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, 12 Queen Square, London, WC1N 1PJ, United Kingdom
| |
Collapse
|
12
|
Behmard E, Barzegari E, Najafipour S, Kouhpayeh A, Ghasemi Y, Asadi-Pooya AA. Efflux dynamics of the antiseizure drug, levetiracetam, through the P-glycoprotein channel revealed by advanced comparative molecular simulations. Sci Rep 2022; 12:13674. [PMID: 35953704 PMCID: PMC9372152 DOI: 10.1038/s41598-022-17994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding the precise mechanistic details of the possible binding and transport of antiseizure medications (ASMs) through the P-glycoprotein (P-gp) efflux pump is essential to find strategies for the treatment of patients with epilepsy resistant to ASMs. In the present work, conventional molecular dynamics, binding free energy calculations, steered molecular dynamics and umbrella sampling were applied to study the interactions of levetiracetam and brivaracetam with P-gp and their possible egress path from the binding site. Comparative results for the control drugs, zosuquidar and verapamil, confirmed their established P-gp inhibitory activity. Brivaracetam, a non-substrate of P-gp, demonstrated stronger static and dynamic interactions with the exporter protein, than levetiracetam. The potential of mean force calculations indicated that the energy barriers through the ligand export were the lowest for levetiracetam, suggesting the drug as a P-gp substrate with facile passage through the transporter channel. Our findings also stressed the contribution of nonpolar interactions with P-gp channel lining as well as with membrane lipid molecules to hamper the ASM efflux by the transmembrane exporter. Appropriate structural engineering of the ASMs is thus recommended to address drug-resistant epilepsy.
Collapse
Affiliation(s)
- Esmaeil Behmard
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Cruz ED, Rahim F, Lemmon M, Mikati MA. US Food and Drug Administration Facilitated Pediatric Approval Programs: Application to Pediatric Neurological Disorders. J Child Neurol 2022; 37:222-231. [PMID: 35135372 DOI: 10.1177/08830738211037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Crucial time is often lost while waiting for approval of therapies for pediatric neurological disorders, many of which have aggressive manifestations with devastating effects. There are logistical, ethical, and financial impediments that face the studies needed to determine efficacy and safety of therapies in children. In this article, the authors present the Food and Drug Administration's programs aimed at facilitating the development of pediatric drugs, focusing on their application to pediatric neurological disorders. They also provide examples of drugs that received, or are currently enrolled in, these programs. Reflecting upon the commonalities of drugs receiving these designations, the authors highlight underlying ethical issues related to pediatric drug development and emphasize the need for structured incentives to stimulate approval and production of drug therapies for pediatric neurology patients. By consolidating information that applies to drug approval of pediatric neurological disorders, stakeholders in drug development can enhance treatment development for these disorders.
Collapse
Affiliation(s)
- Emily Da Cruz
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Faraan Rahim
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Monica Lemmon
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Riva A, Golda A, Balagura G, Amadori E, Vari MS, Piccolo G, Iacomino M, Lattanzi S, Salpietro V, Minetti C, Striano P. New Trends and Most Promising Therapeutic Strategies for Epilepsy Treatment. Front Neurol 2021; 12:753753. [PMID: 34950099 PMCID: PMC8690245 DOI: 10.3389/fneur.2021.753753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the wide availability of novel anti-seizure medications (ASMs), 30% of patients with epilepsy retain persistent seizures with a significant burden in comorbidity and an increased risk of premature death. This review aims to discuss the therapeutic strategies, both pharmacological and non-, which are currently in the pipeline. Methods: PubMed, Scopus, and EMBASE databases were screened for experimental and clinical studies, meta-analysis, and structured reviews published between January 2018 and September 2021. The terms “epilepsy,” “treatment” or “therapy,” and “novel” were used to filter the results. Conclusions: The common feature linking all the novel therapeutic approaches is the spasmodic rush toward precision medicine, aiming at holistically evaluating patients, and treating them accordingly as a whole. Toward this goal, different forms of intervention may be embraced, starting from the choice of the most suitable drug according to the type of epilepsy of an individual or expected adverse effects, to the outstanding field of gene therapy. Moreover, innovative insights come from in-vitro and in-vivo studies on the role of inflammation and stem cells in the brain. Further studies on both efficacy and safety are needed, with the challenge to mature evidence into reliable assets, ameliorating the symptoms of patients, and answering the challenges of this disease.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alice Golda
