1
|
Tanaka-Yachi R, Aizawa K, Shimizu K, Akutsu H, Nakamura K. Low-density cell culture enhances hepatic function through tight junction formation in HepG2 cells. Biol Cell 2022; 114:225-236. [PMID: 35603978 DOI: 10.1111/boc.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
An in vitro evaluation system using cultured hepatocytes is the most useful method in preclinical research, such as drug metabolism and toxicity test. Human hepatocytes should be used in an in vitro evaluation system because the expression of drug-metabolizing enzymes varies among animal species. HepG2 cells, a liver cancer-derived cell line, are widely used as a human hepatocyte model; however, their hepatic functions are generally weak. In this study, we showed that low-density HepG2 cell culture induces hepatic function. The morphology of HepG2 cells was altered depending on the cell density at the time of seeding. Low-density cultured HepG2 cells proliferated as tightly packed colonies. The HepG2 cell colonies in low-density culture demonstrated enhanced tight junction formation. Tight junction protein gene expression levels, such as those of zonula occludens-1 (ZO-1), junctional adhesion molecule 1 (JAM), claudin, occludin, and tricellulin, increased in low-density cultured HepG2 cells. Phase I and II metabolic enzymes, phase III transporter gene expression, and CYP3A4 activity also increased in low-density cultured HepG2 cells. Occludin and tricellulin knockdown inhibited the increased hepatic function in low-density cultures. Tricellulin knockdown reduced the expression of hepatocyte nuclear factor 6 (HNF6), CCAAT/enhancer-binding protein alpha (CEBPA), and aryl hydrocarbon receptor (AHR). In addition, the expression of nuclear receptor subfamily 1 group h member 2 (NR1H2) increased in low-density cultures, canceled by occludin and tricellulin knockdown. Our results suggest that low-density HepG2 cell cultures enhance hepatic function by promoting tight junction formation and demonstrate the importance of cell density in drug evaluation using hepatocyte cell lines. This article is protected by copyright. All rights reserved [As per the style sheet of the journal, Abstracts of Research Articles should have four sections: Background Information, Results, Conclusions and Significance. Please restructure the abstract as per the journal style.].
Collapse
Affiliation(s)
- Rieko Tanaka-Yachi
- Department of Pharmacology, National Research Institute for Child Health and Development
| | - Kazuko Aizawa
- Department of Pharmacology, National Research Institute for Child Health and Development
| | - Kie Shimizu
- Department of Pharmacology, National Research Institute for Child Health and Development.,Faculty of Bioscience, Graduate School of Science and Engineering, Saitama University
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development.,Faculty of Bioscience, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
2
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Kojima M, Sugimoto K, Kobayashi M, Ichikawa-Tomikawa N, Kashiwagi K, Watanabe T, Soeda S, Fujimori K, Chiba H. Aberrant Claudin-6-Adhesion Signaling Promotes Endometrial Cancer Progression via Estrogen Receptor α. Mol Cancer Res 2021; 19:1208-1220. [PMID: 33727343 DOI: 10.1158/1541-7786.mcr-20-0835] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Cell adhesion proteins not only maintain tissue integrity, but also possess signaling abilities to organize diverse cellular events in a variety of physiologic and pathologic processes; however, the underlying mechanism remains obscure. Among cell adhesion molecules, the claudin (CLDN) family is often aberrantly expressed in various cancers, but the biological relevance and molecular basis for this observation have not yet been established. Here, we show that high CLDN6 expression accelerates cellular proliferation and migration in two distinct human endometrial cancer cell lines in vitro. Using a xenograft model, we also revealed that aberrant CLDN6 expression promotes tumor growth and invasion in endometrial cancer tissues. The second extracellular domain and Y196/200 of CLDN6 were required to recruit and activate Src-family kinases (SFK) and to stimulate malignant phenotypes. Knockout and overexpression of ESR1 in endometrial carcinoma cells showed that the CLDN6-adhesion signal links to estrogen receptor α (ERα) to advance tumor progression. In particular, aberrant CLDN6-ERα signaling contributed to collective cell behaviors in the leading front of endometrial cancer cells. Importantly, we demonstrate that CLDN6/SFK/PI3K-dependent AKT and SGK (serum- and glucocorticoid-regulated kinase) signaling in endometrial cancer cells targets Ser518 in the human ERα to activate ERα transcriptional activity in a ligand-independent manner, thereby promoting tumor progression. Furthermore, CLDN6, at least in part, also regulated gene expression in an ERα-independent manner. IMPLICATIONS: The identification of this machinery highlights regulation of the transcription factors by cell adhesion to advance tumor progression.
Collapse
Affiliation(s)
- Manabu Kojima
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
4
|
Sugimoto K, Chiba H. The claudin-transcription factor signaling pathway. Tissue Barriers 2021; 9:1908109. [PMID: 33906582 PMCID: PMC8489944 DOI: 10.1080/21688370.2021.1908109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Claudins (CLDNs) represent major transmembrane proteins of tight junctions and contribute to the barrier function. They also serve as anchors for several signaling proteins, but the underlying molecular basis has yet to be established. The present review covers the recent progress in our understanding of the CLDN signaling pathway in health and disease. We discuss the functional relevance of phosphotyrosine motifs in the C-terminal cytoplasmic domain of CLDNs and define mutual regulation between CLDNs and Src-family kinases (SFKs). In addition, we focus on the crosstalk between CLDN and transcription factor signaling. We also describe how aberrant CLDN–transcription factor signaling promotes or inhibits cancer progression. We propose that a link between various cell adhesion molecules and transcription factors coordinates a range of physiological and pathological events via activation or suppression of target genes.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
5
|
Reduced Claudin-12 Expression Predicts Poor Prognosis in Cervical Cancer. Int J Mol Sci 2021; 22:ijms22073774. [PMID: 33917356 PMCID: PMC8038723 DOI: 10.3390/ijms22073774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Within the claudin (CLDN) family, CLDN12 mRNA expression is altered in various types of cancer, but its clinicopathological relevance has yet to be established due to the absence of specific antibodies (Abs) with broad applications. Methods: We generated a monoclonal Ab (mAb) against human/mouse CLDN12 and verified its specificity. By performing immunohistochemical staining and semiquantification, we evaluated the relationship between CLDN12 expression and clinicopathological parameters in tissues from 138 cases of cervical cancer. Results: Western blot and immunohistochemical analyses revealed that the established mAb selectively recognized the CLDN12 protein. Twenty six of the 138 cases (18.8%) showed low CLDN12 expression, and the disease-specific survival (DSS) and recurrence-free survival rates were significantly decreased compared with those in the high CLDN12 expression group. We also demonstrated, via univariable and multivariable analyses, that the low CLDN12 expression represents a significant prognostic factor for the DSS of cervical cancer patients (HR 3.412, p = 0.002 and HR 2.615, p = 0.029, respectively). Conclusions: It can be concluded that a reduced CLDN12 expression predicts a poor outcome for cervical cancer. The novel anti-CLDN12 mAb could be a valuable tool to evaluate the biological relevance of the CLDN12 expression in diverse cancer types and other diseases.
