1
|
Podlasek A, Walter S, Licenik R, Grunwald I. Professor Klaus Fassbender: The Father of Mobile Stroke Units. Cureus 2024; 16:e69050. [PMID: 39391442 PMCID: PMC11465001 DOI: 10.7759/cureus.69050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Professor Klaus Fassbender is a distinguished neurologist from Germany, widely recognized for his groundbreaking contributions to the fields of neurology and neurodegenerative disease. His work has been pivotal in advancing our understanding of the pathophysiological mechanisms underlying neurodegenerative disorders, including Alzheimer's and Parkinson's disease, as well as in refining therapeutic strategies for their treatment. His studies in cerebrovascular disease have elucidated the complex molecular and cellular processes involved in ischemic and hemorrhagic stroke, leading to the development of novel therapeutic interventions, often bridging the gap between laboratory discoveries and their application in clinical settings. Professor Klaus Fassbender is "the father" of the mobile stroke unit (MSU). With the "time is brain" concept in mind, he proposed and developed the MSU concept for the first time, allowing prehospital stroke imaging, diagnosis, and treatment directly at the site of emergency. This concept reduced times between symptoms onset and treatment, resulting in an increased proportion of patients receiving treatment within "the golden hour" and leading to the improvement of functional outcomes at 90 days. Professor Fassbender's work has been instrumental in shaping contemporary approaches to diagnosing and managing stroke and neurodegenerative disease, making him a leading figure in modern neurology.
Collapse
Affiliation(s)
- Anna Podlasek
- Image Guided Therapy Research Facility (IGTRF), University of Dundee, Dundee, GBR
- Tayside Innovation Medtech Ecosystem (TIME), University of Dundee, Dundee, GBR
- Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, GBR
| | - Silke Walter
- Department of Neurology, Saarland University Clinic, Homburg, DEU
| | - Radim Licenik
- Acute Stroke Centre, North West Anglia NHS Foundation Trust, Peterborough, GBR
- Zlin Regional, Emergency Medical Services, Zlin, CZE
| | - Iris Grunwald
- Image Guided Therapy Research Facility (IGTRF), University of Dundee, Dundee, GBR
- Tayside Innovation Medtech Ecosystem (TIME), University of Dundee, Dundee, GBR
| |
Collapse
|
2
|
Gruber J, Gattringer T, Mayr G, Schwarzenhofer D, Kneihsl M, Wagner J, Sonnberger M, Deutschmann H, Haidegger M, Fandler-Höfler S, Ropele S, Enzinger C, von Oertzen T. Frequency and predictors of poststroke epilepsy after mechanical thrombectomy for large vessel occlusion stroke: results from a multicenter cohort study. J Neurol 2023; 270:6064-6070. [PMID: 37658859 PMCID: PMC10632247 DOI: 10.1007/s00415-023-11966-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Poststroke epilepsy (PSE) represents an important complication of stroke. Data regarding the frequency and predictors of PSE in patients with large-vessel occlusion stroke receiving mechanical thrombectomy (MT) are scarce. Furthermore, information on acute and preexisting lesion characteristics on brain MRI has not yet been systematically considered in risk prediction of PSE. This study thus aims to assess PSE risk after acute ischemic stroke treated with MT, based on clinical and MRI features. METHODS In this multicenter study from two tertiary stroke centers, we included consecutive acute ischemic stroke patients who had received MT for acute intracranial large vessel occlusion (LVO) between 2011 and 2017, in whom post-interventional brain MRI and long term-follow-up data were available. Infarct size, affected cerebrovascular territory, hemorrhagic complications and chronic cerebrovascular disease features were assessed on MRI (blinded to clinical information). The primary outcome was the occurrence of PSE (> 7 days after stroke onset) assessed by systematic follow-up via phone interview or electronic records. RESULTS Our final study cohort comprised 348 thrombectomy patients (median age: 67 years, 45% women) with a median long-term follow-up of 78 months (range 0-125). 32 patients (9%) developed PSE after a median of 477 days (range 9-2577 days). In univariable analyses, larger postinterventional infarct size, infarct location in the parietal, frontal or temporal lobes and cerebral microbleeds were associated with PSE. Multivariable Cox regression analysis confirmed larger infarct size (HR 3.49; 95% CI 1.67-7.30) and presence of cerebral microbleeds (HR 2.56; 95% CI 1.18-5.56) as independent predictors of PSE. CONCLUSION In our study, patients with large vessel occlusion stroke receiving MT had a 9% prevalence of PSE over a median follow-up period of 6.5 years. Besides larger infarct size, presence of cerebral microbleeds on brain MRI predicted PSE occurrence.
