1
|
Carmona-Iragui M, O'Connor A, Llibre-Guerra J, Lao P, Ashton NJ, Fortea J, Sánchez-Valle R. Clinical and research application of fluid biomarkers in autosomal dominant Alzheimer's disease and Down syndrome. EBioMedicine 2024; 108:105327. [PMID: 39366843 DOI: 10.1016/j.ebiom.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) and Down syndrome (DS) constitute genetic forms of Alzheimer's disease (AD). The study of these forms has been crucial in understanding the biomarker changes and disease progression, notably in advancing our knowledge of the natural history of AD. However, some specific characteristics of biomarkers in genetically determined forms and, most importantly, the near full penetrance and predictability of disease onset lead to a very different context of use for biomarkers in these populations. This article delves into the similarities and differences in biomarker profiles between genetically determined AD and sporadic cases, discussing the implications for research and clinical practice. It also emphasizes the need to account for factors that may affect biomarker reliability differently in genetically determined AD. Enhancing our understanding of the disease will pave the way for more personalized therapeutic approaches for affected individuals.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Sant Pau Memory Unit, Neurology Department. Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases, CIBERNED, Spain.
| | - Antoinette O'Connor
- Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland; Institute of Memory and Cognition, Tallaght University Hospital, Tallaght, Dublin 24, Ireland. antoinette.o'
| | - Jorge Llibre-Guerra
- Dominantly Inherited Alzheimer's Network Trials Unit, Department of Neurology, Washington University School of Medicine in St.Louis, USA.
| | - Patrick Lao
- G.H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10019, USA.
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK; Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department. Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases, CIBERNED, Spain.
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic de Barcelona, Fundació de Recerca Clínic Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
3
|
Han S, Li S, Yang Y, Liu L, Ma L, Leng Z, Mair FS, Butler CR, Nunes BP, Miranda JJ, Yang W, Shao R, Wang C. Mapping multimorbidity progression among 190 diseases. COMMUNICATIONS MEDICINE 2024; 4:139. [PMID: 38992158 PMCID: PMC11239867 DOI: 10.1038/s43856-024-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Current clustering of multimorbidity based on the frequency of common disease combinations is inadequate. We estimated the causal relationships among prevalent diseases and mapped out the clusters of multimorbidity progression among them. METHODS In this cohort study, we examined the progression of multimorbidity among 190 diseases among over 500,000 UK Biobank participants over 12.7 years of follow-up. Using a machine learning method for causal inference, we analyzed patterns of how diseases influenced and were influenced by others in females and males. We used clustering analysis and visualization algorithms to identify multimorbidity progress constellations. RESULTS We show the top influential and influenced diseases largely overlap between sexes in chronic diseases, with sex-specific ones tending to be acute diseases. Patterns of diseases that influence and are influenced by other diseases also emerged (clustering significance Pau > 0.87), with the top influential diseases affecting many clusters and the top influenced diseases concentrating on a few, suggesting that complex mechanisms are at play for the diseases that increase the development of other diseases while share underlying causes exist among the diseases whose development are increased by others. Bi-directional multimorbidity progress presents substantial clustering tendencies both within and across International Classification Disease chapters, compared to uni-directional ones, which can inform future studies for developing cross-specialty strategies for multimorbidity. Finally, we identify 10 multimorbidity progress constellations for females and 9 for males (clustering stability, adjusted Rand index >0.75), showing interesting differences between sexes. CONCLUSION Our findings could inform the future development of targeted interventions and provide an essential foundation for future studies seeking to improve the prevention and management of multimorbidity.