Collapse
|
6
|
Chiba H, Ichikawa-Tomikawa N, Imura T, Sugimoto K. The region-selective regulation of endothelial claudin-5 expression and signaling in brain health and disorders. J Cell Physiol 2021; 236:7134-7143. [PMID: 33694168 DOI: 10.1002/jcp.30357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/14/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022]
Abstract
The neurovascular unit (NVU) consists of neurons, glial cells, microvascular cells, and extracellular matrix, and is involved in a variety of physiological and pathological processes in the central nervous system (CNS). Within the NVU, the microvascular endothelial cells and pericytes principally contribute to maintaining the integrity of the blood-brain barrier (BBB). Various types of cells are connected to each other in the NVU by diverse cell adhesion molecules, of which claudin-5 (CLDN5) is by far the most abundantly expressed tight-junction protein in brain microvascular endothelial cells and absolutely required for the maintenance of the BBB. This review highlights recent progress in understanding the region-specific regulation and dysregulation of CLDN5 expression in CNS health and disorders. We also discuss how CLDN5 expression is regionally disrupted within the NVU. In addition, we focus on the link between cell adhesion and transcription factor signalings and describe the possible involvement of CLDN5-adhesion signaling in brain health and disorders.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tetsuya Imura
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
7
|
Yamazaki M, Sugimoto K, Mabuchi Y, Yamashita R, Ichikawa-Tomikawa N, Kaneko T, Akazawa C, Hasegawa H, Imura T, Chiba H. Soluble JAM-C Ectodomain Serves as the Niche for Adipose-Derived Stromal/Stem Cells. Biomedicines 2021; 9:biomedicines9030278. [PMID: 33801826 PMCID: PMC8000331 DOI: 10.3390/biomedicines9030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are expressed in diverse types of stem and progenitor cells, but their physiological significance has yet to be established. Here, we report that JAMs exhibit a novel mode of interaction and biological activity in adipose-derived stromal/stem cells (ADSCs). Among the JAM family members, JAM-B and JAM-C were concentrated along the cell membranes of mouse ADSCs. JAM-C but not JAM-B was broadly distributed in the interstitial spaces of mouse adipose tissue. Interestingly, the JAM-C ectodomain was cleaved and secreted as a soluble form (sJAM-C) in vitro and in vivo, leading to deposition in the fat interstitial tissue. When ADSCs were grown in culture plates coated with sJAM-C, cell adhesion, cell proliferation and the expression of five mesenchymal stem cell markers, Cd44, Cd105, Cd140a, Cd166 and Sca-1, were significantly elevated. Moreover, immunoprecipitation assay showed that sJAM-C formed a complex with JAM-B. Using CRISPR/Cas9-based genome editing, we also demonstrated that sJAM-C was coupled with JAM-B to stimulate ADSC adhesion and maintenance. Together, these findings provide insight into the unique function of sJAM-C in ADSCs. We propose that JAMs contribute not only to cell–cell adhesion, but also to cell–matrix adhesion, by excising their ectodomain and functioning as a niche-like microenvironment for stem and progenitor cells.
Collapse
Affiliation(s)
- Morio Yamazaki
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Kotaro Sugimoto
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Correspondence: (K.S.); (H.C.)
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.M.); (C.A.)
| | - Rina Yamashita
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Tetsuharu Kaneko
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.M.); (C.A.)
| | - Hiroshi Hasegawa
- Division of Dentistry and Oral Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (T.K.); (H.H.)
| | - Tetsuya Imura
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
| | - Hideki Chiba
- Department of Basic Pathology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; (M.Y.); (R.Y.); (N.I.-T.); (T.I.)
- Correspondence: (K.S.); (H.C.)
| |
Collapse
|
8
|
LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14:101036. [PMID: 33588137 PMCID: PMC7901038 DOI: 10.1016/j.tranon.2021.101036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
HOTAIR recruited SNAIL and reduced the expression of HNF4α to promote EMT of colorectal cancer. Provided potential novel long non-coding RNA-directed early diagnosis and therapy for colorectal cancer. Provided further insight into the regulatory mechanism of HOTAIR in colorectal cancer.
Colorectal cancer causes severe burdensome on the health by its high fatality and poor prognosis. Hox transcript antisense intergenic RNA (HOTAIR) was believed closely related with the genesis and development of colorectal cancer, but the regulatory mechanism is still to be investigated. The expression of HOTAIR was analyzed in colorectal cancer using both qRT-PCR and ISH assay. The cell viability, migration, invasion and apoptosis rate were evaluated using MTT, BrdU,Transwell and flow cytometryexperiments. The interaction between HOTAIR and SNAIL was detected using RIP and RNA pull-down. The binding of SNAIL to HNF4α promoter was assessed by ChIP. The cell lines that knock down HOTAIR, SNAIL or overexpress HNF4α were constructed using retroviral vector system. The tumorigenic and metastatic capacity of colorectal cancer cells after knocking down HOTAIR were evaluated based on xenograft assay and liver metastases model. HOTAIR was highly expressed in both tissue and cell lines of colorectal cancer, indicated a regulatory function in colorectal cancer. Knock-down of HOTAIR suppressed cell viability, migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer cells in vitro, and inhibited the growth and metastasis of colorectal tumor in nude mice. We further found that HOTAIR suppressed HNF4α via recruiting SNAIL, and the overexpression of HNF4α inhibited cell viability, migration, invasion and EMT of colorectal cancer cells. We demonstrated that HOTAIR regulates the level of HNF4α via recruiting SNAIL, knocking down HOTAIR repressed the cell viability and metestasis of colorectal cancer cell line in vitro, and suppressed the tomorgenesis and migration/invasion of colorectal cancer in vivo.
Collapse
|
9
|
He Y, Chen L, Chen K, Sun Y. Immunohistochemical analysis of HNF4A and β-catenin expression to predict low-grade dysplasia in the colitis-neoplastic sequence. Acta Biochim Biophys Sin (Shanghai) 2021; 53:94-101. [PMID: 33300557 DOI: 10.1093/abbs/gmaa147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Animal studies indicated that P1 promoter-driven hepatocyte nuclear factor 4 alpha (HFN4A) prevents carcinogenesis in colitis. But the function of total HNF4A protein has not been fully investigated, and it was assumed to be involved in the colitis-neoplastic sequence. The aim of this study was to determine the clinical value of total P1-/P2-driven HNF4A combined with β-catenin in the colitis-neoplastic sequence. A total of 69 samples, including 4 normal colon tissues, 16 sporadic colorectal cancer (CRC) tissues, 35 inflammatory bowel disease (IBD) tissues, and 14 IBD-associated low-grade dysplasia tissues, were collected to assess P1-/P2-driven HNF4A and β-catenin expressions by immunohistochemical assay. In addition, a colonic epithelial cell line Caco2 with stable P1-/P2-driven HNF4A knockdown was constructed. β-Catenin expression and skeleton structure were determined in the transfected cells by western blot analysis and immunofluorescence assay respectively. Increased expression of nuclear P1-/P2-driven HNF4A was observed in the colitis-associated colorectal neoplasm and sporadic CRC samples, compared with that in colitis samples. The parallel alterations between cytoplasmic β-catenin and nuclear P1-/P2-driven HNF4A were also verified. Silencing of P1-/P2-driven HNF4A expression in Caco2 cells decreased β-catenin expression and F-actin formation. Our results confirmed the elevated expressions of nuclear P1-/P2-driven HNF4A and cytoplasmic β-catenin in the colitis-neoplastic sequence, and both of them may be used as potential biomarkers to predict low-grade dysplasia.
Collapse
Affiliation(s)
- Yiping He
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke Chen
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Prognostic Significance of Aberrant Claudin-6 Expression in Endometrial Cancer. Cancers (Basel) 2020; 12:cancers12102748. [PMID: 32987797 PMCID: PMC7656298 DOI: 10.3390/cancers12102748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Among the claudin (CLDN) family, CLDN6 exhibits aberrant expression in various cancers, but its biological relevance has not yet been established. We generated a monoclonal antibody (mAb) against human CLDN6 and verified its specificity. By immunohistochemical staining and semi-quantification, we evaluated the relationship between CLDN6 expression and clinicopathological parameters in tissues from 173 cases of endometrial cancer. RESULTS The established mAb selectively recognized CLDN6 protein. Ten of the 173 cases (5.8%) showed high CLDN6 expression (score 3+), whereas 19 (11.0%), 18 (10.4%) and 126 (72.4%) cases revealed low CLDN6 expression (score 2+, 1+ and 0, respectively). In addition, intratumor heterogeneity of CLDN6 expression was observed even in the cases with high CLDN6 expression. The 5-year survival rates in the high and low CLDN6 groups was approximately 30% and 90%, respectively. Among the clinicopathological factors, the high CLDN6 expression was significantly associated with surgical stage III/IV, histological grade 3, lymphovascular space involvement, lymph node metastasis and distant metastasis. Furthermore, the high CLDN6 expression was an independent prognostic marker for overall survival of endometrial cancer patients (hazard ratio 3.50, p = 0.014). CONCLUSIONS It can be concluded that aberrant CLDN6 expression is useful to predict poor outcome for endometrial cancer and might be a promising therapeutic target.
