1
|
Kang NW, Jang K, Song E, Han U, Seo YA, Chen F, Wungcharoen T, Heilshorn SC, Myung D. In Situ-Forming, Bioorthogonally Cross-linked, Nanocluster-Reinforced Hydrogel for the Regeneration of Corneal Defects. ACS NANO 2024; 18:21925-21938. [PMID: 39106436 DOI: 10.1021/acsnano.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Corneal defects can lead to stromal scarring and vision loss, which is currently only treatable with a cadaveric corneal transplant. Although in situ-forming hydrogels have been shown to foster regeneration of the cornea in the setting of stromal defects, the cross-linking, biomechanical, and compositional parameters that optimize healing have not yet been established. This, Corneal defects are also almost universally inflamed, and their rapid closure without fibrosis are critical to preserving vision. Here, an in situ forming, bioorthogonally cross-linked, nanocluster (NC)-reinforced collagen and hyaluronic acid hydrogel (NCColHA hydrogel) with enhanced structural integrity and both pro-regenerative and anti-inflammatory effects was developed and tested within a corneal defect model in vivo. The NCs serve as bioorthogonal nanocross-linkers, providing higher cross-linking density than polymer-based alternatives. The NCs also serve as delivery vehicles for prednisolone (PRD) and the hepatocyte growth factor (HGF). NCColHA hydrogels rapidly gel within a few minutes upon administration and exhibit robust rheological properties, excellent transparency, and negligible swelling/deswelling behavior. The hydrogel's biocompatibility and capacity to support cell growth were assessed using primary human corneal epithelial cells. Re-epithelialization on the NCColHA hydrogel was clearly observed in rabbit eyes, both ex vivo and in vivo, with expression of normal epithelial biomarkers, including CD44, CK12, CK14, α-SMA, Tuj-1, and ZO-1, and stratified, multilayered morphology. The applied hydrogel maintained its structural integrity for at least 14 days and remodeled into a transparent stroma by 56 days.
Collapse
Affiliation(s)
- Nae-Won Kang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Euisun Song
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Uiyoung Han
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Youngyoon Amy Seo
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Fang Chen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Thitima Wungcharoen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California 94304, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- VA Palo Alto HealthCare System, Palo Alto, California 94304, United States
| |
Collapse
|
2
|
Esser H, Kilpatrick AM, Man TY, Aird R, Rodrigo-Torres D, Buch ML, Boulter L, Walmsley S, Oniscu GC, Schneeberger S, Ferreira-Gonzalez S, Forbes SJ. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J Hepatol 2024:S0168-8278(24)02302-X. [PMID: 38879173 DOI: 10.1016/j.jhep.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS Biliary complications are a major cause of morbidity and mortality in liver transplantation. Up to 25% of patients that develop biliary complications require additional surgical procedures, re-transplantation or die in the absence of a suitable regraft. Here, we investigate the role of the primary cilium, a highly specialised sensory organelle, in biliary injury leading to post-transplant biliary complications. METHODS Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (n = 7) in comparison with recipients without biliary complications (n = 12). To study the biological effects of the primary cilia during transplantation, we generated murine models that recapitulate liver procurement and cold storage, and assessed the elimination of the primary cilia in biliary epithelial cells in the K19CreERTKif3afl/fl mouse model. To explore the molecular mechanisms responsible for the observed phenotypes we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Finally, we used pharmacological and genetic approaches to target cellular senescence and the primary cilia, both in mouse models and discarded human donor livers. RESULTS Prolonged ischemic periods before transplantation result in ciliary shortening and cellular senescence, an irreversible cell cycle arrest that blocks regeneration. Our results indicate that primary cilia damage results in biliary injury and a loss of regenerative potential. Senescence negatively impacts primary cilia structure and triggers a negative feedback loop that further impairs regeneration. Finally, we explore how targeted interventions for cellular senescence and/or the stabilisation of the primary cilia improve biliary regeneration following ischemic injury. CONCLUSIONS Primary cilia play an essential role in biliary regeneration and we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve clinical outcomes in liver transplantation. IMPACT AND IMPLICATIONS Up to 25% of liver transplants result in biliary complications, leading to additional surgery, retransplants, or death. We found that the incidence of biliary complications is increased by damage to the primary cilium, an antenna that protrudes from the cell and is key to regeneration. Here, we show that treatments that preserve the primary cilia during the transplant process provide a potential solution to reduce the rates of biliary complications.
Collapse
Affiliation(s)
- Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Alastair Morris Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Madita Lina Buch
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh; Edinburgh EH4 2XU, UK
| | - Sarah Walmsley
- Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gabriel Corneliu Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh; 51 Little France Crescent, Edinburgh EH16 4SA, UK; Division of Transplantation, CLINTEC, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, OrganLife Laboratory, Centre of Operative Medicine, Innsbruck Medical University. Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK; Centre for Inflammation Research (CIR), University of Edinburgh. The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Stuart John Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
3
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
4
|
Xu R, Yang L, Zhang Z, Liao Y, Yu Y, Zhou D, Li J, Guan H, Xiao W. Cancer-associated fibroblast related gene signature in Helicobacter pylori-based subtypes of gastric carcinoma for prognosis and tumor microenvironment estimation in silico analysis. Front Med (Lausanne) 2023; 10:1079470. [PMID: 36744128 PMCID: PMC9889637 DOI: 10.3389/fmed.2023.1079470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Gastric cancer (GC) remains the major constituent of cancer-related deaths and a global public health challenge with a high incidence rate. Helicobacter pylori (HP) plays an essential role in promoting the occurrence and progression of GC. Cancer-associated fibroblasts (CAFs) are regarded as a significant component in the tumor microenvironment (TME), which is related to the metastasis of GC. However, the regulation mechanisms of CAFs in HP-related GC are not elucidated thoroughly. Methods HP-related genes (HRGs) were downloaded from the GSE84437 and TCGA-GC databases. The two databases were combined into one cohort for training. Furthermore, the consensus unsupervised clustering analysis was obtained to sort the training cohort into different groups for the identification of differential expression genes (DEGs). Weighted correlation network analysis (WGCNA) was performed to verify the correlation between the DEGs and cancer-associated fibroblasts which were key components in the tumor microenvironment. The least absolute shrinkage and selection operator (LASSO) was executed to find cancer-associated fibroblast-related differential expression genes (CDEGs) for the further establishment of a prognostic model. Results and discussion In this study, 52 HP-related genes (HRGs) were screened out based on the GSE84437 and TCGA-GC databases. A total of 804 GC samples were analyzed, respectively, and clustered into two HP-related subtypes. The DEGs identified from the two subtypes were proved to have a relationship with TME. After WGCNA and LASSO, the CAFs-related module was identified, from which 21 gene signatures were confirmed. Then, a CDEGs-Score was constructed and its prediction efficiency in GC patients was conducted for validation. Overall, a highly precise nomogram was established for enhancing the adaptability of the CDEGs-Score. Furthermore, our findings revealed the applicability of CDEGs-Score in the sensitivity of chemotherapeutic drugs. In general, our research provided brand-new possibilities for comprehending HP-related GC, evaluating survival, and more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Ruofan Xu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Le Yang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhewen Zhang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuxuan Liao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao Yu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dawei Zhou
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiahao Li
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoyu Guan
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xiao
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Wei Xiao,
| |
Collapse
|
5
|
Lamtha T, Tabtimmai L, Songtawee N, Tansakul N, Choowongkomon K. Structural analysis of cannabinoids against EGFR-TK leads a novel target against EGFR-driven cell lines. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100132. [PMID: 36568260 PMCID: PMC9780064 DOI: 10.1016/j.crphar.2022.100132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 12/27/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is a member of the ErbB family of proteins and are involved in downstream signal transduction, plays prominent roles in cell growth regulation, proliferation, and the differentiation of many cell types. They are correlated with the stage and severity of cancer. Therefore, EGFRs are targeted proteins for the design of new drugs to treat cancers that overexpress these proteins. Currently, several bioactive natural extracts are being studied for therapeutic purposes. Cannabis has been reported in many studies to have beneficial medicinal effects, such as anti-inflammatory, analgesic, antibacterial, and anti-inflammatory effects, and antitumor activity. However, it is unclear whether cannabinoids reduce intracellular signaling by inhibiting tyrosine kinase phosphorylation. In this study, cannabinoids (CBD, CBG, and CBN) were simulated for binding to the EGFR-intracellular domain to evaluate the binding energy and binding mode based on molecular docking simulation. The results showed that the binding site was almost always located at the kinase active site. In addition, the compounds were tested for binding affinity and demonstrated their ability to inhibit kinase enzymes. Furthermore, the compounds potently inhibited cellular survival and apoptosis induction in either of the EGFR-overexpressing cell lines.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Spectroscopic and Sensing Devices Research Group (SSDRG), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Natthasit Tansakul
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Laboratory of Protein Engineering and Bioinformatics (PROTEB), Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand,Corresponding author.