Collapse
Affiliation(s)
- Joachim Gruber
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020, Linz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria.
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria.
| | - Georg Mayr
- Department of Neuroradiology, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Daniel Schwarzenhofer
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020, Linz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Judith Wagner
- Department of Neurology, Evangelisches Klinikum Gelsenkirchen, Academic Hospital University Essen-Duisburg, Gelsenkirchen, Germany
| | - Michael Sonnberger
- Department of Neuroradiology, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Melanie Haidegger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria
| | - Simon Fandler-Höfler
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8026, Graz, Austria
| | - Tim von Oertzen
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Wagner-Jauregg-Weg 15, 4020, Linz, Austria.
| |
Collapse
|
3
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Misra S, Khan EI, Lam TT, Mazumder R, Gururangan K, Hickman LB, Goswami V, Funaro MC, Eldem E, Sansing LH, Sico JJ, Quinn TJ, Liebeskind DS, Montaner J, Kwan P, Mishra NK. Common Pathways of Epileptogenesis in Patients With Epilepsy Post-Brain Injury: Findings From a Systematic Review and Meta-analysis. Neurology 2023; 101:e2243-e2256. [PMID: 37550071 PMCID: PMC10727219 DOI: 10.1212/wnl.0000000000207749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/13/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Epilepsy may result from various brain injuries, including stroke (ischemic and hemorrhagic), traumatic brain injury, and infections. Identifying shared common biological pathways and biomarkers of the epileptogenic process initiated by the different injuries may lead to novel targets for preventing the development of epilepsy. We systematically reviewed biofluid biomarkers to test their association with the risk of post-brain injury epilepsy. METHODS We searched articles until January 25, 2022, in MEDLINE, Embase, PsycInfo, Web of Science, and Cochrane. The primary outcome was the difference in mean biomarker levels in patients with and without post-brain injury epilepsy. We used the modified quality score on prognostic studies for risk of bias assessment. We calculated each biomarker's pooled standardized mean difference (SMD) and 95% CI. Molecular interaction network and enrichment analyses were conducted in Cytoscape (PROSPERO CRD42021297110). RESULTS We included 22 studies with 1,499 cases with post-brain injury epilepsy and 7,929 controls without post-brain injury epilepsy. Forty-five biomarkers in the blood or CSF were investigated with samples collected at disparate time points. Of 22 studies, 21 had a moderate-to-high risk of bias. Most of the biomarkers (28/45) were investigated in single studies; only 9 provided validation data, and studies used variable definitions for early-onset and late-onset seizures. A meta-analysis was possible for 19 biomarkers. Blood glucose levels in 4 studies were significantly higher in patients with poststroke epilepsy (PSE) than those without PSE (SMD 0.44; CI 0.19-0.69). From individual studies, 15 biomarkers in the blood and 7 in the CSF were significantly associated with post-brain injury epilepsy. Enrichment analysis identified that the significant biomarkers (interleukin [IL]-6, IL-1β]) were predominantly inflammation related. DISCUSSION We cannot yet recommend using the reported biomarkers for designing antiepileptogenesis trials or use in the clinical setting because of methodological heterogeneity, bias in the included studies, and insufficient validation studies. Although our analyses indicate the plausible role of inflammation in epileptogenesis, this is likely not the only mechanism. For example, an individual's genetic susceptibilities might contribute to his/her risk of epileptogenesis after brain injury. Rigorously designed biomarker studies with methods acceptable to the regulatory bodies should be conducted.