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Symonds JD, Elliott KS, Shetty J, Armstrong M, Brunklaus A, Cutcutache I, Diver LA, Dorris L, Gardiner S, Jollands A, Joss S, Kirkpatrick M, McLellan A, MacLeod S, O'Regan M, Page M, Pilley E, Pilz DT, Stephen E, Stewart K, Ashrafian H, Knight JC, Zuberi SM. Early childhood epilepsies: epidemiology, classification, aetiology, and socio-economic determinants. Brain 2021; 144:2879-2891. [PMID: 34687210 PMCID: PMC8557326 DOI: 10.1093/brain/awab162] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
Epilepsies of early childhood are frequently resistant to therapy and often associated with cognitive and behavioural comorbidity. Aetiology focused precision medicine, notably gene-based therapies, may prevent seizures and comorbidities. Epidemiological data utilizing modern diagnostic techniques including whole genome sequencing and neuroimaging can inform diagnostic strategies and therapeutic trials. We present a 3-year, multicentre prospective cohort study, involving all children under 3 years of age in Scotland presenting with epilepsies. We used two independent sources for case identification: clinical reporting and EEG record review. Capture-recapture methodology was then used to improve the accuracy of incidence estimates. Socio-demographic and clinical details were obtained at presentation, and 24 months later. Children were extensively investigated for aetiology. Whole genome sequencing was offered for all patients with drug-resistant epilepsy for whom no aetiology could yet be identified. Multivariate logistic regression modelling was used to determine associations between clinical features, aetiology, and outcome. Three hundred and ninety children were recruited over 3 years. The adjusted incidence of epilepsies presenting in the first 3 years of life was 239 per 100 000 live births [95% confidence interval (CI) 216-263]. There was a socio-economic gradient to incidence, with a significantly higher incidence in the most deprived quintile (301 per 100 000 live births, 95% CI 251-357) compared with the least deprived quintile (182 per 100 000 live births, 95% CI 139-233), χ2 odds ratio = 1.7 (95% CI 1.3-2.2). The relationship between deprivation and incidence was only observed in the group without identified aetiology, suggesting that populations living in higher deprivation areas have greater multifactorial risk for epilepsy. Aetiology was determined in 54% of children, and epilepsy syndrome was classified in 54%. Thirty-one per cent had an identified genetic cause for their epilepsy. We present novel data on the aetiological spectrum of the most commonly presenting epilepsies of early childhood. Twenty-four months after presentation, 36% of children had drug-resistant epilepsy (DRE), and 49% had global developmental delay (GDD). Identification of an aetiology was the strongest determinant of both DRE and GDD. Aetiology was determined in 82% of those with DRE, and 75% of those with GDD. In young children with epilepsy, genetic testing should be prioritized as it has the highest yield of any investigation and is most likely to inform precision therapy and prognosis. Epilepsies in early childhood are 30% more common than previously reported. Epilepsies of undetermined aetiology present more frequently in deprived communities. This likely reflects increased multifactorial risk within these populations.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Katherine S Elliott
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jay Shetty
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK
| | | | - Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Louise A Diver
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Liam Dorris
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sarah Gardiner
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Alice Jollands
- Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Martin Kirkpatrick
- Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK.,School of Medicine, University of Dundee DD1 9SY, UK
| | - Ailsa McLellan
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK
| | - Stewart MacLeod
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK
| | - Mary O'Regan
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Paediatric Neurology, Crumlin Children's Hospital, Cooley Rd, Crumlin, Dublin D12 N512, Ireland
| | | | - Elizabeth Pilley