Collapse
|
11
|
Hepatic Polarization Accelerated by Mechanical Compaction Involves HNF4 α Activation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8016306. [PMID: 32802875 PMCID: PMC7426769 DOI: 10.1155/2020/8016306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022]
Abstract
There remain few data about the role of homeostatic compaction in hepatic polarization. A previous study has found that mechanical compaction can accelerate hepatocyte polarization; however, the cellular mechanism underlying the effect is mostly unclear. Hepatocyte nuclear factor 4 alpha (HNF4α) is crucial for hepatic polarization in liver morphogenesis. Therefore, we sought to identify any possible involvement of HNF4α in the process of hepatocyte polarization accelerated by mechanical compaction. We first verified in the nonhepatic cell model HEK-293T, and the hepatic cell model primary hepatocytes that the mechanical compaction on cell aggregates simulated by using transient centrifugation can directly activate the expression of HNF4α promoters. Moreover, data using primary hepatocytes showed that the HNF4α expression is positively associated with the levels of compaction force: 2.1-folds higher at the mRNA level and 2.1-folds higher at the protein level for 500 g vs. 0 g. Furthermore, activated HNF4α expression is associated with the enhanced biliary canalicular formation and the increased production of albumin and urea. Pretreatment with Latrunculin B, an inhibitor of F-actin, and SHE78-7, an inhibitor of E-cadherin, which both interrupt the pathway of mechanical transduction, partially but significantly reduced the HNF4α expression and production of albumin and urea. In conclusion, HNF4α can be actively involved in the hepatic polarization in the context of environmental mechanical compaction.
Collapse
|
12
|
Czabanka M, Petrilli LL, Elvers-Hornung S, Bieback K, Albert Imhof B, Vajkoczy P, Vinci M. Junctional Adhesion Molecule-C Mediates the Recruitment of Embryonic-Endothelial Progenitor Cells to the Perivascular Niche during Tumor Angiogenesis. Int J Mol Sci 2020; 21:ijms21041209. [PMID: 32054130 PMCID: PMC7072851 DOI: 10.3390/ijms21041209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
The homing of Endothelial Progenitor Cells (EPCs) to tumor angiogenic sites has been described as a multistep process, involving adhesion, migration, incorporation and sprouting, for which the underlying molecular and cellular mechanisms are yet to be fully defined. Here, we studied the expression of Junctional Adhesion Molecule-C (JAM-C) by EPCs and its role in EPC homing to tumor angiogenic vessels. For this, we used mouse embryonic-Endothelial Progenitor Cells (e-EPCs), intravital multi-fluorescence microscopy techniques and the dorsal skin-fold chamber model. JAM-C was found to be expressed by e-EPCs and endothelial cells. Blocking JAM-C did not affect adhesion of e-EPCs to endothelial monolayers in vitro but, interestingly, it did reduce their adhesion to tumor endothelium in vivo. The most striking effect of JAM-C blocking was on tube formation on matrigel in vitro and the incorporation and sprouting of e-EPCs to tumor endothelium in vivo. Our results demonstrate that JAM-C mediates e-EPC recruitment to tumor angiogenic sites, i.e., coordinated homing of EPCs to the perivascular niche, where they cluster and interact with tumor blood vessels. This suggests that JAM-C plays a critical role in the process of vascular assembly and may represent a potential therapeutic target to control tumor angiogenesis.
Collapse
Affiliation(s)
- Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charitè, 10117 Berlin, Germany;
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
| | - Lucia Lisa Petrilli
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital – IRCCS, 00146 Rome, Italy;
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Fred Cross Blood Donor Service Baden-Württemberg – Hessen, 68167 Mannheim, Germany (K.B.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Fred Cross Blood Donor Service Baden-Württemberg – Hessen, 68167 Mannheim, Germany (K.B.)
| | - Beat Albert Imhof
- Department of Pathology and Immunology, Medical Faculty, Centre Medical Universitaire (CMU), University of Geneva, 1206 Geneva, Switzerland;
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charitè, 10117 Berlin, Germany;
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
- Correspondence: ; Tel.: +49-30450560-002
| | - Maria Vinci
- Department of Neurosurgery Medical Faculty of the University of Heidelberg, 68167 Mannheim, Germany;
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital – IRCCS, 00146 Rome, Italy;
| |
Collapse
|
13
|
Sugimoto K, Ichikawa-Tomikawa N, Kashiwagi K, Endo C, Tanaka S, Sawada N, Watabe T, Higashi T, Chiba H. Cell adhesion signals regulate the nuclear receptor activity. Proc Natl Acad Sci U S A 2019; 116:24600-24609. [PMID: 31740618 PMCID: PMC6900646 DOI: 10.1073/pnas.1913346116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion is essential for proper tissue architecture and function in multicellular organisms. Cell adhesion molecules not only maintain tissue integrity but also possess signaling properties that contribute to diverse cellular events such as cell growth, survival, differentiation, polarity, and migration; however, the underlying molecular basis remains poorly defined. Here we identify that the cell adhesion signal initiated by the tight-junction protein claudin-6 (CLDN6) regulates nuclear receptor activity. We show that CLDN6 recruits and activates Src-family kinases (SFKs) in second extracellular domain-dependent and Y196/200-dependent manners, and SFKs in turn phosphorylate CLDN6 at Y196/200. We demonstrate that the CLDN6/SFK/PI3K/AKT axis targets the AKT phosphorylation sites in the retinoic acid receptor γ (RARγ) and the estrogen receptor α (ERα) and stimulates their activities. Interestingly, these phosphorylation motifs are conserved in 14 of 48 members of human nuclear receptors. We propose that a similar link between diverse cell adhesion and nuclear receptor signalings coordinates a wide variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Chihiro Endo
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - Tetsuya Watabe
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan;
| |
Collapse
|
14
|
Xie P, Hu X, Li D, Xie S, Zhou Z, Meng X, Shan H. Bioluminescence Imaging of Transplanted Mesenchymal Stem Cells by Overexpression of Hepatocyte Nuclear Factor4α: Tracking Biodistribution and Survival. Mol Imaging Biol 2019; 21:44-53. [PMID: 29761416 DOI: 10.1007/s11307-018-1204-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The purposes of this study were to construct immortalized human bone marrow mesenchymal stem cells (UE7T-13) with overexpression of the hepatocyte nuclear factor4α (hHNF4α) and luciferase2-mKate2 dual-fusion reporter gene, further investigate their impact on treating acute liver injury (ALI) in rats, and track their biodistribution and survival by bioluminescence imaging (BLI). PROCEDURES The hHNF4α and luciferase2-mKate2 genes were transduced by a lentiviral vector into UE7T-13 cells (named E7-hHNF4α-R cells), and expression was verified by immunofluorescence, RT-PCR, and flow cytometry. E7-hGFP-R cells expressing the luciferase2-mKate2/hGFP gene served as a negative group. A correlation between the bioluminescence signal and cell number was detected by BLI. The ALI rats were established and divided into three groups: PBS, E7-hGFP-R, and E7-hHNF4α-R. After transplantation of 2.0 × 106 cells, BLI was used to dynamically track their biodistribution and survival. The restoration of biological functions was assessed by serum biochemical and histological analyses. RESULTS Stable high-level expression of hHNF4α and mKate2 protein was established in the E7-hHNF4α-R cells in vitro. The E7-hHNF4α-R cells strongly expressed hGFP, hHNF4α, and mKate2 proteins, and the hHNF4α gene. hGFP-mKate2 dual-positive cell expression reached approximately 93 %. BLI verified that a linear relationship existed between the cell number and bioluminescence signal (R2 = 0.9991). The cells improved liver function in vivo after transplantation into the ALI rat liver, as evidenced by the fact that AST and ALT temporarily returned to normal levels in the recipient ALI rats. The presence of the transplanted E7-hGFP-R and E7-hHNF4α-R cells in recipient rat livers was confirmed by BLI and immunohistochemistry. However, the cells were cleared by the immune system a short time after transplantation into ALI rats with a normal immune system. CONCLUSION Our data revealed that the E7-hHNF4α-R cells can transiently improve damaged liver function and were rapidly cleared by the immune system. In addition, BLI is a useful tool to track transplanted cell biodistribution and survival.