Collapse
Affiliation(s)
- Shubham Misra
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Erum I Khan
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - TuKiet T Lam
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Rajarshi Mazumder
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Kapil Gururangan
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - L Brian Hickman
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Vaibhav Goswami
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Melissa C Funaro
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Ece Eldem
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Lauren H Sansing
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Jason J Sico
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Terence J Quinn
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - David S Liebeskind
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Joan Montaner
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Patrick Kwan
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia
| | - Nishant K Mishra
- From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
5
|
Nandan A, Zhou YM, Demoe L, Waheed A, Jain P, Widjaja E. Incidence and risk factors of post-stroke seizures and epilepsy: systematic review and meta-analysis. J Int Med Res 2023; 51:3000605231213231. [PMID: 38008901 PMCID: PMC10683575 DOI: 10.1177/03000605231213231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE Due to variability in reports, the aim of this meta-analysis was to evaluate the incidence and risk factors of post-stroke early seizures (ES) and post-stroke epilepsy (PSE). METHODS The MEDLINE, EMBASE and Web of Science databases were searched for post-stroke ES/PSE articles published on any date up to November 2020. Post-stroke ES included seizures occurring within 7 days of stroke, and PSE included at least one unprovoked seizure. Using random effects models, the incidence and risk factors of post-stroke ES and PSE were evaluated. The study was retrospectively registered with INPLASY (INPLASY2023100008). RESULTS Of 128 included studies in total, the incidence of post-stroke ES was 0.07 (95% confidence interval [CI] 0.05, 0.10) and PSE was 0.10 (95% CI 0.08, 0.13). The rates were higher in children than adults. Risk factors for post-stroke ES included hemorrhagic stroke (odds ratio [OR] 2.14, 95% CI 1.44, 3.18), severe strokes (OR 2.68, 95% CI 1.73, 4.14), cortical involvement (OR 3.09, 95% CI 2.11, 4.51) and hemorrhagic transformation (OR 2.70, 95% CI 1.58, 4.60). Risk factors for PSE included severe strokes (OR 4.92, 95% CI 3.43, 7.06), cortical involvement (OR 3.20, 95% CI 2.13, 4.81), anterior circulation infarcts (OR 3.28, 95% CI 1.34, 8.03), hemorrhagic transformation (OR 2.81, 95% CI 1.25, 6.30) and post-stroke ES (OR 7.24, 95% CI 3.73, 14.06). CONCLUSION Understanding the risk factors of post-stroke ES/PSE may identify high-risk individuals who might benefit from prophylactic treatment.
Collapse
Affiliation(s)
- Aathmika Nandan
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Yi Mei Zhou
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Lindsay Demoe
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Adnan Waheed
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Elysa Widjaja
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Šmigelskytė A, Gelžinienė G, Jurkevičienė G. Early Epileptic Seizures after Ischemic Stroke: Their Association with Stroke Risk Factors and Stroke Characteristics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1433. [PMID: 37629723 PMCID: PMC10456278 DOI: 10.3390/medicina59081433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: A growing number of stroke survivors face various stroke complications, including new-onset epileptic seizures (ESs). Post-stroke ESs are divided into early and late ESs based on the time of onset after stroke. Early ESs are associated with worse stroke outcomes, longer hospitalization and an increased risk of late ESs. A variety of risk factors for early ESs are being studied in order to prevent their occurrence. Therefore, we aim to determine the association of early ESs with ischemic stroke risk factors and characteristics. Materials and Methods: A total of 166 patients, treated for ischemic stroke in the Hospital of Lithuanian University of Health Sciences Kaunas Clinics, were enrolled in a prospective cohort study. Initially, data about stroke risk factors, localization, severity and treatment were collected, followed by an observation period of 14 days for early ESs. Results: Early ESs occurred in 11 (6.6%) participants. The probability of early ESs after ischemic stroke among males and females (LogRank = 1.281; p > 0.05), younger (≤65 y) and older (>65 y) participants (LogRank = 0.129; p > 0.05) was the same. The presence of ischemic stroke risk factors, such as atrial fibrillation (LogRank = 0.004; p > 0.05), diabetes mellitus (LogRank = 1.168; p > 0.05) and dyslipidemia (LogRank = 0.092; p > 0.05), did not increase the probability of early ESs. However, participants without a prior history of arterial hypertension (LogRank = 4.453; p < 0.05) were more likely to develop early ESs. Stroke localization (anterior versus posterior) (LogRank = 0.011; p > 0.05), stroke severity (LogRank = 0.395; p > 0.05) and type of treatment (specific versus non-specific) (LogRank = 1.783; p > 0.05) did not affect the probability of early ESs.