Collapse
Affiliation(s)
- Shasha Han
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
| | - Sairan Li
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunhaonan Yang
- Section of Epidemiology and Population Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lihong Liu
- China-Japan Friendship Hospital, Beijing, China
| | - Libing Ma
- Affiliated Hospital of Guilin Medical University, Guangxi, China
| | | | - Frances S Mair
- School of Health and Wellbeing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher R Butler
- Department of Brain Sciences, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Bruno Pereira Nunes
- Postgraduate Program of Nursing, Federal University of Pelotas, Pelotas, Brazil
- Postgraduate Program of Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - J Jaime Miranda
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Ruitai Shao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Chen Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
5
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
6
|
Olkhova EA, Smith LA, Dennis BH, Ng YS, LeBeau FEN, Gorman GS. Delineating mechanisms underlying parvalbumin neuron impairment in different neurological and neurodegenerative disorders: the emerging role of mitochondrial dysfunction. Biochem Soc Trans 2024; 52:553-565. [PMID: 38563502 PMCID: PMC11088917 DOI: 10.1042/bst20230191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.
Collapse
Affiliation(s)
- Elizaveta A. Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Laura A. Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Bethany H. Dennis
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Fiona E. N. LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
7
|
Vejandla B, Savani S, Appalaneni R, Veeravalli RS, Gude SS. Alzheimer's Disease: The Past, Present, and Future of a Globally Progressive Disease. Cureus 2024; 16:e51705. [PMID: 38313929 PMCID: PMC10838557 DOI: 10.7759/cureus.51705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a significant 21st-century public health challenge. This article delves into AD's neurodegenerative complexities, highlighting cognitive decline, memory impairment, and societal burdens. Mechanistically, protein misfolding, amyloid-beta (Aβ) pathway abnormalities, and genetic/environmental factors are discussed. The pivotal amyloid hypothesis is dissected, focusing on Aβ aggregation's role in synaptic dysfunction and neurodegeneration. The review showcases promising therapeutic strategies, including anti-amyloid antibodies and β/γ-secretase inhibitors targeting Aβ production. Notably, the FDA-approved Lecanemab signifies a breakthrough, slowing disease progression. Anti-Tau therapies' emergence is highlighted, addressing late-stage intervention. Tau aggregation blockers and anti-Tau antibodies offer potential against intracellular tau pathology. The review underscores collaborative efforts to uncover AD's secrets and pave the way for memory preservation.
Collapse
Affiliation(s)
| | - Sarah Savani
- Medicine, Loyola University Chicago Stritch School of Medicine, Chicago, USA
| | | | | | - Sai Sravya Gude
- Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, USA
| |
Collapse
|
8
|
Lal U, Mathavu Vasanthsena S, Hoblidar A. Temporal Feature Extraction and Machine Learning for Classification of Sleep Stages Using Telemetry Polysomnography. Brain Sci 2023; 13:1201. [PMID: 37626557 PMCID: PMC10452545 DOI: 10.3390/brainsci13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Accurate sleep stage detection is crucial for diagnosing sleep disorders and tailoring treatment plans. Polysomnography (PSG) is considered the gold standard for sleep assessment since it captures a diverse set of physiological signals. While various studies have employed complex neural networks for sleep staging using PSG, our research emphasises the efficacy of a simpler and more efficient architecture. We aimed to integrate a diverse set of feature extraction measures with straightforward machine learning, potentially offering a more efficient avenue for sleep staging. We also aimed to conduct a comprehensive comparative analysis of feature extraction measures, including the power spectral density, Higuchi fractal dimension, singular value decomposition entropy, permutation entropy, and detrended fluctuation analysis, coupled with several machine-learning models, including XGBoost, Extra Trees, Random Forest, and LightGBM. Furthermore, data augmentation methods like the Synthetic Minority Oversampling Technique were also employed to rectify the inherent class imbalance in sleep data. The subsequent results highlighted that the XGBoost classifier, when used with a combination of all feature extraction measures as an ensemble, achieved the highest performance, with accuracies of 87%, 90%, 93%, 96%, and 97% and average F1-scores of 84.6%, 89%, 90.33%, 93.5%, and 93.5% for distinguishing between five-stage, four-stage, three-stage, and two distinct two-stage sleep configurations, respectively. This combined feature extraction technique represents a novel addition to the body of research since it achieves higher performance than many recently developed deep neural networks by utilising simpler machine-learning models.