Collapse
Affiliation(s)
- Peiyi Xie
- Guang Dong Provincial Engineering Research Center of Molecular Imaging, Zhuhai, China.,Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Hu
- Guang Dong Provincial Engineering Research Center of Molecular Imaging, Zhuhai, China.,Interventional Medicine Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Interventional Radiology Institute, Sun Yat-sen University, Zhuhai, China
| | - Dan Li
- Guang Dong Provincial Engineering Research Center of Molecular Imaging, Zhuhai, China.,Interventional Medicine Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Interventional Radiology Institute, Sun Yat-sen University, Zhuhai, China
| | - Sidong Xie
- The Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyang Zhou
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hong Shan
- Guang Dong Provincial Engineering Research Center of Molecular Imaging, Zhuhai, China. .,Interventional Medicine Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China. .,Interventional Radiology Institute, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
15
|
The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death Differ 2018; 26:890-901. [PMID: 30154449 PMCID: PMC6461983 DOI: 10.1038/s41418-018-0170-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity.
Collapse
|
16
|
Boivin FJ, Schmidt-Ott KM. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation. Ann N Y Acad Sci 2017. [PMID: 28636799 DOI: 10.1111/nyas.13367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epithelial tissues form a selective barrier via direct cell-cell interactions to separate and establish concentration gradients between the different compartments of the body. Proper function and formation of this barrier rely on the establishment of distinct intercellular junction complexes. These complexes include tight junctions, adherens junctions, desmosomes, and gap junctions. The tight junction is by far the most diverse junctional complex in the epithelial barrier. Its composition varies greatly across different epithelial tissues to confer various barrier properties. Thus, epithelial cells rely on tightly regulated transcriptional mechanisms to ensure proper formation of the epithelial barrier and to achieve tight junction diversity. Here, we review different transcriptional mechanisms utilized during embryogenesis and disease development to promote tight junction assembly and maintenance of intercellular barrier integrity. We focus particularly on the Grainyhead-like transcription factors and ligand-activated nuclear hormone receptors, two central families of proteins in epithelialization.
Collapse
Affiliation(s)
- Felix J Boivin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité Medical University, Berlin, Germany
| |
Collapse
|
17
|
Farkas AE, Hilgarth RS, Capaldo CT, Gerner-Smidt C, Powell DR, Vertino PM, Koval M, Parkos CA, Nusrat A. HNF4α regulates claudin-7 protein expression during intestinal epithelial differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 26216285 DOI: 10.1016/j.ajpath.2015.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt-luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation.
Collapse
Affiliation(s)
- Attila E Farkas
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Roland S Hilgarth
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Christian Gerner-Smidt
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Doris R Powell
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Paula M Vertino
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Michael Koval
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Charles A Parkos
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
18
|
Yao HS, Wang J, Zhang XP, Wang LZ, Wang Y, Li XX, Jin KZ, Hu ZQ, Wang WJ. Hepatocyte nuclear factor 4α suppresses the aggravation of colon carcinoma. Mol Carcinog 2015; 55:458-72. [PMID: 25808746 DOI: 10.1002/mc.22294] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Hou Shan Yao
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Juan Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xiao Ping Zhang
- Medical Intervention Engineering; Tongji University; North Zhongshan Road; Shanghai China
| | - Liang Zhe Wang
- Department of pathology; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Yi Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Xin Xing Li
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Kai Zhou Jin
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Zhi Qian Hu
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| | - Wei Jun Wang
- Department of General Surgery; Shanghai Chang Zheng Hospital; Second Military Medical University; 415 Feng Yang Road; Shanghai China
| |
Collapse
|
19
|
Luissint AC, Nusrat A, Parkos CA. JAM-related proteins in mucosal homeostasis and inflammation. Semin Immunopathol 2014; 36:211-26. [PMID: 24667924 DOI: 10.1007/s00281-014-0421-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 02/06/2023]
Abstract
Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include junctional adhesion molecules (JAMs) that belong to the cortical thymocyte marker for Xenopus family of proteins. JAM family encompasses three classical members (JAM-A, JAM-B, and JAM-C) and related molecules including JAM4, JAM-like protein, Coxsackie and adenovirus receptor (CAR), CAR-like membrane protein and endothelial cell-selective adhesion molecule. JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration, and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Epithelial pathobiology and mucosal inflammation research unit, Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, 30306, Atlanta, GA, USA
| | | | | |
Collapse
|
20
|
Sugimoto K, Ichikawa-Tomikawa N, Satohisa S, Akashi Y, Kanai R, Saito T, Sawada N, Chiba H. The tight-junction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PLoS One 2013; 8:e75106. [PMID: 24116027 PMCID: PMC3792957 DOI: 10.1371/journal.pone.0075106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
During epithelialization, cell adhesions and polarity must be established to maintain tissue assemblies and separate the biological compartments in the body. However, the molecular basis of epithelial morphogenesis, in particular, a role of cell adhesion molecules in epithelial differentiation from stem cells, remains unclear. Here, we show that the stable and conditional expression of a tight-junction protein, claudin-6 (Cldn6), triggers epithelial morphogenesis in mouse F9 stem cells. We also demonstrate that Cldn6 induces the expression of other tight-junction and microvillus molecules including Cldn7, occludin, ZO-1α+, and ezrin/radixin/moesin-binding phosphoprotein50. These events were inhibited by attenuation of Cldn6 using RNA interference or the C-terminal half of Clostridium Perfringens enterotoxin. Furthermore, similar results were obtained in mouse embryonic stem cells. Thus, we have uncovered that the Cldn6 functions as a novel cue to induce epithelial differentiation.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seiro Satohisa
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yushi Akashi
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Risa Kanai
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail:
| |
Collapse
|
21
|
Abstract
Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. This review summarizes our current knowledge of this large protein family and discusses recent advances in our understanding of their structure and physiological functions.
Collapse
Affiliation(s)
- Dorothee Günzel
- Department of Clinical Physiology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
22
|
Abstract
Tight junctions are intercellular junctions adjacent to the apical ends of paracellular spaces. They have two classical functions, the barrier function and the fence function. The former regulates the passage of ions, water and various molecules through paracellular spaces, and is thus related to edema, jaundice, diarrhea and blood‐borne metastasis. The latter function maintains cell polarity by forming a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell properties in terms of loss of cell polarity. Recently, two novel aspects of tight junctions have been reported. One is their involvement in signal transduction. The other is that fact that tight junctions are considered to be a crucial component of innate immunity. In addition, since some proteins comprising tight junctions work as receptors for viruses and extracellular stimuli, pathogenic bacteria and viruses target and affect the tight junction functions, leading to diseases. In this review, the relationship between tight junctions and human diseases will be described.
Collapse
Affiliation(s)
- Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
23
|
Abstract
Hepatocyte nuclear 4 alpha (HNF4α), involved in glucose and lipid metabolism, has been linked to intestinal inflammation and abnormal mucosal permeability. Moreover, in a genome-wide association study, the HNF4A locus has been associated with ulcerative colitis. The objective of our study was to evaluate the association between HNF4α genetic variants and Crohn's disease (CD) in two distinct Canadian pediatric cohorts. The sequencing of the HNF4A gene in 40 French Canadian patients led to the identification of 27 single nucleotide polymorphism (SNP)s with a minor allele frequency >5%. To assess the impact of these SNPs on disease susceptibility, we first conducted a case-control discovery study on 358 subjects with CD and 542 controls. We then carried out a replication study in a separate cohort of 416 cases and 1208 controls. In the discovery cohort, the genotyping of the identified SNPs revealed that six were significantly associated with CD. Among them, rs1884613 was replicated in the second CD cohort (odds ratio (OR): 1.33; P<0.012) and this association remained significant when both cohorts were combined and after correction for multiple testing (OR: 1.39; P<0.004). An 8-marker P2 promoter haplotype containing rs1884613 was also found associated with CD (P<2.09 × 10(-4) for combined cohorts). This is the first report showing that the HNF4A locus may be a common genetic determinant of childhood-onset CD. These findings highlight the importance of the intestinal epithelium and oxidative protection in the pathogenesis of CD.