Collapse
Affiliation(s)
- Agnė Šmigelskytė
- Department of Neurology, Lithuanian University of Health Sciences, A. Mickevičiaus str. 9, LT-44307 Kaunas, Lithuania
| | | | | |
Collapse
|
7
|
Liu F, Chen D, Fu Y, Wang H, Liu L. Incidence and association of seizures in stroke patients following endovascular treatment: A systematic review and meta-analysis. Eur J Neurol 2023; 30:134-143. [PMID: 36094786 DOI: 10.1111/ene.15564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Post-stroke seizures (PSSs) are some of the most common complications of stroke and are associated with poor outcomes in patients. Endovascular treatment (EVT) is the standard of care for patients with acute ischaemic stroke related large-vessel occlusion. However, whether EVT increases the risk of PSSs remains controversial; the association between PSSs and EVT is poorly understood. METHODS PubMed, Embase and the Cochrane Library were searched for relevant studies published from 1995 to 6 December 2021. The overall incidence of PSSs in patients treated with EVT and the separate incidence for all included studies in each subgroup, stratified by the type of treatment or time of onset, were calculated. The pooled odds ratio and confidence interval were calculated to quantify the effects of EVT on PSS occurrence. RESULTS In all, 946 studies were screened and 16 articles were included, with a total sample size of 12,664 patients; 7836 patients received EVT, of whom 460 had PSS. The pooled incidence of PSS after EVT was 5.8%, which was similar to patients treated with mechanical thrombectomy (5.3%), intra-arterial thrombolysis (6.8%) or bridging therapy (5.4%). The cumulative incidence of post-stroke epilepsy (6.0%) was almost twice that of acute symptomatic seizures (3.6%). The pooled odds ratio for the relationship between EVT and PSS was 1.91 (95% confidence interval 0.98-3.73). CONCLUSIONS The cumulative incidence of stroke patients treated with EVT who developed seizures was 5.8%, and EVT was non-significantly associated with the occurrence of seizures after stroke.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Deng Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoqi Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Haijiao Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Neri S, Gasparini S, Pascarella A, Santangelo D, Cianci V, Mammì A, Lo Giudice M, Ferlazzo E, Aguglia U. Epilepsy in Cerebrovascular Diseases: A Narrative Review. Curr Neuropharmacol 2023; 21:1634-1645. [PMID: 35794769 PMCID: PMC10514540 DOI: 10.2174/1570159x20666220706113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Epilepsy is a common comorbidity of cerebrovascular disease and an increasing socioeconomic burden. OBJECTIVE We aimed to provide an updated comprehensive review on the state of the art about seizures and epilepsy in stroke, cerebral haemorrhage, and leukoaraiosis. METHODS We selected English-written articles on epilepsy, stroke, and small vessel disease up until December 2021. We reported the most recent data about epidemiology, pathophysiology, prognosis, and management for each disease. RESULTS The main predictors for both ES and PSE are the severity and extent of stroke, the presence of cortical involvement and hemorrhagic transformation, while PSE is also predicted by younger age at stroke onset. Few data exist on physiopathology and seizure semiology, and no randomized controlled trial has been performed to standardize the therapeutic approach to post-stroke epilepsy. CONCLUSION Some aspects of ES and PSE have been well explored, particularly epidemiology and risk factors. On the contrary, few data exist on physiopathology, and existing evidence is mainly based on studies on animal models. Little is also known about seizure semiology, which may also be difficult to interpret by non-epileptologists. Moreover, the therapeutic approach needs standardization as regards indications and the choice of specific ASMs. Future research may help to better elucidate these aspects.