| |
Collapse
|
6
|
The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death Dis 2022; 13:513. [PMID: 35641491 PMCID: PMC9156734 DOI: 10.1038/s41419-022-04963-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.
Collapse
|
7
|
Krzysiek-Maczka G, Targosz A, Wrobel T, Paw M, Szczyrk U, Opila J, Strzalka M, Wierdak M, Major P, Brzozowski T, Czyz J, Ptak-Belowska A. Time-extended exposure of gastric epithelial cells to secretome of Helicobacter pylori-activated fibroblasts induces reprogramming of gastric epithelium towards pre-cancerogenic and pro-invasive phenotype. Am J Cancer Res 2022; 12:1337-1371. [PMID: 35411238 PMCID: PMC8984895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023] Open
Abstract
Despite of the improvement in gastric cancer (GC) therapies patients still suffer from cancer recurrence and metastasis. Recently, the high ratio of these events combined with increased chemoresistance has been related to the asymptomatic Helicobacter pylori (Hp) infections. The limited efficiency of GC treatment strategies is also increasingly attributed to the activity of tumor stroma with the key role of cancer-associated fibroblasts (CAFs). In order to investigate the influence of Hp infection within stromal gastric tissue on cancer initiation and progression, we have exposed normal gastric epithelial cells to long-term influence of Hp-activated gastric fibroblast secretome. We have referred obtained results to this secretome influence on cancer cell lines. The invasive properties of cells were checked by time-lapse video microscopy and basement membrane assays. The expression of invasion-related factors was checked by RT-PCR, Western Blot, immunofluorescence and Elisa. Hp-activated gastric fibroblast secretome induced EMT type 3-related shifts of RGM1 cell phenotype; in particular it augmented their motility, cytoskeletal plasticity and invasiveness. These effects were accompanied by Snail1/Twist activation, the up-regulation of cytokeratin19/FAP/TNC/Integrin-β1 and MMPs, and by the induction of cMethigh/pEGFRhigh phenotype. Mechanistic studies suggest that this microevolution next to TGFβ relies also on c-Met/EGFR signaling interplay and engages HGF-Integrin-Ras-dependent Twist activation leading to MMP and TNC upregulation with subsequent positive auto- and paracrine feedback loops intensifying this process. Similar shifts were detected in cancer cells exposed to this secretome. Collectively, we show that the secretome of Hp-infected fibroblasts induces reprogramming/microevolution of epithelial and cancer cells towards type 3 EMT-related invasive phenotype in a manner reciprocally reliant next to TGFβ on cMet/Integrin-β1/p-EGFR-dependent axis. Apparently, the phenotypical plasticity of Hp-activated fibroblast reprogrammed gastric epithelial cells determines their susceptibility to the pro-invasive signaling, which results in re-organization of gastric niches and provides the cues for GC promotion/progression.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Tomasz Wrobel
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Milena Paw
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Janusz Opila
- Department of Applied Computer Sciences, The Faculty of Management, AGH University of Science and Technology30-059 Cracow, Poland
| | - Malgorzata Strzalka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Mateusz Wierdak
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Piotr Major
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Jarosław Czyz
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| |
Collapse
|
8
|
Navrazhina K, Garcet S, Frew JW, Zheng X, Coats I, Guttman-Yassky E, Krueger JG. The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris. J Am Acad Dermatol 2022; 86:322-330. [PMID: 34339761 PMCID: PMC8800946 DOI: 10.1016/j.jaad.2021.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 07/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Although hidradenitis suppurativa (HS) shares some transcriptomic and cellular infiltrate features with psoriasis, their skin proteome remains unknown. OBJECTIVE To define and compare inflammatory protein biomarkers of HS and psoriasis skin. METHODS We assessed 92 inflammatory biomarkers in HS (n = 13), psoriasis (n = 11), and control skin (n = 11) using Olink high-throughput proteomics. We also correlated HS skin and blood biomarkers using proteomics and RNA sequencing. RESULTS We identified 57 differentially expressed proteins (DEPs) in lesional psoriasis and 64 DEPs in lesional HS skin, compared to healthy controls. Both HS and psoriasis lesional skin demonstrated a significant upregulation of T helper 1 and T helper 17 proteins. Healthy-appearing perilesional HS skin had 63 DEPs compared to healthy controls. Nonlesional HS and psoriasis skin had 24 and 7 DEPs, respectively, compared to healthy controls. Tumor necrosis factor and 8 other proteins were significantly correlated with clinical severity in perilesional HS skin (2 cm from a nodule). LIMITATIONS Inclusion of only moderate-to-severe patients and the cohort size. CONCLUSION HS has a greater inflammatory profile and is more diffusely distributed compared with psoriasis. Proteins correlated with disease severity are potential disease mediators. Perilesional skin is comparably inflamed to lesional skin, suggesting the need to treat beyond skin nodules.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - John W Frew
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Israel Coats
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York.
| |
Collapse
|
9
|
Ates KM, Estes AJ, Liu Y. Potential underlying genetic associations between keratoconus and diabetes mellitus. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2021; 1:100005. [PMID: 34746916 PMCID: PMC8570550 DOI: 10.1016/j.aopr.2021.100005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022]
Abstract
Background Keratoconus (KC) is the most common ectatic corneal disease, characterized by significantly localized thinning of the corneal stroma. Genetic, environmental, hormonal, and metabolic factors contribute to the pathogenesis of KC. Additionally, multiple comorbidities, such as diabetes mellitus, may affect the risk of KC. Main Body Patients with diabetes mellitus (DM) have been reported to have lower risk of developing KC by way of increased endogenous collagen crosslinking in response to chronic hyperglycemia. However, this remains a debated topic as other studies have suggested either a positive association or no association between DM and KC. To gain further insight into the underlying genetic components of these two diseases, we reviewed candidate genes associated with KC and central corneal thickness in the literature. We then explored how these genes may be regulated similarly or differentially under hyperglycemic conditions and the role they play in the systemic complications associated with DM. Conclusion Our comprehensive review of potential genetic factors underlying KC and DM provides a direction for future studies to further determine the genetic etiology of KC and how it is influenced by systemic diseases such as diabetes.