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Sciennes Road, Edinburgh EH9 1LF, UK.,Paediatric Neurology, Tayside Children's Hospital, Dundee DD1 9SY, UK
| | - Daniela T Pilz
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Elma Stephen
- Paediatric Neurology, Royal Aberdeen Children's Hospital, Aberdeen AB25 2ZG, UK
| | - Kirsty Stewart
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospitals, Glasgow G51 4TF, UK
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK.,Department of Experimental Therapeutics, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK.,Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
16
|
Watson GDR, Afra P, Bartolini L, Graf DA, Kothare SV, McGoldrick P, Thomas BJ, Saxena AR, Tomycz LD, Wolf SM, Yan PZ, Hagen EC. A journey into the unknown: An ethnographic examination of drug-resistant epilepsy treatment and management in the United States. Epilepsy Behav 2021; 124:108319. [PMID: 34563807 DOI: 10.1016/j.yebeh.2021.108319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Patients often recognize unmet needs that can improve patient-provider experiences in disease treatment management. These needs are rarely captured and may be hard to quantify in difficult-to-treat disease states such as drug-resistant epilepsy (DRE). To further understand challenges living with and managing DRE, a team of medical anthropologists conducted ethnographic field assessments with patients to qualitatively understand their experience with DRE across the United States. In addition, healthcare provider assessments were conducted in community clinics and Comprehensive Epilepsy Centers to further uncover patient-provider treatment gaps. We identified four distinct stages of the treatment and management journey defined by patients' perceived control over their epilepsy: Gripped in the Panic Zone, Diligently Tracking to Plan, Riding a Rollercoaster in the Dark, and Reframing Priorities to Redefine Treatment Success. We found that patients sought resources to streamline communication with their care team, enhanced education on treatment options beyond medications, and long-term resources to protect against a decline in control over managing their epilepsy once drug-resistant. Likewise, treatment management optimization strategies are provided to improve current DRE standard of care with respect to identified patient-provider gaps. These include the use of digital disease management tools, standardizing neuropsychiatrists into patients' initial care team, and introducing surgical and non-pharmacological treatment options upon epilepsy and DRE diagnoses, respectively. This ethnographic study uncovers numerous patient-provider gaps, thereby presenting a conceptual framework to advance DRE treatment. Further Incentivization from professional societies and healthcare systems to support standardization of the treatment optimization strategies provided herein into clinical practice is needed.
Collapse
Affiliation(s)
| | - Pegah Afra
- Department of Neurology, Weill-Cornell Medicine, New York, NY 10065, USA
| | - Luca Bartolini
- Division of Pediatric Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Daniel A Graf
- Department of Neurology, Geisinger Health System, Danville, PA 17822, USA
| | - Sanjeev V Kothare
- Department of Pediatric Neurology, Northwell Health, New York, NY 10011, USA
| | - Patricia McGoldrick
- Boston Children's Health Physicians and Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | - Bethany J Thomas
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aneeta R Saxena
- Epilepsy Division, Department of Neurology, Boston Medical Center, Boston University School of Medicine, MA, USA
| | | | - Steven M Wolf
- Boston Children's Health Physicians and Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | - Peter Z Yan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eliza C Hagen
- LivaNova, Neuromodulation Unit, Houston, TX 77058, USA; Department of Neurology, Alameda County Medical Center, Oakland, CA 94602, USA
| |
Collapse
|
17
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Li X, Yang C, Shi Y, Guan L, Li H, Li S, Li Y, Zhang Y, Lin J. Abnormal neuronal damage and inflammation in the hippocampus of kainic acid-induced epilepsy mice. Cell Biochem Funct 2021; 39:791-801. [PMID: 34057222 DOI: 10.1002/cbf.3651] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022]
Abstract