Collapse
Affiliation(s)
- Sabrina Neri
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Domenico Santangelo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Vittoria Cianci
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Anna Mammì
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Lo Giudice
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| |
Collapse
|
9
|
Mushannen T, Aleyadeh R, Siddiqui M, Saqqur M, Akhtar N, Mesraoua B, Al Jerdi S, Melikyan G, Shaheen Y, Qadourah H, Chagoury O, Mahfoud ZR, Haddad N. Effect of Reperfusion Therapies on Incidence of Early Post-Stroke Seizures. Front Neurol 2021; 12:758181. [PMID: 34880824 PMCID: PMC8645550 DOI: 10.3389/fneur.2021.758181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to determine the effect of reperfusion therapies on the occurrence of early post-stroke seizures (PSS) in patients with acute ischemic stroke (AIS). Background: Reperfusion therapies are paramount to the treatment of stroke in the acute phase. However, their effect on the incidence of early seizures after an AIS remains unclear. Design and Methods: The stroke database at Hamad Medical Corporation was used to identify all patients who received reperfusion therapies for AIS from 2016 to 2019. They were matched with patients of similar diagnosis, gender, age, and stroke severity as measured by National Institutes of Health Stroke Scale (NIHSS) who did not receive such treatment. The rates of early PSS were calculated for each group. Results: The results showed that 508 patients received reperfusion therapies (342 had IV thrombolysis only, 70 had thrombectomies only, and 96 had received both), compared with 501 matched patients receiving standard stroke unit care. Patients who received reperfusion therapies were similar to their matched controls for mean admission NIHSS score (9.87 vs. 9.79; p = 0.831), mean age (53.3 vs. 53.2 years; p = 0.849), and gender distribution (85 vs. 86% men; p = 0.655). The group receiving reperfusion therapies was found to have increased stroke cortical involvement (62 vs. 49.3%, p < 0.001) and hemorrhagic transformation rates (33.5 vs. 18.6%, p < 0.001) compared with the control group. The rate of early PSS was significantly lower in patients who received reperfusion therapies compared with those who did not (3.1 vs. 5.8%, respectively; p = 0.042). When we excluded seizures occurring at stroke onset prior to any potential treatment implementation, the difference in early PSS rates between the two groups was no longer significant (2.6 vs. 3.9%, respectively; p = 0.251). There was no significant difference in early PSS rate based on the type of reperfusion therapy either (3.2% with thrombolysis, 2.9% with thrombectomy, and 3.1% for the combined treatment, p = 0.309). Conclusions: Treatment of AIS with either thrombectomy, thrombolysis, or both does not increase the risk of early PSS.