Collapse
Affiliation(s)
- Kristin M. Ates
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
10
|
Baur F, Nietzer SL, Kunz M, Saal F, Jeromin J, Matschos S, Linnebacher M, Walles H, Dandekar T, Dandekar G. Connecting Cancer Pathways to Tumor Engines: A Stratification Tool for Colorectal Cancer Combining Human In Vitro Tissue Models with Boolean In Silico Models. Cancers (Basel) 2019; 12:cancers12010028. [PMID: 31861874 PMCID: PMC7017315 DOI: 10.3390/cancers12010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is-in contrast to melanoma-not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.
Collapse
Affiliation(s)
- Florentin Baur
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
| | - Sarah L. Nietzer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Fabian Saal
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Julian Jeromin
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
| | - Stephanie Matschos
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany; (S.M.); (M.L.)
| | - Heike Walles
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; (F.S.); (J.J.)
- EMBL Heidelberg, Structural and Computational Biology, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Correspondence: (T.D.); (G.D.); Tel.: +49-931-3184551 (T.D.); +49-931-3182597 (G.D.)
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (F.B.); (S.L.N.); (H.W.)
- Fraunhofer Institute for Silicate Research (ISC), Translational Center Regenerative Therapies, Röntgenring 11, 97070 Würzburg, Germany
- Correspondence: (T.D.); (G.D.); Tel.: +49-931-3184551 (T.D.); +49-931-3182597 (G.D.)
| |
Collapse
|
11
|
Madadi-Sanjani O, Kuebler JF, Dippel S, Gigina A, Falk CS, Vieten G, Petersen C, Klemann C. Hepatocyte growth factor levels in livers and serum at Kasai-portoenterostomy are not predictive of clinical outcome in infants with biliary atresia. Growth Factors 2019; 37:68-75. [PMID: 31185750 DOI: 10.1080/08977194.2019.1626379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biliary atresia (BA) is characterized by progressive destruction of the biliary system leading to liver fibrosis and deterioration of liver function. Serum hepatocyte growth factor (HGF) has been shown to be increased in cirrhotic diseases including BA. The aim of this study was to investigate the prognostic value of HGF levels in sera and liver tissue for the further disease course. A total of 49 serum and liver samples from infants with BA were acquired during Kasai-portoenterostomy (KPE) and analyzed by multiplex immunoassay including HGF, as marker of liver regeneration, and Interleukin 6 (IL-6) as a marker of inflammation. Both mediators showed no correlation with the outcome defined as favorable (survival with native liver (SNL)) or, in contrast, rapid deterioration of liver function requiring transplantation. Our data suggest that the degree of liver regeneration indicated by high levels of HGF within the liver is a dismissible factor in the post-KPE disease course.
Collapse
Affiliation(s)
- Omid Madadi-Sanjani
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Joachim F Kuebler
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Stephanie Dippel
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Anna Gigina
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Christine S Falk
- b Institute of Transplant Immunology, Hannover Medical School , Hannover , Germany
| | - Gertrud Vieten
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Claus Petersen
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
| | - Christian Klemann
- a Department of Pediatric Surgery, Hannover Medical School , Hannover , Germany
- c Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
12
|
Kowtharapu BS, Prakasam RK, Murín R, Koczan D, Stahnke T, Wree A, Jünemann AGM, Stachs O. Role of Bone Morphogenetic Protein 7 (BMP7) in the Modulation of Corneal Stromal and Epithelial Cell Functions. Int J Mol Sci 2018; 19:ijms19051415. [PMID: 29747422 PMCID: PMC5983782 DOI: 10.3390/ijms19051415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
In the cornea, healing of the wounded avascular surface is an intricate process comprising the involvement of epithelial, stromal and neuronal cell interactions. These interactions result to the release of various growth factors that play prominent roles during corneal wound healing response. Bone morphogenetic proteins (BMPs) are unique multi-functional potent growth factors of the transforming growth factor-beta (TGF-β) superfamily. Treatment of corneal epithelial cells with substance P and nerve growth factor resulted to an increase in the expression of BMP7 mRNA. Since BMP7 is known to modulate the process of corneal wound healing, in this present study, we investigated the influence of exogenous rhBMP7 on human corneal epithelial cell and stromal cell (SFs) function. To obtain a high-fidelity expression profiling of activated biomarkers and pathways, transcriptome-wide gene-level expression profiling of epithelial cells in the presence of BMP7 was performed. Gene ontology analysis shows BMP7 stimulation activated TGF-β signaling and cell cycle pathways, whereas biological processes related to cell cycle, microtubule and intermediate filament cytoskeleton organization were significantly impacted in corneal epithelial cells. Scratch wound healing assay showed increased motility and migration of BMP7 treated epithelial cells. BMP7 stimulation studies show activation of MAPK cascade proteins in epithelial cells and SFs. Similarly, a difference in the expression of claudin, Zink finger E-box-binding homeobox 1 was observed along with phosphorylation levels of cofilin in epithelial cells. Stimulation of SFs with BMP7 activated them with increased expression of α-smooth muscle actin. In addition, an elevated phosphorylation of epidermal growth factor receptor following BMP7 stimulation was also observed both in corneal epithelial cells and SFs. Based on our transcriptome analysis data on epithelial cells and the results obtained in SFs, we conclude that BMP7 contributes to epithelial-to-mesenchymal transition-like responses and plays a role equivalent to TGF-β in the course of corneal wound healing.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Ruby Kala Prakasam
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Anselm G M Jünemann
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
13
|
Hichert V, Scholl C, Steffens M, Paul T, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Seufferlein T, Stingl J. Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash. Oncotarget 2018; 8:35193-35204. [PMID: 28456787 PMCID: PMC5471046 DOI: 10.18632/oncotarget.17060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/22/2017] [Indexed: 01/26/2023] Open
Abstract
Epidermal growth factor receptor overexpression in human cancer can be effectively targeted by drugs acting as specific inhibitors of the receptor, like erlotinib, gefitinib, cetuximab and panitumumab. A common adverse effect is a typical papulopustular acneiform rash, whose occurrence and severity are positively correlated with overall survival in several cancer types. We studied molecules involved in epidermal growth factor receptor signaling which are quantifiable in plasma, with the aim of identifying biomarkers for the severity of rash. With a predictive value for the rash these biomarkers may also have a prognostic value for survival and disease outcome. The concentrations of amphiregulin, hepatocyte growth factor (HGF) and calcidiol were determined by specific enzyme-linked immunosorbent assays in plasma samples from 211 patients. We observed a significant inverse correlation between the plasma concentration of HGF and overall survival in patients with an inhibitor-induced rash (p-value = 0.0075; mean overall survival low HGF: 299 days, high HGF: 240 days) but not in patients without rash. The concentration of HGF was also significantly inversely correlated with severity of rash (p-value = 0.00124). High levels of HGF lead to increased signaling via its receptor MET, which can activate numerous pathways which are normally also activated by epidermal growth factor receptor. Increased HGF/MET signaling might compensate the inhibitory effect of epidermal growth factor receptor inhibitors in skin as well as tumor cells, leading to less severe skin rash and decreased efficacy of the anti-tumor therapy, rendering the plasma concentration of HGF a candidate for predictive biomarkers.