In this study, we established a mouse model of epilepsy and analysed abnormal neuronal damage and inflammation in the hippocampus of mice with kainic acid (KA)-induced epilepsy to provide the basis for the pathogenesis of epilepsy. C57 mice, aged 4 weeks, were injected intraperitoneally in the KA group with 20 mg/kg of KA and in the sham experimental group with normal saline. The whole brain and hippocampus of mice in the sham experimental group and KA epilepsy model group were collected on days 7, 14, 21 and 28 after injection. The difference in the protein expression in the hippocampus was detected using fluorescence immunohistochemistry. The hippocampal tissue was also collected and frozen to detect protein expression by western blot. The results of the haematoxylin and eosin (HE) and Nissl staining showed that the mouse model of temporal lobe epilepsy could be established by intraperitoneal injection of KA, and the success rate of the model was 53.8%. The expression of DCX-, β-catenin-, GFAP- and Iba-1-labelled glial cells in the KA-induced epilepsy model group were higher than those in the sham group. The results of western blotting showed that the expression of DCX and β-catenin in the KA-induced epilepsy model group was higher than that in the sham experimental group, while the expression of N-cadherin and Iba-1 on days 14 and 28 was significantly (P < .05) higher than that in the sham experimental group. In KA-induced epilepsy model group, the expression of Bcl-2 was decreased, while the expression of Bad and PUMA was increased.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.,Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shuanqing Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yunxiao Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Xiao H, Zheng Y, Ma L, Tian L, Sun Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front Pharmacol 2021; 12:648407. [PMID: 33953682 PMCID: PMC8089384 DOI: 10.3389/fphar.2021.648407] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple drug resistance (MDR), referring to the resistance of cancer cells to a broad spectrum of structurally and mechanistically unrelated drugs across membranes, severely impairs the response to chemotherapy and leads to chemotherapy failure. Overexpression of ATP binding cassette (ABC) transporters is a major contributing factor resulting in MDR, which can recognize and mediate the efflux of diverse drugs from cancer cells, thereby decreasing intracellular drug concentration. Therefore, modulators of ABC transporter could be used in combination with standard chemotherapeutic anticancer drugs to augment the therapeutic efficacy. This review summarizes the recent advances of important cancer-related ABC transporters, focusing on their physiological functions, structures, and the development of new compounds as ABC transporter inhibitors.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yongcheng Zheng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lingling Ma
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lili Tian
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
20
|
Moya-Mendez ME, Mueller DM, Pratt M, Bonner M, Elliott C, Hunanyan A, Kucera G, Bock C, Prange L, Jasien J, Keough K, Shashi V, McDonald M, Mikati MA. Early onset severe ATP1A2 epileptic encephalopathy: Clinical characteristics and underlying mutations. Epilepsy Behav 2021; 116:107732. [PMID: 33493807 PMCID: PMC7940561 DOI: 10.1016/j.yebeh.2020.107732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/09/2020] [Accepted: 12/20/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND ATP1A2 mutations cause hemiplegic migraine with or without epilepsy or acute reversible encephalopathy. Typical onset is in adulthood or older childhood without subsequent severe long-term developmental impairments. AIM We aimed to describe the manifestations of early onset severe ATP1A2-related epileptic encephalopathy and its underlying mutations in a cohort of seven patients. METHODS A retrospective chart review of a cohort of seven patients was conducted. Response to open-label memantine therapy, used off-label due to its NMDA receptor antagonist effects, was assessed by the Global Rating Scale of Change (GRSC) and Clinical Global Impression Scale of Improvement (CGI-I) methodologies. Molecular modeling was performed using PyMol program. RESULTS Patients (age 2.5-20 years) had symptom onset at an early age (6 days-1 year). Seizures were either focal or generalized. Common features were: drug resistance, recurrent status epilepticus, etc., severe developmental delay with episodes of acute severe encephalopathy often with headaches, dystonias, hemiplegias, seizures, and developmental regression. All had variants predicted to be disease causing (p.Ile293Met, p.Glu1000Lys, c.1017+5G>A, p.Leu809Arg, and 3 patients with p.Met813Lys). Modeling revealed that mutations interfered with ATP1A2 ion binding and translocation sites. Memantine, given to five, was tolerated in all (mean treatment: 2.3 years, range 6 weeks-4.8 years) with some improvements reported in all five. CONCLUSIONS Our observations describe a distinctive clinical profile of seven unrelated probands with early onset severe ATP1A2-related epileptic encephalopathy, provide insights into structure-function relationships of ATP1A2 mutations, and support further studies of NMDAR antagonist therapy in ATP1A2-encephalopathy.