Collapse
Affiliation(s)
- Tasnim Mushannen
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Rozaleen Aleyadeh
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Maria Siddiqui
- Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Maher Saqqur
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Naveed Akhtar
- Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Boulenouar Mesraoua
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Salman Al Jerdi
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Gayane Melikyan
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Yanal Shaheen
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Haneen Qadourah
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Odette Chagoury
- Department of Medicine, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ziyad R Mahfoud
- Department of Population Health Sciences, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar
| | - Naim Haddad
- Department of Neurology, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar.,Department of Neurology Hamad Medical Corporation, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
10
|
Zöllner JP, Schmitt FC, Rosenow F, Kohlhase K, Seiler A, Strzelczyk A, Stefan H. Seizures and epilepsy in patients with ischaemic stroke. Neurol Res Pract 2021; 3:63. [PMID: 34865660 PMCID: PMC8647498 DOI: 10.1186/s42466-021-00161-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the increased efficacy of stroke treatments, diagnosis and specific treatment needs of patients with post-stroke seizures (PSS) and post-stroke epilepsy have become increasingly important. PSS can complicate the diagnosis of a stroke and the treatment of stroke patients, and can worsen post-stroke morbidity. This narrative review considers current treatment guidelines, the specifics of antiseizure treatment in stroke patients as well as the state-of-the-art in clinical and imaging research of post-stroke epilepsy. Treatment of PSS needs to consider indications for antiseizure medication treatment as well as individual clinical and social factors. Furthermore, potential interactions between stroke and antiseizure treatments must be carefully considered. The relationship between acute recanalizing stroke therapy (intravenous thrombolysis and mechanical thrombectomy) and the emergence of PSS is currently the subject of an intensive discussion. In the subacute and chronic post-stroke phases, important specific interactions between necessary antiseizure and stroke treatments (anticoagulation, cardiac medication) need to be considered. Among all forms of prevention, primary prevention is currently the most intensively researched. This includes specifically the repurposing of drugs that were not originally developed for antiseizure properties, such as statins. PSS are presently the subject of extensive basic clinical research. Of specific interest are the role of post-stroke excitotoxicity and blood-brain barrier disruption for the emergence of PSS in the acute symptomatic as well as late (> 1 week after the stroke) periods. Current magnetic resonance imaging research focussing on glutamate excitotoxicity as well as diffusion-based estimation of blood-brain barrier integrity aim to elucidate the pathophysiology of seizures after stroke and the principles of epileptogenesis in structural epilepsy in general. These approaches may also reveal new imaging-based biomarkers for prediction of PSS and post-stroke epilepsy. CONCLUSION PSS require the performance of individual risk assessments, accounting for the potential effectiveness and side effects of antiseizure therapy. The use of intravenous thrombolysis and mechanical thrombectomy is not associated with an increased risk of PSS. Advances in stroke imaging may reveal biomarkers for PSS.
Collapse
Affiliation(s)
- Johann Philipp Zöllner
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | | | - Felix Rosenow
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Konstantin Kohlhase
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Seiler
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Hermann Stefan
- Department of Neurology - Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Zhao L, Li J, Kälviäinen R, Jolkkonen J, Zhao C. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2021; 233:108030. [PMID: 34742778 DOI: 10.1016/j.pharmthera.2021.108030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Jinwei Li
- Department of Stroke Center, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
Alemany M, Nuñez A, Falip M, Lara B, Paipa A, Quesada H, Mora P, De Miquel MA, Barranco R, Pedro J, Cardona P. Acute symptomatic seizures and epilepsy after mechanical thrombectomy. A prospective long-term follow-up study. Seizure 2021; 89:5-9. [PMID: 33933947 DOI: 10.1016/j.seizure.2021.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION New treatments for acute ischaemic stroke, such as mechanical thrombectomy, can achieve reperfusion of large ischaemic tissue. Some studies have suggested that reperfusion therapies can increase the risk of suffering acute symptomatic seizure (ASS) and poststroke epilepsy (PSE). The aim of the study was to determine the incidence of ASS and PSE in patients undergoing thrombectomy, and related factors. PATIENTS AND METHODS This was a retrospective single-centre study including patients with ischaemic stroke and NIHSS> 8 treated with thrombectomy with a follow-up ≥5 years. We evaluated several epidemiological, radiological, clinical and electroencephalographic variables. RESULTS Of the 344 included patients, 21 (6.1%) presented ASS, 53 (15.40%) died in the acute phase, and 13 (4.46%) died during the first year. The degree of reperfusion (p 0.029), advanced age (p 0.035), and haemorrhagic transformation (p 0.038) increased the risk of suffering ASS, with degree of reperfusion being an independent factor, OR 2.02 (1.21-4.64). The incidence of PSE was 4.12% in the first year, 3.72% in the second, and 1.61% in the fifth. The accumulated incidence at 5 years was 8.93%. Related risk factor for suffering PSE was ASS (p < 0.001), yielding an OR value of 2.00 (1.28-3.145). CONCLUSIONS Thrombectomy doesn´t increase the risk of ASS. A higher percentage of reperfusion, advanced age, and haemorrhagic transformation are associated with an increased risk of ASS. ASS is a risk factor for suffering PSE. In terms of mortality, having suffered ASS and/or PSE does not increase acute or long-term mortality.