Collapse
Affiliation(s)
- Vivien Hichert
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Michael Steffens
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| | - Tanusree Paul
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
| | - Christian Schumann
- Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Pneumology, Thoracic Oncology, Sleep and Respiratory Critical Care Medicine, Clinics Kempten-Oberallgäu, Kempten, Germany
| | - Stefan Rüdiger
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Stefan Boeck
- Department of Internal Medicine III and Comprehensive Cancer Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center, (DKFZ), Heidelberg, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Center, (DKFZ), Heidelberg, Germany
| | - Volker Kächele
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | | - Julia Stingl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany.,Centre for Translational Medicine, University Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
14
|
Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res 2018; 166:49-55. [PMID: 29024692 PMCID: PMC5831200 DOI: 10.1016/j.exer.2017.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Hepatocyte growth factor (HGF) is a glycoprotein produced by mesenchymal cells and operates as a key molecule for tissue generation and renewal. During corneal injury, HGF is primarily secreted by stromal fibroblasts and promotes epithelial wound healing in a paracrine manner. While this mesenchymal-epithelial interaction is well characterized in various organs and the cornea, the role of HGF in corneal stromal and endothelial wound healing is understudied. In addition, HGF has been shown to play an anti-fibrotic role by inhibiting myofibroblast generation and subsequent production of a disorganized extracellular matrix and tissue fibrosis. Therefore, HGF represents a potential therapeutic tool in numerous organs in which myofibroblasts are responsible for tissue scarring. Corneal fibrosis can be a devastating sequela of injury and can result in corneal opacification and retrocorneal membrane formation leading to severe vision loss. In this article, we concisely review the available literature regarding the role of HGF in corneal wound healing. We highlight the influence of HGF on cellular behaviors in each corneal layer. Additionally, we suggest the possibility that HGF may represent a therapeutic tool for interrupting dysregulated corneal repair processes to improve patient outcomes.
Collapse
Affiliation(s)
- Hidetaka Miyagi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, 7348551, Japan.
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
15
|
Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ayadi M, Bouygues A, Ouaret D, Ferrand N, Chouaib S, Thiery JP, Muchardt C, Sabbah M, Larsen AK. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget 2016; 6:18518-33. [PMID: 26041882 PMCID: PMC4621907 DOI: 10.18632/oncotarget.3934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/29/2015] [Indexed: 02/05/2023] Open
Abstract
Most solid tumors contain a subfraction of cells with stem/progenitor cell features. Stem cells are naturally chemoresistant suggesting that chronic chemotherapeutic stress may select for cells with increased “stemness”. We carried out a comprehensive molecular and functional analysis of six independently selected colorectal cancer (CRC) cell lines with acquired resistance to three different chemotherapeutic agents derived from two distinct parental cell lines. Chronic drug exposure resulted in complex alterations of stem cell markers that could be classified into three categories: 1) one cell line, HT-29/5-FU, showed increased “stemness” and WNT-signaling, 2) three cell lines showed decreased expression of stem cell markers, decreased aldehyde dehydrogenase activity, attenuated WNT-signaling and lost the capacity to form colonospheres and 3) two cell lines displayed prominent expression of ABC transporters with a heterogeneous response for stem cell markers. While WNT-signaling could be attenuated in the HT-29/5-FU cells by the WNT-signaling inhibitors ICG-001 and PKF-118, this was not accompanied by any selective growth inhibitory effect suggesting that the cytotoxic activity of these compounds is not directly linked to WNT-signaling inhibition. We conclude that classical WNT-signaling inhibitors have toxic off-target activities that need to be addressed for clinical development.
Collapse
Affiliation(s)
- Meriam Ayadi
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| | - Anaïs Bouygues
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| | - Djamila Ouaret
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| | - Nathalie Ferrand
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| | - Salem Chouaib
- Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave-Roussy, Villejuif, France
| | - Jean-Paul Thiery
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute, National University of Singapore, Singapore
| | - Christian Muchardt
- Laboratory of Epigenetic Regulation, Centre National de la Recherche Scientifique (CNRS), Institut Pasteur, Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Institut Universitaire de Cancérologie, Pierre et Marie Curie (UPMC) Sorbonne Universités, Paris, France
| |
Collapse
|
17
|
Kubo A, Hashimoto H, Takahashi N, Yamada Y. Biomarkers of skin toxicity induced by anti-epidermal growth factor receptor antibody treatment in colorectal cancer. World J Gastroenterol 2016; 22:887-894. [PMID: 26811634 PMCID: PMC4716086 DOI: 10.3748/wjg.v22.i2.887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/20/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Skin toxicity is a common symptom of anti-epidermal growth factor receptor (EGFR) antibody treatment and is also a predictive marker of its efficacy in colorectal cancer patients. However, severe skin disorders induced by such antibodies negatively impact on the quality of life of patients and decreases drug compliance during treatment. If we can predict the high-risk group susceptible to severe skin toxicity before treatment, we can undertake the early management of any arising skin disorders and formulate a more accurate prognosis for anti-EGFR antibody treatment. Previous studies have identified molecular markers of skin toxicity induced by anti-EGFR antibody, such as EGFR polymorphisms, the expression of inflammatory chemokines and serum levels of EGFR ligands. A clinical trial was undertaken involving the escalation of cetuximab doses, guided by the grade of skin toxicity observed, such as no or low-grade, in metastatic colorectal cancer (the EVEREST study). The dose escalation of cetuximab was confirmed by a safety profile and had the tendency to achieve a higher response rate in KRAS wild-type patients. A large, prospective randomized trial is now ongoing (EVEREST 2) and the results of this trial may contribute to personalized medicine in KRAS wild-type colorectal cancer patients.