Collapse
Affiliation(s)
- Utkarsh Lal
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Suhas Mathavu Vasanthsena
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Anitha Hoblidar
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
9
|
Binjabr MA, Alalawi IS, Alzahrani RA, Albalawi OS, Hamzah RH, Ibrahim YS, Buali F, Husni M, BaHammam AS, Vitiello MV, Jahrami H. The Worldwide Prevalence of Sleep Problems Among Medical Students by Problem, Country, and COVID-19 Status: a Systematic Review, Meta-analysis, and Meta-regression of 109 Studies Involving 59427 Participants. CURRENT SLEEP MEDICINE REPORTS 2023; 9:1-19. [PMID: 37359215 PMCID: PMC10238781 DOI: 10.1007/s40675-023-00258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/28/2023]
Abstract
Abstract Purpose of Review Several studies have found that medical students have a significant prevalence of sleep issues, such as poor sleep quality, excessive daytime sleepiness, and inadequate sleep duration. The purpose of this review is to carefully evaluate the current research on sleep problems among medical students and, as a result, estimate the prevalence of these disturbances. The EMBASE, PsychINFO, PubMed/MEDLINE, ScienceDirect, Scopus, and Web of Science and retrieved article reference lists were rigorously searched and rated for quality. Random effects meta-analysis was performed to compute estimates. Recent Findings The current meta-analysis revealed an alarming estimated pooled prevalence of poor sleep quality (K = 95, N = 54894) of 55.64% [95%CI 51.45%; 59.74%]. A total of 33.32% [95%CI 26.52%; 40.91%] of the students (K = 28, N = 10122) experienced excessive sleepiness during the day. The average sleep duration for medical students (K = 35, N = 18052) is only 6.5 h per night [95%CI 6.24; 6.64], which suggests that at least 30% of them get less sleep than the recommended 7-9 h per night. Summary Sleep issues are common among medical students, making them a genuine problem. Future research should focus on prevention and intervention initiatives aimed at these groups. Supplementary Information The online version contains supplementary material available at 10.1007/s40675-023-00258-5.
Collapse
Affiliation(s)
- Mohammed A. Binjabr
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Idrees S. Alalawi
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Rayan A. Alzahrani
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Othub S. Albalawi
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Rakan H. Hamzah
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Yazed S. Ibrahim
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Fatima Buali
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mariwan Husni
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ahmed S. BaHammam
- Department of Medicine, University Sleep Disorders Center and Pulmonary Service, King Saud University, KSA, Riyadh, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Michael V. Vitiello
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, USA
| | - Haitham Jahrami
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
- Government Hospitals, Manama, Bahrain
| |
Collapse
|
10
|
Mizuno T, Godai K, Kabayama M, Akasaka H, Kido M, Isaka M, Kubo M, Gondo Y, Ogawa M, Ikebe K, Masui Y, Arai Y, Ishizaki T, Rakugi H, Kamide K. Age Group Differences in the Association Between Sleep Status and Frailty Among Community-Dwelling Older Adults: The SONIC Study. Gerontol Geriatr Med 2023; 9:23337214231205432. [PMID: 37842342 PMCID: PMC10576426 DOI: 10.1177/23337214231205432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Objective: We aimed to determine whether the association of sleep status with frailty differs between age groups of older adults. Method: This cross-sectional study was part of the observational Septuagenarians, Octogenarians, Nonagenarians Investigation with Centenarians (SONIC) study. Subjects were community-dwelling older adults in their 70s and 80s. Frailty was evaluated using the Japanese version of the Cardiovascular Health Study criteria (J-CHS). Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep status. Poor sleep quality was defined as a PSQI global score ≥6. Sleep duration was categorized as short (<6 hr), normal (6-8), and long (>8). We performed multivariable logistic regression to investigate the association between sleep status and frailty separately for each age group adjusted for multiple covariates. Results: In those in their 70s, long sleep duration and sleep medication use were independently associated with frailty. In those in their 80s, poor sleep quality was independently associated with frailty. Conclusions: The association between sleep status and frailty was different between age groups. The findings underscore the importance of incorporating the evaluation of sleep quantity and non-pharmacological therapies in those in their 70s and the evaluation of sleep quality in those in their 80s to help prevent the onset of frailty.