Collapse
Affiliation(s)
- Mary E. Moya-Mendez
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - David M. Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL, United States
| | - Milton Pratt
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Melanie Bonner
- Department of Psychiatry, Duke University, Durham, NC, United States
| | - Courtney Elliott
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Arsen Hunanyan
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Gary Kucera
- Duke Cancer Institute Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC, United States
| | - Cheryl Bock
- Duke Cancer Institute Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC, United States
| | - Lyndsey Prange
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Joan Jasien
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Karen Keough
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Vandana Shashi
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Marie McDonald
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Mohamad A. Mikati
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States,Department of Neurobiology, Duke University, Durham, NC, United States,Corresponding Author: Mohamad Mikati, MD, Children Health Center, T913J, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710, Phone: 919-668-4073, Fax: 919-681-8943,
| |
Collapse
|
21
|
Nejabat M, Inaloo S, Sheshdeh AT, Bahramjahan S, Sarvestani FM, Katibeh P, Nemati H, Tabei SMB, Faghihi MA. Genetic Testing in Various Neurodevelopmental Disorders Which Manifest as Cerebral Palsy: A Case Study From Iran. Front Pediatr 2021; 9:734946. [PMID: 34540776 PMCID: PMC8446451 DOI: 10.3389/fped.2021.734946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose: Cerebral palsy (CP) is a heterogeneous permanent disorder impacting movement and posture. Investigations aimed at diagnosing this disorder are expensive and time-consuming and can eventually inconclusive. This study aimed to determine the diagnostic yield of next generation sequencing in patients with atypical CP (ACP). Methods: Patient eligibility criteria included impaired motor function with onset at birth or within the first year of life, and one or more of the following conditions: severe intellectual disability, positive family history, brain imaging findings not typical for cerebral palsy, abnormal neurometabolic profile, intractable seizure, normal neuroimaging despite severe psychomotor disability, after pediatric neurologist assessment including neuroimaging and biochemical-metabolic study offered for genetic study. Results: Exome sequencing was done for 66 patients which revealed pathogenic, likely pathogenic, and variants of unknown significance in 36.2, 9, and 43.9%, respectively. We also found 10 new mutations and were able to suggest specific and personalized treatments for nine patients. We also found three different mutations with different phenotypical spectrum in one gene that have not been reported for cerebral palsy. Conclusion: An accurate history and physical examination and determination of patients with atypical cerebral palsy for doing exome sequencing result in improved genetic counseling and personalized management.
Collapse
Affiliation(s)
- Marzieh Nejabat
- Pediatric Neurology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroor Inaloo
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shima Bahramjahan
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pegah Katibeh
- Pediatric Neurology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nemati
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Express Gene Molecular Diagnostics Laboratory, Palmetto Bay, FL, United States
| |
Collapse
|
22
|
Aligholi H, Safahani M, Asadi-Pooya AA. Stem cell therapy in patients with epilepsy: A systematic review. Clin Neurol Neurosurg 2020; 200:106416. [PMID: 33338823 DOI: 10.1016/j.clineuro.2020.106416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE The existing evidence of the potential applications and benefits of stem cell transplantation (SCT) in people with epilepsy and also its adverse effects in humans were systematically reviewed. METHODS MEDLINE (accessed from PubMed), Google Scholar, and Scopus from inception to August 17, 2020 were systematically reviewed for related published manuscripts. The following key words (in the title) were used: "stem cell" AND "epilepsy" OR "seizure". Articles written in English that were human studies on stem cell transplantation in people with epilepsy were all included. RESULTS We could identify six related articles. Because of their different methodologies, performing a meta-analysis was not feasible; they included 38 adults and 81 pediatric patients together. Five studies were single-arm human studies; there were no serious adverse events in any of the studies. CONCLUSION While stem cell transplantation seems like a promising therapeutic option for patients with drug-resistant epilepsy, data on its application is scarce and of low quality. For now, clinical stem cell-based interventions are not justified. Perhaps, in the future, there will be a rigorous and intensely scrutinized clinical trial protocol with informed consent that could provide enough scientific merit and could meet the required ethical standards.