Collapse
|
18
|
Expression of HGF and c-Met Proteins in Human Keratoconus Corneas. J Ophthalmol 2015; 2015:852986. [PMID: 26697215 PMCID: PMC4677219 DOI: 10.1155/2015/852986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
Keratoconus (KC) is a progressive degenerative inflammatory-related disease of the human cornea leading to decreased visual function. The pathogenesis of KC remains to be understood. Recent genetic studies indicate that gene variants of an inflammation-related molecule, hepatocyte growth factor (HGF), are associated with an increased susceptibility for developing KC. However HGF protein expression in KC has not been explored. In this initial study, we investigated late-stage KC and control corneas for the expression of HGF and its receptor mesenchymal-epithelial transition factor (c-Met/Met). KC buttons (~8 mm diameter) (n = 10) and whole control corneas (n = 6) were fixed in 10% formalin or 2% paraformaldehyde, paraffin embedded and sectioned. Sections were immunolabelled with HGF and c-Met antibodies, visualised using immunofluorescence, and examined with scanning laser confocal microscopy. Semiquantitative grading was used to compare HGF and c-Met immunostaining in KC and control corneas. Overall, KC corneas showed increased HGF and c-Met immunostaining compared to controls. KC corneal epithelium displayed heterogeneous moderate-to-strong immunoreactivity for HGF and c-Met, particularly in the basal epithelium adjacent to the cone area. Taken together with the recent genetic studies, our results further support a possible role for HGF/c-Met in the pathogenesis of KC.
Collapse
|
19
|
Ji F, Liu X, Wu Y, Fang X, Huang G. Overexpression of PI3K p110α contributes to acquired resistance to MET inhibitor, in MET-amplified SNU-5 gastric xenografts. Drug Des Devel Ther 2015; 9:5697-704. [PMID: 26543351 PMCID: PMC4622552 DOI: 10.2147/dddt.s89410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer is one of the most virulent malignant diseases and is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Targeting gastric cancers with amplified or abnormally activated MET may have therapeutic benefit based on nonclinical and emerging clinical findings. However, one of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. This study aims to understand the mechanisms of MET resistance in gastric SNU-5 xenografts which developed resistance to PHA665752, a MET inhibitor, through long-period tyrosine kinase inhibitor exposure. In the current study, we found that PI3K p110α is overexpressed in PHA665752-resistant SNU-5 xenografts. These findings showed that high PI3K p110α expression contributes to tyrosine kinase inhibitor resistance. In addition, we reported the development of a carcinogen-induced gastric cancer model that recapitulates PI3K p110α expression in human disease, which will serve as a useful model to study PI3K p110α's biology and its effectiveness as a novel biomarker and a molecular target for gastric cancer. Ultimately, PI3K p110α represents a novel target for gastric cancer.
Collapse
Affiliation(s)
- Fujian Ji
- Department of General Surgery, The China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuanwen Liu
- Department of General Surgery, Jilin Central Hospital, Jilin, People's Republic of China
| | - Yuanyu Wu
- Department of General Surgery, The China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuedong Fang
- Department of General Surgery, The China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Guomin Huang
- Department of General Surgery, The China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
20
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
21
|
Takahashi N, Yamada Y, Furuta K, Nagashima K, Kubo A, Sasaki Y, Shoji H, Honma Y, Iwasa S, Okita N, Takashima A, Kato K, Hamaguchi T, Shimada Y. Association between serum ligands and the skin toxicity of anti-epidermal growth factor receptor antibody in metastatic colorectal cancer. Cancer Sci 2015; 106:604-10. [PMID: 25707609 PMCID: PMC4452162 DOI: 10.1111/cas.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022] Open
Abstract
Skin toxicity is a known clinical signature used to predict the prognosis of anti-epidermal growth factor receptor (EGFR) antibody treatment in metastatic colorectal cancer (mCRC). There are no biological markers to predict skin toxicity before anti-EGFR antibody treatment in mCRC patients. Between August 2008 and August 2011, pretreatment serum samples were obtained from KRAS wild-type (WT) patients who received anti-EGFR antibody treatment. Serum levels of ligands were measured by ELISA. A total of 103 KRAS WT patients were enrolled in the study. Progression-free survival and overall survival of patients with a high grade (grade 2–3) of skin toxicity were significantly longer than those with a low grade (grade 0–1) of skin toxicity (median progression-free survival, 6.4 months vs 2.4 months, P < 0.001; median overall survival, 14.6 months vs 7.1 months, P = 0.006). There were significant differences in distribution of serum levels of epiregulin (EREG), amphiregulin (AREG), and hepatocyte growth factor (HGF) between groups of low/high grade of skin toxicity (P < 0.048, P < 0.012, P < 0.012, respectively). In addition, serum levels of HGF, EREG, and AREG were inversely proportional to grades of skin toxicity as determined by the Cochran–Armitage test (P = 0.019, P = 0.047, P = 0.021, respectively). Our study indicated that serum levels such as HGF, EREG, and AREG may be significant markers to predict the grade of skin toxicity and the prognosis of anti-EGFR antibody treatment, which contribute to improvement of the management of skin toxicity and survival time in mCRC patients.
Collapse
Affiliation(s)
- Naoki Takahashi
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhide Yamada
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koh Furuta
- Division of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kengo Nagashima
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Akiko Kubo
- Division of Pharmacy, National Cancer Center Hospital, Tokyo, Japan
| | - Yusuke Sasaki
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Honma
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satoru Iwasa
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Atsuo Takashima
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsuya Hamaguchi
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Shimada
- Division of Gastrointestinal Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Medical Oncology, Kochi Health Sciences Center, Kouch, Japan
| |
Collapse
|
22
|
Gusenbauer S, Zanucco E, Knyazev P, Ullrich A. Erk2 but not Erk1 regulates crosstalk between Met and EGFR in squamous cell carcinoma cell lines. Mol Cancer 2015; 14:54. [PMID: 25884419 PMCID: PMC4359546 DOI: 10.1186/s12943-015-0319-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) is the most common type of tongue and larynx cancer and a common type of lung cancer. In this study, we attempted to specifically evaluate the signaling pathway underlying HGF/Met induced EGFR ligand release in SSCs. The Met proto-oncogene encodes for a tyrosine kinase receptor which is often hyperactivated in human cancers. Met activation correlates with poor patient outcome. Several studies revealed a role of Met in receptor-crosstalk inducing either activation of other receptors, or inducing their resistance to targeted cancer treatments. In an epithelial tumor cell line screen we recently showed that the Met ligand HGF blocks the EGFR tyrosine kinase and at the same time activates transcriptional upregulation and accumulation in the supernatant of the EGFR ligand amphiregulin (Oncogene 32:3846-56, 2013). In the present work we describe the pathway responsible for the amphiregulin induction. FINDINGS Amphiregulin is transcriptionally upregulated and is released into the supernatant. We show that Erk2 but not Erk1 mediates amphiregulin upregulation upon treatment with monocyte derived HGF. A siRNA knockdown of Erk2 completely abolishes amphiregulin release in squamous cell carcinomas. CONCLUSIONS These results identify Erk2 as the key downstream signal transducer between Met activation and EGFR ligand upregulation in squamous cell carcinoma cell lines derived from tongue, larynx and lung.