Collapse
|
24
|
Possible involvement of tight junctions, extracellular matrix and nuclear receptors in epithelial differentiation. J Biomed Biotechnol 2011; 2011:253048. [PMID: 22162632 PMCID: PMC3227411 DOI: 10.1155/2011/253048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/28/2011] [Accepted: 09/09/2011] [Indexed: 01/16/2023] Open
Abstract
Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation.
Collapse
|
25
|
Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther 2011; 20:127-37. [PMID: 22068426 DOI: 10.1038/mt.2011.234] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity.
Collapse
|
26
|
Nagaoka M, Duncan SA. Transcriptional control of hepatocyte differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:79-101. [PMID: 21074730 DOI: 10.1016/b978-0-12-385233-5.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is the largest glandular organ in the body and plays a central role in controlling metabolism. During hepatogenesis, complex developmental processes must generate an array of cell types that are spatially arranged to generate a hepatic architecture that is essential to support liver function. The processes that control the ultimate formation of the liver are diverse and complex and in many cases poorly defined. Much of the focus of research during the past three decades has been on understanding how hepatocytes, which are the predominant liver parenchymal cells, differentiate during embryogenesis. Through a combination of mouse molecular genetics, embryology, and molecular biochemistry, investigators have defined a myriad of transcription factors that combine to control formation and function of hepatocytes. Here, we will review the major discoveries that underlie our current understanding of transcriptional regulation of hepatocyte differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
27
|
Santangelo L, Marchetti A, Cicchini C, Conigliaro A, Conti B, Mancone C, Bonzo JA, Gonzalez FJ, Alonzi T, Amicone L, Tripodi M. The stable repression of mesenchymal program is required for hepatocyte identity: a novel role for hepatocyte nuclear factor 4α. Hepatology 2011; 53:2063-74. [PMID: 21384409 PMCID: PMC6624426 DOI: 10.1002/hep.24280] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. CONCLUSION The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes.
Collapse
Affiliation(s)
- Laura Santangelo
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Alessandra Marchetti
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Carla Cicchini
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Alice Conigliaro
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Beatrice Conti
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Jessica A. Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| | - Laura Amicone
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy,National Institute for Infectious Diseases L. Spallanzani, Institute of Research and Cure of Scientific Character, Rome, Italy
| |
Collapse
|
28
|
The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLoS One 2010; 5:e15742. [PMID: 21203412 PMCID: PMC3009737 DOI: 10.1371/journal.pone.0015742] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022] Open
Abstract
Background The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells. Methodology/Principal Findings Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice. Conclusions/Significance Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells.
Collapse
|
29
|
Role of calcium signalling and phosphorylations in disruption of the epithelial junctions by Pseudomonas aeruginosa quorum sensing molecule. Eur J Cell Biol 2010; 89:584-97. [DOI: 10.1016/j.ejcb.2010.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/21/2022] Open
|
30
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
31
|
Morais-de-Sá E, Mirouse V, St Johnston D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 2010; 141:509-23. [PMID: 20434988 PMCID: PMC2885938 DOI: 10.1016/j.cell.2010.02.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/08/2010] [Accepted: 02/23/2010] [Indexed: 12/15/2022]
Abstract
Bazooka (PAR-3), PAR-6, and aPKC form a complex that plays a key role in the polarization of many cell types. In epithelial cells, however, Bazooka localizes below PAR-6 and aPKC at the apical/lateral junction. Here, we show that Baz is excluded from the apical aPKC domain in epithelia by aPKC phosphorylation, which disrupts the Baz/aPKC interaction. Removal of Baz from the complex is epithelial-specific because it also requires the Crumbs complex, which prevents the Baz/PAR-6 interaction. In the absence of Crumbs or aPKC phosphorylation of Baz, mislocalized Baz recruits adherens junction components apically, leading to a loss of the apical domain and an expansion of lateral. Thus, apical exclusion of Baz by Crumbs and aPKC defines the apical/lateral border. Although Baz acts as an aPKC targeting and specificity factor in nonepithelial cells, our results reveal that it performs a complementary function in positioning the adherens junction in epithelia.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
32
|
Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kröger C, Magin TM, Omary MB, Salas PJI. Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones. J Cell Sci 2009; 122:2491-503. [PMID: 19549684 DOI: 10.1242/jcs.046979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical PKC (PKC iota) is a key organizer of cellular asymmetry. Sequential extractions of intestinal cells showed a pool of enzymatically active PKC iota and the chaperone Hsp70.1 attached to the apical cytoskeleton. Pull-down experiments using purified and recombinant proteins showed a complex of Hsp70 and atypical PKC on filamentous keratins. Transgenic animals overexpressing keratin 8 displayed delocalization of Hsp70 and atypical PKC. Two different keratin-null mouse models, as well as keratin-8 knockdown cells in tissue culture, also showed redistribution of Hsp70 and a sharp decrease in the active form of atypical PKC, which was also reduced by Hsp70 knockdown. An in-vitro turn motif rephosphorylation assay indicated that PKC iota is dephosphorylated by prolonged activity. The Triton-soluble fraction could rephosphorylate PKC iota only when supplemented with the cytoskeletal pellet or filamentous highly purified keratins, a function abolished by immunodepletion of Hsp70 but rescued by recombinant Hsp70. We conclude that both filamentous keratins and Hsp70 are required for the rescue rephosphorylation of mature atypical PKC, regulating the subcellular distribution and steady-state levels of active PKC iota.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Evidence for cross-reactivity of JAM-C antibodies: implications for cellular localization studies. Biol Cell 2009; 101:441-53. [PMID: 19143587 DOI: 10.1042/bc20080130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND INFORMATION JAM-C (junctional adhesion molecule C) has been implicated in the regulation of leukocyte migration, cell polarity, spermatogenesis, angiogenesis and nerve conduction. JAM-C has been also reported to concentrate at TJs (tight junctions) and desmosomes, although detailed localization studies remain incomplete. RESULTS Monoclonal (LUCA14, MAB1189, Gi11, and PACA4) and polyclonal (40-9000) antibodies were employed to evaluate JAM-C expression/localization in various epithelial cell lines. However, RT-PCR (reverse transcription-PCR) assays revealed no JAM-C mRNA in SK-CO15, HeLa and HPAF-II cells, whereas abundant mRNA was detected in platelets, Caco-2 and ARPE cells. Interestingly, immunofluorescence localization in all cells revealed strong intercellular junctional staining with all of the above antibodies, except PACA4. Given the positive staining results in cells lacking JAM-C mRNA, immunoblot analyses were performed. Western blots revealed a prominent protein band at 52 kDa in all cells tested with all antibodies except PACA4. However, the correct size of JAM-C (37 kDa) was only detected in cells containing JAM-C mRNA. Immunofluorescence staining of JAM-C mRNA-expressing Caco-2 cells using mAb PACA4 revealed co-localization with occludin and ZO-1 (zonula occludens 1) at TJs. Analyses by MS identified the cross-reactive 52 kDa protein band as K8 (keratin 8). Furthermore, siRNA (small interfering RNA)-mediated downregulation of K8 in JAM-C mRNA-negative cells resulted in diminished junctional staining along with a reduction in the intensity of the 52 kDa protein band. Using an antibody specific for K8 phosphorylated at Ser73, the 52 kDa protein was identified as this phosphorylated form of K8. CONCLUSIONS The results from the present study demonstrate that a majority of available anti-human JAM-C antibodies cross-react with phosphorylated K8 and suggest that cellular localization studies using these reagents should be interpreted with caution. Of the JAM-C antibodies tested, only mAb PACA4 is monospecific for human JAM-C. Analyses using PACA4 reveal that JAM-C expression is variable in different epithelial cell lines with co-localization at TJs.