Collapse
Affiliation(s)
- M Alemany
- Neuro-Oncology Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Nuñez
- Stroke Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Falip
- Epilepsy Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - B Lara
- Stroke Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Paipa
- Stroke Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - H Quesada
- Stroke Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - P Mora
- Neuroradiology Department, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M A De Miquel
- Neuroradiology Department, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - R Barranco
- Neuroradiology Department, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - J Pedro
- Neurophysiology Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - P Cardona
- Stroke Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain..
| |
Collapse
|
13
|
Galovic M, Ferreira-Atuesta C, Abraira L, Döhler N, Sinka L, Brigo F, Bentes C, Zelano J, Koepp MJ. Seizures and Epilepsy After Stroke: Epidemiology, Biomarkers and Management. Drugs Aging 2021; 38:285-299. [PMID: 33619704 PMCID: PMC8007525 DOI: 10.1007/s40266-021-00837-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of seizures and epilepsy in older adults. Patients who have larger and more severe strokes involving the cortex, are younger, and have acute symptomatic seizures and intracerebral haemorrhage are at highest risk of developing post-stroke epilepsy. Prognostic models, including the SeLECT and CAVE scores, help gauge the risk of epileptogenesis. Early electroencephalogram and blood-based biomarkers can provide information additional to the clinical risk factors of post-stroke epilepsy. The management of acute versus remote symptomatic seizures after stroke is markedly different. The choice of an ideal antiseizure medication should not only rely on efficacy but also consider adverse effects, altered pharmacodynamics in older adults, and the influence on the underlying vascular co-morbidity. Drug-drug interactions, particularly those between antiseizure medications and anticoagulants or antiplatelets, also influence treatment decisions. In this review, we describe the epidemiology, risk factors, biomarkers, and management of seizures after an ischaemic or haemorrhagic stroke. We discuss the special considerations required for the treatment of post-stroke epilepsy due to the age, co-morbidities, co-medication, and vulnerability of stroke survivors.
Collapse
Affiliation(s)
- Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| | - Carolina Ferreira-Atuesta
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Laura Abraira
- Epilepsy Unit, Department of Neurology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Nico Döhler
- Specialist Clinic for Neurorehabilitation, Kliniken Beelitz, Beelitz-Heilstätten, Germany
| | - Lucia Sinka
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Francesco Brigo
- Division of Neurology, "Franz Tappeiner" Hospital, Merano, Italy
| | - Carla Bentes
- Department of Neurosciences and Mental Health (Neurology), Hospital de Santa Maria-CHLN, Lisboa, Portugal
| | - Johan Zelano
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
14
|
Zöllner JP, Misselwitz B, Mauroschat T, Roth C, Steinmetz H, Rosenow F, Strzelczyk A. Intravenous thrombolysis or mechanical thrombectomy do not increase risk of acute symptomatic seizures in patients with ischemic stroke. Sci Rep 2020; 10:21083. [PMID: 33273538 PMCID: PMC7713428 DOI: 10.1038/s41598-020-78012-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
Recent data have suggested that performing recanalizing therapies in ischemic stroke might lead to an increased risk of acute symptomatic seizures. This applies to both intravenous thrombolysis and mechanical thrombectomy. We therefore determined the frequency of acute symptomatic seizures attributable to these two recanalization therapies using a large, population-based stroke registry in Central Europe. We performed two matched 1:1 case–control analyses. In both analyses, patients were matched for age, stroke severity on admission and pre-stroke functional status. The first analysis compared patients treated with intravenous thrombolysis to a non-recanalization control group. To isolate the effect of mechanical thrombectomy, we compared patients with both mechanical thrombectomy and intravenous thrombolysis to those with only intravenous thrombolysis treatment in a second analysis. From 135,117 patients in the database, 13,356 patients treated with only intravenous thrombolysis, and 1013 patients treated with both intravenous thrombolysis and mechanical thrombectomy were each matched to an equivalent number of controls. Patients with intravenous thrombolysis did not suffer from clinically apparent acute symptomatic seizures significantly more often than non-recanalized patients (treatment = 199; 1.5% vs. control = 237; 1.8%, p = 0.07). Mechanical thrombectomy in addition to intravenous thrombolysis also was not associated with an increased risk of acute symptomatic seizures, as the same number of patients suffered from seizures in the treatment and control group (both n = 17; 1.7%, p = 1). In a large population-based stroke registry, the frequency of clinically apparent acute symptomatic seizures was not increased in patients who received either intravenous thrombolysis alone or in conjunction with mechanical thrombectomy.