Collapse
Affiliation(s)
- Simone Gusenbauer
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Emanuele Zanucco
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Pjotr Knyazev
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Axel Ullrich
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
23
|
Saghizadeh M, Dib CM, Brunken WJ, Ljubimov AV. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res 2014; 129:66-73. [PMID: 25446319 DOI: 10.1016/j.exer.2014.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 11/26/2022]
Abstract
Overexpression of c-met and suppression of matrix metalloproteinase-10 (MMP-10) and cathepsin F genes was previously shown to normalize wound healing, epithelial and stem cell marker patterns in organ-cultured human diabetic corneas. We now examined if gene therapy of limbal cells only would produce similar effects. Eight pairs of organ-cultured autopsy human diabetic corneas were used. One cornea of each pair was treated for 48 h with adenoviruses (Ad) harboring full-length c-met mRNA or a mixture (combo) of Ad with c-met and shRNA to MMP-10 and cathepsin F genes. Medium was kept at the limbal level to avoid transduction of central corneal epithelium. Fellow corneas received control Ad with EGFP gene. After additional 5 (c-met) or 10 days (combo) incubation, central corneal epithelial debridement with n-heptanol was performed, and wound healing times were determined microscopically. Corneal cryostat sections were immunostained for diabetic and putative limbal stem cell markers, α3β1 integrin, nidogen-1, fibronectin, laminin γ3 chain, ΔNp63α, keratins 14, 15, and 17, as well as for activated signaling intermediates, phosphorylated EGFR, Akt, and p38. Limbal c-met overexpression significantly accelerated healing of 8.5-mm epithelial wounds over EGFP controls (6.3 days vs. 9.5 days, p < 0.02). Combo treatment produced a similar result (6.75 days vs. 13.5 days, p < 0.03). Increased immunostaining vs. EGFP controls for most markers and signaling intermediates accompanied c-met gene or combo transduction. Gene therapy of limbal epithelial stem cell compartment has a beneficial effect on the diabetic corneal wound healing and on diabetic and stem cell marker expression, and shows potential for alleviating symptoms of diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | | | - William J Brunken
- Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Jiang X, McClellan SA, Barrett R, Foldenauer M, Hazlett LD. HGF signaling impacts severity of Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2014; 55:2180-90. [PMID: 24618323 PMCID: PMC3985408 DOI: 10.1167/iovs.13-13743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/01/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To determine whether rapamycin altered corneal growth factor levels to impact severity of Pseudomonas aeruginosa keratitis. METHODS BALB/c mice were injected intraperitoneally with rapamycin or PBS and infected with P. aeruginosa. Corneas were harvested and mRNA levels of growth factors (EGF, HGF, FGF-7/KGF), receptors (EGFR, c-met, FGFR-2), and signaling molecules (PI3K, Akt, S6K1, and IGF-1R) tested. ELISA determined HGF/c-met, IGF-1, and Substance P (SP) protein levels. Corneal application of recombinant (r)HGF was assessed by clinical score, photography with a slit lamp, real-time RT-PCR (mRNA for mT0R, IL-10, IL-12, IL-18, PI3KCα, Akt), and ELISA (total and phosphorylated [p]c-met); rIGF-1 effects also were tested by ELISA. In vitro, RAW cells and peritoneal macrophages were stimulated with LPS ± rHGF ± c-met inhibitor (CI) and mTOR mRNA levels tested. RESULTS Rapamycin disparately regulated infected corneal mRNA levels of EGF/EGFR and FGF-7/FGFR-2, but HGF/c-met mRNA levels both increased. ELISA confirmed elevated HGF protein. Rapamycin did not change PI3KCα or Akt signaling molecule expression, downregulated S6K1, but upregulated IGF-1R mRNA levels; IGF-1 and SP proteins also were upregulated. After infection, topical rHGF versus PBS increased mRNA levels of IL-12p40, IL-18, PI3KCα, and Akt; mTOR and IL-10 mRNA were downregulated; rIGF-1 increased HGF protein. In vitro, rHGF and LPS lowered RAW cell and macrophage mTOR levels; CI addition restored them. CONCLUSIONS Collectively, these data provide evidence that enhanced corneal HGF levels increase signaling through the c-met receptor, decrease mTOR levels, and enhance proinflammatory cytokines, while decreasing anti-inflammatory cytokines, and that HGF signaling is central to disease outcome.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | | | | | | | | |
Collapse
|
25
|
Saghizadeh M, Epifantseva I, Hemmati DM, Ghiam CA, Brunken WJ, Ljubimov AV. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 2013; 54:8172-80. [PMID: 24255036 DOI: 10.1167/iovs.13-13233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic corneas overexpress proteinases including matrix metalloproteinase-10 (M10) and cathepsin F (CF). Our purpose was to assess if silencing M10 and CF in organ-cultured diabetic corneas using recombinant adenovirus (rAV)-driven small hairpin RNA (rAV-sh) would normalize slow wound healing, and diabetic and stem cell marker expression. METHODS Sixteen pairs of organ-cultured autopsy human diabetic corneas (four per group) were treated with rAV-sh. Proteinase genes were silenced either separately, together, or both, in combination (Combo) with rAV-driven c-met gene overexpression. Fellow control corneas received rAV-EGFP. Quantitative RT-PCR confirmed small hairpin RNA (shRNA) silencing effect. Ten days after transfection, 5-mm epithelial wounds were made with n-heptanol and healing time recorded. Diabetic, signaling, and putative stem cell markers were studied by immunofluorescence of corneal cryostat sections. RESULTS Proteinase silencing reduced epithelial wound healing time versus rAV-enhanced green fluorescent protein (EGFP) control (23% for rAV-shM10, 31% for rAV-shCF, and 36% for rAV-shM10 + rAV-shCF). Combo treatment was even more efficient (55% reduction). Staining patterns of diabetic markers (α₃β₁ integrin and nidogen-1), and of activated epidermal growth factor receptor and its signaling target activated Akt were normalized upon rAV-sh treatment. Combo treatment also restored normal staining for activated p38. All treatments, especially the combined ones, increased diabetes-altered staining for putative limbal stem cell markers, ΔNp63α, ABCG2, keratins 15 and 17, and laminin γ3 chain. CONCLUSIONS Small hairpin RNA silencing of proteinases overexpressed in diabetic corneas enhanced corneal epithelial and stem cell marker staining and accelerated wound healing. Combined therapy with c-met overexpression was even more efficient. Specific corneal gene therapy has a potential for treating diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
26
|
Fong JT, Jacobs RJ, Moravec DN, Uppada SB, Botting GM, Nlend M, Puri N. Alternative signaling pathways as potential therapeutic targets for overcoming EGFR and c-Met inhibitor resistance in non-small cell lung cancer. PLoS One 2013; 8:e78398. [PMID: 24223799 PMCID: PMC3817236 DOI: 10.1371/journal.pone.0078398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/11/2013] [Indexed: 01/21/2023] Open
Abstract
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.