Collapse
|
34
|
Burtscher I, Lickert H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development 2009; 136:1029-38. [PMID: 19234065 DOI: 10.1242/dev.028415] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the mouse, one of the earliest events in the determination of cell fate is the segregation of cells into germ layers during gastrulation; however, the cellular and molecular details are not well defined due to intrauterine development. We were able to visualize a clear sequence of events occurring in the process of germ-layer formation, using immunohistochemistry and time-lapse confocal imaging. The T-box transcription factor brachyury (T) and the Forkhead transcription factor Foxa2 specify mesoderm and endoderm in the posterior epiblast. Fate-specified epiblast cells lose their polarity and undergo epithelial-mesenchymal transition to invade into the primitive streak region, where these cell populations quickly separate and differentiate into morphologically and molecularly distinct Foxa2-positive endoderm and T-positive mesoderm populations. The endoderm cells flatten and acquire apical-basal polarity during intercalation into the outside epithelium in order to establish proper intracellular junctions with pre-existing cells. By contrast, the mesodermal cells become spherical during migration and acquire a mesenchymal fate. Interestingly, axial mesodermal cells are descended from Foxa2-positive epiblast cells that upregulate T protein in the anterior primitive streak region. These cells, as well as Foxa2-positive endoderm cells, are highly polarized and epithelialized, suggesting that Foxa2 promotes an epithelial fate and suppresses a mesenchymal fate. This observation is supported by the fact that Foxa2 mutant endodermal cells fail to maintain polarity and do not establish proper cellular junctions, and are thus unable to functionally integrate into the endoderm epithelium. We propose that Foxa2 regulates a molecular program that induces an epithelial cellular phenotype.
Collapse
Affiliation(s)
- Ingo Burtscher
- Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | |
Collapse
|
35
|
Abstract
Hematopoietic stem cells (HSCs) have the capacity to self-renew and continuously differentiate into all blood cell lineages throughout life. At each branching point during differentiation, interactions with the environment are key in the generation of daughter cells with distinct fates. Here, we examined the role of the cell adhesion molecule JAM-C, a protein known to mediate cellular polarity during spermatogenesis, in hematopoiesis. We show that murine JAM-C is highly expressed on HSCs in the bone marrow (BM). Expression correlates with self-renewal, the highest being on long-term repopulating HSCs, and decreases with differentiation, which is maintained longest among myeloid committed progenitors. Inclusion of JAM-C as a sole marker on lineage-negative BM cells yields HSC enrichments and long-term multilineage reconstitution when transferred to lethally irradiated mice. Analysis of Jam-C-deficient mice showed that two-thirds die within 48 hours after birth. In the surviving animals, loss of Jam-C leads to an increase in myeloid progenitors and granulocytes in the BM. Stem cells and myeloid cells from fetal liver are normal in number and homing to the BM. These results provide evidence that JAM-C defines HSCs in the BM and that JAM-C plays a role in controlling myeloid progenitor generation in the BM.
Collapse
|
36
|
Economopoulou M, Hammer J, Wang F, Fariss R, Maminishkis A, Miller SS. Expression, localization, and function of junctional adhesion molecule-C (JAM-C) in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2008; 50:1454-63. [PMID: 19060272 DOI: 10.1167/iovs.08-2129] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To determine the localization of JAM-C in human RPE and characterize its functions. METHODS Immunofluorescence, Western blot, and PCR was used to identify the localization and expression of JAM-C, ZO-1, N-cadherin, and ezrin in cultures of human fetal RPE (hfRPE) with or without si-RNA mediated JAM-C knockdown and in adult native RPE wholemounts. A transepithelial migration assay was used to study the migration of leukocytes through the hfRPE monolayer. RESULTS JAM-C localized at the tight junctions of cultured hfRPE cells and adult native RPE. During initial junction formation JAM-C was recruited to the primordial cell-cell contacts and after JAM-C knockdown, the organization of N-cadherin and ZO-1 at those contacts was disrupted. JAM-C knockdown caused a delay in the hfRPE cell polarization, as shown by reduced apical staining of ezrin. JAM-C inhibition significantly decreased the chemokine-induced transmigration of granulocytes but not monocytes through the hfRPE monolayer. CONCLUSIONS JAM-C localizes specifically in the tight junctions of hfRPE and adult native RPE. It is important for tight junction formation in hfRPE, possibly by regulating the recruitment of N-cadherin and ZO-1 at the cell-cell contacts, and has a role in the polarization of hfRPE cells. Finally, JAM-C promotes the basal-to-apical transmigration of granulocytes but not monocytes through the hfRPE monolayer.
Collapse
Affiliation(s)
- Matina Economopoulou
- Section for Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-2510, USA
| | | | | | | | | | | |
Collapse
|
37
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
38
|
Downregulation of hepatocyte nuclear factor-4alpha and its role in regulation of gene expression by TGF-beta in mammary epithelial cells. Exp Cell Res 2008; 314:2131-40. [PMID: 18433744 DOI: 10.1016/j.yexcr.2008.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/15/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022]
Abstract
We found that a specific isoform of hepatocyte nuclear factor 4alpha (HNF-4alpha), HNF-4alpha8, was expressed in mouse mammary epithelial NMuMG cells, and that its expression was repressed by TGF-beta. The repression was interfered by dominant negative forms of activin receptor-like kinase 5 (ALK5) and Smad3, and sensitive to cycloheximide, suggesting the involvement of additional protein(s) as well as ALK5 and Smad3 in the repression. Further study showed that high mobility group A2 (HMGA2), which is reported to be directly upregulated by Smads, repressed HNF-4alpha8 expression. Therefore, it is likely that HMGA2 mediates the downregulation of HNF-4alpha8 downstream of ALK5 and Smads To determine the significance of the downregulation of HNF-4alpha8 in TGF-beta signaling, we performed DNA microarray analysis and extracted a subgroup of TGF-beta1-regulated genes, including tenascin C and tissue inhibitor of metalloproteinase 3 (TIMP-3), whose regulation by TGF-beta1 was attenuated by forced expression of HNF-4alpha8. HMGA2 has recently emerged as a transcriptional organizer of TGF-beta signaling, regulating several key factors involved in epithelial-mesenchymal transition (EMT). In this study, we identified an isoform of HNF-4alpha as a new target downstream of HMGA2 and assigned a new role to HNF-4alpha in the TGF-beta signaling/transcriptional cascade driven by ALK5/Smad/HMGA2 and associated with the malignant transformation of cells.
Collapse
|
39
|
Zhao L, Yaoita E, Nameta M, Zhang Y, Cuellar LM, Fujinaka H, Xu B, Yoshida Y, Hatakeyama K, Yamamoto T. Claudin-6 localized in tight junctions of rat podocytes. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1856-62. [PMID: 18367650 DOI: 10.1152/ajpregu.00862.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tight junctions rarely exist in podocytes of the normal renal glomerulus, whereas they are the main intercellular junctions of podocytes in nephrosis and in the early stage of development. Claudins have been identified as tight junction-specific integral membrane proteins. Those of podocytes, however, remain to be elucidated. In the present study, we investigated the expression and localization of claudin-6 in the rat kidney, especially in podocytes. Western blot analysis and RT-PCR revealed that the neonatal kidney expressed much higher levels of claudin-6 than the adult kidney. Immunofluorescence microscopy showed intense claudin-6 staining in most of the tubules and glomeruli in neonates. The staining in tubules declined distinctly in adults, whereas staining in glomeruli was well preserved during development. Claudin-6 in glomeruli was distributed along the glomerular capillary wall and colocalized with zonula occludens-1. The staining became conspicuous after kidney perfusion with protamine sulfate (PS) to increase tight junctions in podocytes. Immunoelectron microscopy showed that immunogold particles for claudin-6 were accumulated at close cell-cell contact sites of podocytes in PS-perfused kidneys, whereas a very limited number of immunogold particles were detected, mainly on the basal cell membrane and occasionally at the slit diaphragm and close cell-cell contact sites in normal control kidneys. In puromycin aminonucleoside nephrosis, immunogold particles were also found mainly at cell-contact sites of podocytes. These findings indicate that claudin-6 is a transmembrane protein of tight junctions in podocytes during development and under pathological conditions.