Collapse
Affiliation(s)
- Hadi Aligholi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Iran.
| | - Maryam Safahani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
23
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
24
|
Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene Therapy, A Novel Therapeutic Tool for Neurological Disorders: Current Progress, Challenges and Future Prospective. Curr Gene Ther 2020; 20:184-194. [DOI: 10.2174/1566523220999200716111502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
:
Neurological disorders are one of the major threat for health care system as they put enormous
socioeconomic burden. All aged populations are susceptible to one or other neurological problems
with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present,
available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases,
they provide only palliative effect. It was also found that the molecular etiology of neurological disorders
is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the
injury, environmental toxins and by some existing disease. Therefore, to take care of this situation,
gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion,
silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors
(viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various
routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such
as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral
sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic
reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy
of therapy. Considerable progress has been made to improve vector design, gene selection and
targeted delivery. This review article deals with the current status of gene therapy in neurological disorders
along with its clinical relevance, challenges and future prospective.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Aamir Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
25
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
26
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
27
|
Luszczki JJ, Panasiuk A, Zagaja M, Karwan S, Bojar H, Plewa Z, Florek-Łuszczki M. Polygonogram and isobolographic analysis of interactions between various novel antiepileptic drugs in the 6-Hz corneal stimulation-induced seizure model in mice. PLoS One 2020; 15:e0234070. [PMID: 32479532 PMCID: PMC7263629 DOI: 10.1371/journal.pone.0234070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapy with two antiepileptic drugs in combination is usually prescribed to epilepsy patients with refractory seizures. The choice of antiepileptic drugs in combination should be based on synergistic cooperation of the drugs with respect to suppression of seizures. The selection of synergistic interactions between antiepileptic drugs is challenging issue for physicians, especially, if 25 antiepileptic drugs are currently available and approved to treat epilepsy patients. The aim of this study was to determine all possible interactions among 5 second-generation antiepileptic drugs (gabapentin (GBP), lacosamide (LCM), levetiracetam (LEV), pregabalin (PGB) and retigabine (RTG)) in the 6-Hz corneal stimulation-induced seizure model in adult male albino Swiss mice. The anticonvulsant effects of 10 various two-drug combinations of antiepileptic drugs were evaluated with type I isobolographic analysis associated with graphical presentation of polygonogram to visualize the types of interactions. Isobolographic analysis revealed that 7 two-drug combinations of LEV+RTG, LEV+LCM, GBP+RTG, PGB+LEV, GBP+LEV, PGB+RTG, PGB+LCM were synergistic in the 6-Hz corneal stimulation-induced seizure model in mice. The additive interaction was observed for the combinations of GBP+LCM, GBP+PGB, and RTG+LCM in this seizure model in mice. The most beneficial combination, offering the highest level of synergistic suppression of seizures in mice was that of LEV+RTG, whereas the most additive combination that protected the animals from seizures was that reporting additivity for RTG+LCM. The strength of interaction for two-drug combinations can be arranged from the synergistic to the additive, as follows: LEV+RTG > LEV+LCM > GBP+RTG > PGB+LEV > GBP+LEV > PGB+RTG > PGB+LCM > GBP+LCM > GBP+PGB > RTG+LCM.
Collapse
Affiliation(s)
- Jarogniew J. Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
- * E-mail: ,
| | - Anna Panasiuk
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Hubert Bojar
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital, Lublin, Poland
| | | |
Collapse
|
28
|
D'Adamo MC, Liantonio A, Conte E, Pessia M, Imbrici P. Ion Channels Involvement in Neurodevelopmental Disorders. Neuroscience 2020; 440:337-359. [PMID: 32473276 DOI: 10.1016/j.neuroscience.2020.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Inherited and sporadic mutations in genes encoding for brain ion channels, affecting membrane expression or biophysical properties, have been associated with neurodevelopmental disorders characterized by epilepsy, cognitive and behavioral deficits with significant phenotypic and genetic heterogeneity. Over the years, the screening of a growing number of patients and the functional characterization of newly identified mutations in ion channels genes allowed to recognize new phenotypes and to widen the clinical spectrum of known diseases. Furthermore, advancements in understanding disease pathogenesis at atomic level or using patient-derived iPSCs and animal models have been pivotal to orient therapeutic intervention and to put the basis for the development of novel pharmacological options for drug-resistant disorders. In this review we will discuss major improvements and critical issues concerning neurodevelopmental disorders caused by dysfunctions in brain sodium, potassium, calcium, chloride and ligand-gated ion channels.
Collapse
Affiliation(s)
- Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | | | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Italy.
| |
Collapse
|