Collapse
Affiliation(s)
- Jason T. Fong
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Ryan J. Jacobs
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - David N. Moravec
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Srijayaprakash B. Uppada
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Gregory M. Botting
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
| | - Marie Nlend
- Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, Illinois, United States
- * E-mail:
| |
Collapse
|
27
|
Buckingham EM, Goldman FD, Klingelhutz AJ. Dyskeratosis Congenita Dermal Fibroblasts are Defective in Supporting the Clonogenic Growth of Epidermal Keratinocytes. Aging Dis 2012; 3:427-37. [PMID: 23251848 PMCID: PMC3522509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023] Open
Abstract
Telomere shortening is associated with cellular senescence and aging. Dyskeratosis congenita (DC) is a premature aging syndrome caused by mutations in genes for telomerase components or telomere proteins. DC patients have very short telomeres and exhibit aging-associated pathologies including epidermal abnormalities and bone marrow failure. Here, we show that DC skin fibroblasts are defective in their ability to support the clonogenic growth of epidermal keratinocytes. Conditioned media transfer experiments demonstrated that this defect was largely due to lack of a factor or factors secreted from the DC fibroblasts. Compared to early passage normal fibroblasts, DC fibroblasts express significantly lower transcript levels of several genes that code for secreted proteins, including Insulin-like Growth Factor 1 (IGF1) and Hepatocyte Growth Factor (HGF). Aged normal fibroblasts with short telomeres also had reduced levels of IGF1 and HGF, similar to early passage DC fibroblasts. Knockdown of IGF1 or HGF in normal fibroblasts caused a reduction in the capacity of conditioned media from these fibroblasts to support keratinocyte clonogenic growth. Surprisingly, reconstitution of telomerase in DC fibroblasts did not significantly increase transcript levels of IGF1 or HGF or substantially increase the ability of the fibroblasts to support keratinocyte growth, indicating that the gene expression defect is not readily reversible. Our results suggest that telomere shortening in dermal fibroblasts leads to reduction in expression of genes such as IGF1 and HGF and that this may cause a defect in supporting normal epidermal proliferation.
Collapse
|
28
|
Bánky B, Rásó-Barnett L, Barbai T, Tímár J, Becságh P, Rásó E. Characteristics of CD44 alternative splice pattern in the course of human colorectal adenocarcinoma progression. Mol Cancer 2012; 11:83. [PMID: 23151220 PMCID: PMC3542202 DOI: 10.1186/1476-4598-11-83] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/12/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND CD44 is considered as 'a' metastasis associated gene, despite the fact that it is an umbrella term for a group of molecules produced from a single gene by alternative splicing. However, little consideration is given to the above in the literature of colorectal carcinomas as well as other tumour types, leading to confusion and contradictory results about its possible role in tumour progression. METHODS We compared the CD44 alternative splice pattern (ASP) of three genetically different human colorectal cancer cell lines (HT25, HT29, HCT116) using a series of PCR reactions and next- generation sequencing method, as well as identified a colorectal adenocarcinoma specific CD44 ASP. This ASP was further investigated in terms of its qualitative and quantitative stability in our experimental iso- and xenograft mouse models for colorectal cancer progression. A complex preclinical experimental set-up was established to separately test the different steps of tumour progression and the role of tumour microenvironment, respectively, focusing on the role of 'CD44' in this process. RESULTS We managed to present a colorectal cancer-specific CD44 ASP, which remained unchanged from cell lines throughout primary tumour formation and metastatic progression. Furthermore, we report a unique roster of all expressed CD44 variant isoforms characteristic to colorectal cancer. Finally, on quantitative assessment of the variable exons v3 and v6, higher co-expression levels were found to be characteristic to metastatically potent tumour cells. CONCLUSION Particular CD44 variant isoforms seem to act as "metastasis genes" via tumour microenvironment-driven shifts in v3 and v6 expressions. However, this function may just affect a minority of tumour subclones. This fact and the huge potential number of different CD44 splice variants that can contain v3 and v6 domains can explain incoherence of clinical studies regarding functional asessment of CD44 variants, as well as diminish the chances of using CD44 variants for predictive purpose.
Collapse
Affiliation(s)
- Balázs Bánky
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
29
|
HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene 2012; 32:3846-56. [PMID: 23045285 DOI: 10.1038/onc.2012.396] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/26/2012] [Accepted: 07/17/2012] [Indexed: 01/18/2023]
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed and activated in many human cancers and predicts poor patient prognosis. Targeting the kinase domain with specific EGFR tyrosine kinase inhibitors (TKIs) like gefitinib and erlotinib has been used in anticancer treatments. However, patient response rates in different human cancers were initially low. Only a subgroup of non-small-cell lung cancer (NSCLC) patients harboring EGFR-activating mutations responds to EGFR TKI treatment, but most of these responders relapse and acquire resistance. Recent clinical studies have demonstrated that MET proto-oncogene overexpression correlates with resistance to EGFR TKI treatment. Similarly to MET overexpression, the tumor microenvironment-derived ligand hepatocyte growth factor (HGF) was shown to activate Met and thereby induce short-term resistance to EGFR TKI treatment in gefitinib-sensitive NSCLC cell lines in vitro. However, only little is known about the HGF/Met-induced EGFR TKI resistance mechanism in other human cancer types. Therefore, in order to develop possible new anticancer strategies for diverse human cancers, we screened 12 carcinoma cell lines originating from the breast, kidney, liver and tongue for HGF-induced EGFR tyrosine kinase (TK)-inhibition. In addition, in order to advance our understanding of a TK-inactive EGFR, we used EGFR co-immunoprecipitation, followed by mass spectrometry to identify novel HGF-induced EGFR binding partners, which are potentially involved in tyrosine kinase-independent EGFR signaling mechanisms. Here we show for the first time that HGF-induced EGFR TK-inhibition is a very common mechanism in human cancers, and that the kinase-inactive EGFR directly interacts with and stabilizes several cancer-relevant proteins, including the receptor tyrosine kinases Axl and EphA2, and the CUB domain-containing protein-1. This study has strong implications for the development of new anticancer strategies.