Collapse
Affiliation(s)
- Linning Zhao
- Department of Structural Pathology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 2008; 19:1912-21. [PMID: 18287530 DOI: 10.1091/mbc.e07-09-0973] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ca(2+) is absorbed across intestinal epithelial monolayers via transcellular and paracellular pathways, and an active form of vitamin D(3), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], is known to promote intestinal Ca(2+) absorption. However, the molecules driving the paracellular Ca(2+) absorption and its vitamin D dependency remain obscure. Because the tight junction proteins claudins are suggested to form paracellular channels for selective ions between neighboring cells, we hypothesized that specific intestinal claudins might facilitate paracellular Ca(2+) transport and that expression of these claudins could be induced by 1alpha,25(OH)(2)D(3). Herein, we show, by using RNA interference and overexpression strategies, that claudin-2 and claudin-12 contribute to Ca(2+) absorption in intestinal epithelial cells. We also provide evidence showing that expression of claudins-2 and -12 is up-regulated in enterocytes in vitro and in vivo by 1alpha,25(OH)(2)D(3) through the vitamin D receptor. These findings strongly suggest that claudin-2- and/or claudin-12-based tight junctions form paracellular Ca(2+) channels in intestinal epithelia, and they highlight a novel mechanism behind vitamin D-dependent calcium homeostasis.
Collapse
Affiliation(s)
- Hiroki Fujita
- Departments of Pathology and Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lussier CR, Babeu JP, Auclair BA, Perreault N, Boudreau F. Hepatocyte nuclear factor-4alpha promotes differentiation of intestinal epithelial cells in a coculture system. Am J Physiol Gastrointest Liver Physiol 2008; 294:G418-28. [PMID: 18032476 DOI: 10.1152/ajpgi.00418.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Normal cellular models able to efficiently recapitulate intestinal epithelial cell differentiation in culture are not yet available. The aim of this work was to establish and genetically characterize a mesenchymal-epithelial coculture system to identify transcriptional regulators involved in this process. The deposition of rat intestinal epithelial cells on human intestinal mesenchymal cells led to the formation of clustered structures that expanded shortly after seeding. These structures were composed of polarized epithelial cells with brush borders and cell junction complexes. A rat GeneChip statistical analysis performed at different time points during this process identified hepatocyte nuclear factor-4alpha (HNF-4alpha) and hepatocyte nuclear factor-1alpha (HNF-1alpha) as being induced coincidently with the apparition of polarized epithelial structures. Stable introduction of HNF-4alpha in undifferentiated epithelial cells alone led to the rapid induction of HNF-1alpha and several intestinal-specific markers and metabolism-related genes for which mRNA was identified to be upregulated during epithelial differentiation. HNF-4alpha was capable to transactivate the calbindin 3 gene promoter, a process that was synergistically increased in the presence of HNF-1alpha. When HNF-4alpha-expressing cells were plated on mesenchymal cells, an epithelial monolayer formed rapidly with the apparition of dome structures that are characteristics of vectorial ion transport. Forced expression of HNF-1alpha alone did not result in dome structures formation. In sum, this novel coculture system functionally identified for the first time HNF-4alpha as an important modulator of intestinal epithelial differentiation and offers an innovative opportunity to investigate molecular mechanisms involved in this process.
Collapse
Affiliation(s)
- Carine R Lussier
- Canadian Institute of Health Research Team on Digestive Epithelium, Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | | | |
Collapse
|
42
|
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:588-600. [PMID: 17916321 DOI: 10.1016/j.bbamem.2007.08.017] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/09/2007] [Accepted: 08/16/2007] [Indexed: 12/13/2022]
Abstract
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | |
Collapse
|
43
|
Pascussi JM, Robert A, Moreau A, Ramos J, Bioulac-Sage P, Navarro F, Blanc P, Assenat E, Maurel P, Vilarem MJ. Differential regulation of constitutive androstane receptor expression by hepatocyte nuclear factor4alpha isoforms. Hepatology 2007; 45:1146-53. [PMID: 17464991 DOI: 10.1002/hep.21592] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Constitutive androstane receptor (CAR; NR1I3) controls the metabolism and elimination of endogenous and exogenous toxic compounds by up-regulating a battery of genes. In this work, we analyzed the expression of human CAR (hCAR) in normal liver during development and in hepatocellular carcinoma (HCC) and investigated the effect of hepatocyte nuclear factor 4alpha isoforms (HNF4alpha1 and HNF4alpha7) on the hCAR gene promoter. By performing functional analysis of hCAR 5'-deletions including mutants, chromatin immunoprecipitation in human hepatocytes, electromobility shift and cotransfection assays, we identified a functional and species-conserved HNF4alpha response element (DR1: ccAGGCCTtTGCCCTga) at nucleotide -144. Both HNF4alpha isoforms bind to this element with similar affinity. However, HNF4alpha1 strongly enhanced hCAR promoter activity whereas HNF4alpha7 was a poor activator and acted as a repressor of HNF4alpha1-mediated transactivation of the hCAR promoter. PGC1alpha stimulated both HNF4alpha1-mediated and HNF4alpha7-mediated hCAR transactivation to the same extent, whereas SRC1 exhibited a marked specificity for HNF4alpha1. Transduction of human hepatocytes by HNF4alpha7-expressing lentivirus confirmed this finding. In addition, we observed a positive correlation between CAR and HNF4alpha1 mRNA levels in human liver samples during development, and an inverse correlation between CAR and HNF4alpha7 mRNA levels in HCC. These observations suggest that HNF4alpha1 positively regulates hCAR expression in normal developing and adult livers, whereas HNF4alpha7 represses hCAR gene expression in HCC.
Collapse
|
44
|
Chiba H, Sakai N, Murata M, Osanai M, Ninomiya T, Kojima T, Sawada N. The nuclear receptor hepatocyte nuclear factor 4alpha acts as a morphogen to induce the formation of microvilli. ACTA ACUST UNITED AC 2007; 175:971-80. [PMID: 17178913 PMCID: PMC2064706 DOI: 10.1083/jcb.200608012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microvilli are actin-based organelles found on apical plasma membranes that are involved in nutrient uptake and signal transduction. Numerous components, including ezrin/radixin/moesin (ERM) proteins, have been identified that link filamentous actins to transmembrane proteins, but the signals driving microvillus biogenesis are not known. In this study, we show that the conditional and/or ectopic expression of a nuclear receptor, hepatocyte nuclear factor 4α (HNF4α), triggers microvillus morphogenesis. We also demonstrate that HNF4α expression induces ERM-binding phosphoprotein 50 (EBP50) expression and that attenuation of EBP50 using RNA interference inhibits microvillus development. We conclude that HNF4α acts as a morphogen to trigger microvillus formation.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sakai N, Chiba H, Fujita H, Akashi Y, Osanai M, Kojima T, Sawada N. Expression patterns of claudin family of tight-junction proteins in the mouse prostate. Histochem Cell Biol 2007; 127:457-62. [PMID: 17260152 DOI: 10.1007/s00418-007-0269-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2007] [Indexed: 12/12/2022]
Abstract
Claudins are the transmembrane proteins forming the backbone of tight junctions, and consist of over 20 members of a gene family. Claudins are expressed in a tissue- and cell-type specific fashion, and changes in their abundance and/or distribution are proposed to play important roles in the pathophysiology of numerous disorders. In the prostate, claudin-1, -3, -4 and -7 transcripts are known to be expressed, but it is unknown regarding mRNA expression of other claudins or concerning expression and localization of claudin proteins in this organ. We herein show, by RT-PCR and Western blotting analyses, that not only these four claudins but also claudin-5, -8 and -10 are expressed in the normal mouse prostate. Claudin-3, -4, -5, -8 and -10 were primarily localized at the apicalmost sites of lateral membranes of luminal epithelial cells in the prostate gland, whereas claudin-1 and -7 were distributed along the basolateral membranes of the epithelium. These findings provide basic information for elucidating the significance of claudins in prostate diseases, including prostate cancers.