Collapse
Affiliation(s)
- Toshiki Mizuno
- Osaka University Graduate School of Medicine, Japan
- Osaka Yukioka College of Health Science, Japan
| | - Kayo Godai
- Osaka University Graduate School of Medicine, Japan
| | - Mai Kabayama
- Osaka University Graduate School of Medicine, Japan
| | | | - Michiko Kido
- Osaka University Graduate School of Medicine, Japan
| | - Masaaki Isaka
- Osaka University Graduate School of Medicine, Japan
- Osaka Yukioka College of Health Science, Japan
| | - Mio Kubo
- Osaka University Graduate School of Medicine, Japan
| | - Yasuyuki Gondo
- Osaka University Graduate School of Human Sciences, Japan
| | - Madoka Ogawa
- Osaka University Graduate School of Human Sciences, Japan
| | | | - Yukie Masui
- Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | - Kei Kamide
- Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
11
|
NPDS toolbox: Neural population (De) synchronization toolbox for MATLAB. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
13
|
Babiloni C, Noce G, Di Bonaventura C, Lizio R, Eldellaa A, Tucci F, Salamone EM, Ferri R, Soricelli A, Nobili F, Famà F, Arnaldi D, Palma E, Cifelli P, Marizzoni M, Stocchi F, Bruno G, Di Gennaro G, Frisoni GB, Del Percio C. Alzheimer's Disease with Epileptiform EEG Activity: Abnormal Cortical Sources of Resting State Delta Rhythms in Patients with Amnesic Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:903-931. [PMID: 35694930 DOI: 10.3233/jad-220442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with amnesic mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show a "slowing" of cortical resting-state eyes-closed electroencephalographic (rsEEG) rhythms. Some of them also show subclinical, non-convulsive, and epileptiform EEG activity (EEA) with an unclear relationship with that "slowing." OBJECTIVE Here we tested the hypothesis that the "slowing" of rsEEG rhythms is related to EEA in ADMCI patients. METHODS Clinical and instrumental datasets in 62 ADMCI patients and 38 normal elderly (Nold) subjects were available in a national archive. No participant had received a clinical diagnosis of epilepsy. The eLORETA freeware estimated rsEEG cortical sources. The area under the receiver operating characteristic curve (AUROCC) indexed the accuracy of eLORETA solutions in the classification between ADMCI-EEA and ADMCI-noEEA individuals. RESULTS EEA was observed in 15% (N = 8) of the ADMCI patients. The ADMCI-EEA group showed: 1) more abnormal Aβ 42 levels in the cerebrospinal fluid as compared to the ADMCI-noEEA group and 2) higher temporal and occipital delta (<4 Hz) rsEEG source activities as compared to the ADMCI-noEEA and Nold groups. Those source activities showed moderate accuracy (AUROCC = 0.70-0.75) in the discrimination between ADMCI-noEEA versus ADMCI-EEA individuals. CONCLUSION It can be speculated that in ADMCI-EEA patients, AD-related amyloid neuropathology may be related to an over-excitation in neurophysiological low-frequency (delta) oscillatory mechanisms underpinning cortical arousal and quiet vigilance.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | | | - Carlo Di Bonaventura
- Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Enrico M Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Epilepsy Unit, Department of Neurosciences/Mental Health, Sapienza University of Rome, Rome, Italy
| | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Flavio Nobili
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy.,Department of Neuroscience (DiNOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Clinical Neurology, IRCCS Hospital Policlinico San Martino, Genoa, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Pasteur Institute-Cenci Bolognetti Foundation, Rome, Italy
| | - Pierangelo Cifelli
- IRCCS Neuromed, Pozzilli, (IS), Italy.,Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giovanni B Frisoni
- Department of Applied and Biotechnological Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|