Collapse
Affiliation(s)
- Johann Philipp Zöllner
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany. .,LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Björn Misselwitz
- Quality Assurance Office Hessen (GQH, Geschäftsstelle Qualitätssicherung Hessen), Eschborn, Germany
| | - Thomas Mauroschat
- Department of Neurology and Epilepsy Center Hessen, Philipps-University Marburg, Marburg (Lahn), Germany
| | - Christian Roth
- Department of Neurology and Epilepsy Center Hessen, Philipps-University Marburg, Marburg (Lahn), Germany.,Department of Neurology, DRK-Kliniken Nordhessen, Kassel, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Felix Rosenow
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.,LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurology and Epilepsy Center Hessen, Philipps-University Marburg, Marburg (Lahn), Germany
| |
Collapse
|
15
|
Lekoubou A, Fox J, Ssentongo P. Incidence and Association of Reperfusion Therapies With Poststroke Seizures: A Systematic Review and Meta-Analysis. Stroke 2020; 51:2715-2723. [PMID: 32772682 DOI: 10.1161/strokeaha.119.028899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE We performed a systematic review and meta-analysis to assess the incidence and risk of seizures following acute stroke reperfusion therapy (intravenous thrombolysis [IVT] with r-tPA [recombinant tissue-type plasminogen activator], mechanical thrombectomy or both). METHODS We searched major databases (MEDLINE, SCOPUS, and Cochrane Library) for articles published between 1995 and October 28, 2019. The primary outcome was the overall and treatment specific pooled incidence of poststroke seizures (PSS) following acute reperfusion therapy. We also computed the pooled incidence of early poststroke seizures and late poststroke seizures separately for all studies. We derived the risk of PSS associated with IVT in the pooled cohort of patients who received only IVT. The small number of studies (<3) that reported on the risk of PSS associated with mechanical thrombectomy alone or in combination with IVT did not allow us to compute an estimate of the risk of seizures associated with this therapy. RESULTS We identified 13 753 patients with stroke, of which 592 had seizures. The pooled incidence of PSS was 5.9 % (95% CI, 4.2%-8.2%). PSS incidence rates among patients with stroke treated with IVT, mechanical thrombectomy, and both were respectively 6.1% (95% CI, 3.6%-10.2%), 5.9% (95% CI, 4.1%-8.4%), and 5.8 % (95% CI, 3.0%-10.9%). The incidence of late PSS was 6.7% (95% CI, 4.01%-11.02%) and that of early PSS was 3.14% (95% CI, 2.05%-4.76%). The pooled odds ratio for the association between IVT and PSS was 1.24 (95% CI, 0.75-2.05). CONCLUSIONS The findings of this meta-analysis suggest that about one in 15 ischemic stroke patients treated with IVT, mechanical thrombectomy, or both develop seizures independently of the specific reperfusion treatment that they received.
Collapse
Affiliation(s)
- Alain Lekoubou
- Department of Neurology (A.L.), Penn State University, Hershey, PA.,Division of Epidemiology, Department of Public Health Sciences (A.L., P.S.), Penn State University, Hershey, PA
| | - Jonah Fox
- Department of Neurology, Medical University of South Carolina, Charleston (J.F.)
| | - Paddy Ssentongo
- Division of Epidemiology, Department of Public Health Sciences (A.L., P.S.), Penn State University, Hershey, PA
| |
Collapse
|