Collapse
Affiliation(s)
- Naoyuki Sakai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The liver is the central organ for metabolism and has strong regenerative capability. Although the liver has been studied mostly biochemically and histopathologically, genetic studies using gene-targeting technology have identified a number of cytokines, intracellular signaling molecules, and transcription factors involved in liver development and regeneration. In addition, various in vitro systems such as fetal liver explant culture and primary culture of fetal liver cells have been established, and the combination of genetic and in vitro studies has accelerated investigation of liver development. Identification of the cell-surface molecules of liver progenitors has made it possible to identify and isolate liver progenitors, making the liver a unique model for stem cell biology. In this review, we summarize progresses in understanding liver development and regeneration.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Anatomy, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
47
|
Cicchini C, Filippini D, Coen S, Marchetti A, Cavallari C, Laudadio I, Spagnoli FM, Alonzi T, Tripodi M. Snail controls differentiation of hepatocytes by repressing HNF4alpha expression. J Cell Physiol 2006; 209:230-8. [PMID: 16826572 DOI: 10.1002/jcp.20730] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a coordinated process, occurring both during morphogenesis and tumor progression, that allows epithelial cells to dissociate from initial contacts and migrate to secondary sites. The transcriptional repressors of the Snail family induce EMT in different epithelial cell lines and their expression is strictly correlated with EMT during the development and progression of carcinomas. We have previously shown that EMT in hepatocytes correlates with the downregulation of hepatic differentiation key factors HNFs (hepatocyte nuclear factors), and in particular of HNF4alpha. Here, we demonstrate that Snail overexpression is sufficient (i) to induce EMT in hepatocytes with conversion of morphology, downregulation of several epithelial adhesion molecules, reduction of proliferation and induction of matrix metalloproteinase 2 expression and, (ii) most relevantly, to repress the transcription of the HNF4alpha gene through a direct binding to its promoter. These finding demonstrate that Snail is at the crossroads of the regulation of EMT in hepatocytes by a dual control of epithelial morphogenesis and differentiation.
Collapse
Affiliation(s)
- Carla Cicchini
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Halász J, Holczbauer A, Páska C, Kovács M, Benyó G, Verebély T, Schaff Z, Kiss A. Claudin-1 and claudin-2 differentiate fetal and embryonal components in human hepatoblastoma. Hum Pathol 2006; 37:555-61. [PMID: 16647953 DOI: 10.1016/j.humpath.2005.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/19/2005] [Accepted: 12/21/2005] [Indexed: 11/23/2022]
Abstract
Claudins (CLDNs), a family of transmembrane proteins, are major constituents of tight junctions (TJs). They have been shown to be differentially regulated in malignant tumors and play a role in carcinogenesis and progression. We aimed to explain the molecular mechanism underlying the main epithelial components of hepatoblastomas (HBs) based on the composition of TJs. Fourteen formalin-fixed, paraffin-embedded surgical resection specimens were analyzed by immunohistochemistry for CLDN-1, -2, -3, -4, -7; proliferating cell nuclear antigen (PCNA); Ki-67; beta-catenin; cytokeratin-7 (CK-7); and hepatocyte-specific antigen; messenger RNA was isolated for real-time reverse transcriptase polymerase chain reaction analysis of the CLDNs from dissected fetal and embryonal cell types. Significantly increased protein and messenger RNA expression of CLDN-1 and -2 was detected in the fetal compared with the embryonal component. Both cell types displayed negative or weak immunostainings for CLDN-3, -4, and -7. Hepatocyte-specific antigen was dominantly expressed in the fetal component. PCNA and Ki-67 labeling indices were significantly higher in embryonal compared with fetal cells. beta-catenin cytoplasmic/nuclear immunoreaction was frequent, although not showing significant differences between fetal and embryonal cells. Mutational analysis of beta-catenin detected mutation in two cases. Our results suggest that increased expression of CLDN-1 and -2 characterizes the more differentiated fetal component in HBs and is a reliable marker for differentiating fetal and embryonal cell types in HBs. The results proved that the embryonal and fetal components of HBs differ in such important feature as the protein composition of TJs. The expression of CLDN-1 and -2 is inversely correlated with cell proliferation. The more aggressive, rapidly proliferating embryonal phenotype is associated with the decrease/loss of CLDN-1 and -2. However, there are no data indicating association with the nuclear translocation of beta-catenin.
Collapse
Affiliation(s)
- Judit Halász
- Second Department of Pathology, Semmelweis University, H-1091 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Usami Y, Chiba H, Nakayama F, Ueda J, Matsuda Y, Sawada N, Komori T, Ito A, Yokozaki H. Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus. Hum Pathol 2006; 37:569-77. [PMID: 16647955 DOI: 10.1016/j.humpath.2005.12.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/17/2005] [Accepted: 12/30/2005] [Indexed: 12/11/2022]
Abstract
Claudins are transmembrane proteins that seal tight junctions, bind with peripheral protein zonula occludens (ZO)-1, and are known to play an important role in several normal tissues and cancers. However, the role of claudin-1 and claudin-7 expressions in esophageal squamous cell carcinoma remains to be clarified. In the present study, we confirmed the expressions of claudin-1, claudin-7, and ZO-1 in the prickle cell layer of the normal human esophageal squamous epithelium. The expressions of claudin-1 and claudin-7 at the invasive front of the esophageal squamous cell carcinoma were analyzed immunohistochemically to clarify their role in tumor progression. Reduced expression of claudin-7 at the invasive front of the esophageal cancer was significantly associated with the depth of invasion (P = .004), stage (P = .038), lymphatic vessel invasion (P = .001), and lymph node metastasis (P = .014). In contrast, significant association was not detected between claudin-1 expression and clinicopathologic factors except for histologic differentiation of the tumor (P = .0029). Comparison of claudin-7 expression at the invasive front of the primary tumor and its corresponding metastatic lymph nodes revealed significant reduction in claudin-7 expression in the metastatic lymph nodes (P = .007). These results suggest that the reduced expression of claudin-7 at the invasive front of esophageal squamous cell carcinoma may lead to tumor progression and subsequent metastatic events. Thus, claudin-7 can be a novel marker for the prediction of lymph node metastasis.
Collapse
Affiliation(s)
- Yu Usami
- Division of Surgical Pathology, Department of Biomedical Informatics, Kobe University, Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Battle MA, Konopka G, Parviz F, Gaggl AL, Yang C, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci U S A 2006; 103:8419-24. [PMID: 16714383 PMCID: PMC1482507 DOI: 10.1073/pnas.0600246103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial formation is a central facet of organogenesis that relies on intercellular junction assembly to create functionally distinct apical and basal cell surfaces. How this process is regulated during embryonic development remains obscure. Previous studies using conditional knockout mice have shown that loss of hepatocyte nuclear factor 4alpha (HNF4alpha) blocks the epithelial transformation of the fetal liver, suggesting that HNF4alpha is a central regulator of epithelial morphogenesis. Although HNF4alpha-null hepatocytes do not express E-cadherin (also called CDH1), we show here that E-cadherin is dispensable for liver development, implying that HNF4alpha regulates additional aspects of epithelial formation. Microarray and molecular analyses reveal that HNF4alpha regulates the developmental expression of a myriad of proteins required for cell junction assembly and adhesion. Our findings define a fundamental mechanism through which generation of tissue epithelia during development is coordinated with the onset of organ function.
Collapse
Affiliation(s)
- Michele A. Battle
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Genevieve Konopka
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Fereshteh Parviz
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Alexandra Lerch Gaggl
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Chuhu Yang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521; and
- WiCell Research Institute, Madison, WI 53707
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521; and
| | - Stephen A. Duncan
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|