Collapse
|
30
|
Puri N, Salgia R. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog 2012; 7:9. [PMID: 19240370 PMCID: PMC2669728 DOI: 10.4103/1477-3163.44372] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background c-Met and EGFR receptors are widely expressed on cancer cells; they are implicated in the development and progression of cancer through a plethora of effects on cell cycle progression, apoptosis, motility and metastasis and are potential targets for combination therapy. EGFR receptor tyrosine kinases are currently being targeted in a number of malignancies. Methods Apoptosis was studied by FACS analysis using propidium iodide. EGF and HGF signaling intermediates were studied by western blotting. Cell proliferation was determined by MTT assays. Cell motility was done by time lapse confocal microscopy. Results c-Met and EGFR were both expressed in A549, H1838, H2170, SW900, SW1573, H358, SKLU-1, and H1993 non small cell lung cancer (NSCLC) cell lines. Both EGF and HGF at 100 ng/ml in medium showed a synergistic effect on cell proliferation at 48–72 h as seen by a proliferation assay in A549, H1838, and SKMES cells. In A549 and H1838 cell lines, HGF (40 ng/ml) and EGF (5 ng/ml) induced synergistic phosphorylation on c-Met (Tyr 1003/1230/1234/1235). Additionally, synergistic phosphorylation of Akt (Ser-473) and phospho-ERK1+ERK2 (Thr202/Tyr204) was also seen indicating that EGF and HGF could induce synergistic phosphorylation of important signaling intermediates. Treatment with EGF and HGF at 100 ng/ml for 2 h also leads to an additive effect in inducing cell motility (especially membrane ruffling) in H1993 cells. A novel c-Met small molecule tyrosine kinase inhibitor SU11274 and EGFR tyrosine kinase inhibitors Tyrphostin AG1478 and gefitinib (Iressa) were tested to study their effect in combination on proliferation and apoptosis in lung cancer cells. Interestingly, a synergistic effect on inhibition of cell proliferation was seen in the presence of SU11274 and Tyrphostin AG1478. 0.5 µM Tyrphostin AG1478 and 2 µM SU11274 inhibited growth by 21% and 25%, respectively; a combination of both tyrosine kinase inhibitors inhibited growth by 65%. Interestingly, EGFR inhibitor (gefitinib, Iressa) and c-Met inhibitor (SU11274) also had a synergistic effect on apoptosis in H358 cells. Conclusion There was a synergistic effect of EGF and HGF on proliferation, downstream activation of signal transduction and an additive effect seen on motility. These studies show that a combination of HGF and EGF tyrosine kinase inhibitors on NSCLC, could potentially be targeted in a synergistic fashion.
Collapse
Affiliation(s)
- Neelu Puri
- University of Illinois College of Medicine at Rockford, Dept of Biomedical Sciences, Chicago, USA.
| | | |
Collapse
|
31
|
Mueller KL, Madden JM, Zoratti GL, Kuperwasser C, List K, Boerner JL. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res 2012; 14:R104. [PMID: 22788954 PMCID: PMC3680928 DOI: 10.1186/bcr3224] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/12/2012] [Indexed: 12/05/2022] Open
Abstract
Introduction Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown clinical efficacy in lung, colon, and pancreatic cancers. In lung cancer, resistance to EGFR TKIs correlates with amplification of the hepatocyte growth factor (HGF) receptor tyrosine kinase Met. Breast cancers do not respond to EGFR TKIs, even though EGFR is overexpressed. This intrinsic resistance to EGFR TKIs in breast cancer does not correlate with Met amplification. In several tissue monoculture models of human breast cancer, Met, although expressed, is not phosphorylated, suggesting a requirement for a paracrine-produced ligand. In fact, HGF, the ligand for Met, is not expressed in epithelial cells but is secreted by fibroblasts in the tumor stroma. We have identified a number of breast cancer cell lines that are sensitive to EGFR TKIs. This sensitivity is in conflict with the observed clinical resistance to EGFR TKIs in breast cancers. Here we demonstrate that fibroblast secretion of HGF activates Met and leads to EGFR/Met crosstalk and resistance to EGFR TKIs in triple-negative breast cancer (TNBC). Methods The SUM102 and SUM149 TNBC cell lines were used in this study. Recombinant HGF as well as conditioned media from fibroblasts expressing HGF were used as sources for Met activation. Furthermore, we co-cultured HGF-secreting fibroblasts with Met-expressing cancer cells to mimic the paracrine HGF/Met pathway, which is active in the tumor microenvironment. Cell growth, survival, and transformation were measured by cell counting, clonogenic and MTS assays, and soft agar colony formation, respectively. Student's t test was used for all statistical analysis. Results Here we demonstrate that treatment of breast cancer cells sensitive to EGFR TKIs with recombinant HGF confers a resistance to EGFR TKIs. Interestingly, knocking down EGFR abrogated HGF-mediated cell survival, suggesting a crosstalk between EGFR and Met. HGF is secreted as a single-chain pro-form, which has to be proteolytically cleaved in order to activate Met. To determine whether the proteases required to activate pro-HGF were present in the breast cancer cells, we utilized a fibroblast cell line expressing pro-HGF (RMF-HGF). Addition of pro-HGF-secreting conditioned fibroblast media to TNBC cells as well as co-culturing of TNBC cells with RMF-HGF fibroblasts resulted in robust phosphorylation of Met and stimulated proliferation in the presence of an EGFR TKI. Conclusions Taken together, these data suggest a role for Met in clinical resistance to EGFR TKIs in breast cancer through EGFR/Met crosstalk mediated by tumor-stromal interactions.
Collapse
|
32
|
Huang FI, Chen YL, Chang CN, Yuan RH, Jeng YM. Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis 2012; 33:1142-8. [PMID: 22436613 DOI: 10.1093/carcin/bgs131] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a secretory protein that plays important roles in cancer growth and metastasis. Lymphoid-enhancing factor 1 (LEF1) is a transcription factor mediating Wnt/β-catenin signaling. Using microarray analysis, we found HGF induced expression of LEF1 in liver and breast cancer cell lines. HGF induced expression of LEF1 through phosphatidylinositol 3-kinase/Akt and nuclear factor-kappa B (NF-κB) signaling. Multiple NF-κB-binding sites were mapped within 3 kb upstream of LEF1 transcription initiation site. NF-κB binding to a site 2 kb upstream of LEF1 transcription initiation site was confirmed by chromatin immunoprecipitation assay. Knockdown of LEF1 inhibited the expression of Slug and Zinc finger E-box-binding homeobox 2 (ZEB2) and markedly attenuated HGF-induced tumor migration and invasion. Using immunohistochemical staining, we found LEF1 was frequently expressed in multiple types of carcinoma but not in the non-tumorous epithelial cells. Our finding suggest that transcriptional activation of LEF1 is a mechanism of cross talk between HGF/c-Met and Wnt/β-catenin pathways and is essential for HGF-induced tumor invasion.
Collapse
Affiliation(s)
- Fang-I Huang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Martínez-Palacián A, del Castillo G, Herrera B, Fernández M, Roncero C, Fabregat I, Sánchez A. EGFR is dispensable for c-Met-mediated proliferation and survival activities in mouse adult liver oval cells. Cell Signal 2012; 24:505-513. [DOI: 10.1016/j.cellsig.2011.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/16/2023]
|
34
|
Li Y, Chen CQ, He YL, Cai SR, Yang DJ, He WL, Xu JB, Zan WH. Abnormal expression of E-cadherin in tumor cells is associated with poor prognosis of gastric carcinoma. J Surg Oncol 2012; 106:304-10. [PMID: 22231933 DOI: 10.1002/jso.23008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/24/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study was to clarify the relationship of hepatocyte growth factor (HGF), c-Met, and E-cadherin with clinicopathological parameters and prognosis in gastric carcinoma (GC). METHODS 114 specimens were collected from GC patients and expression of HGF, c-Met, and E-cadherin in tissue microarray was evaluated by immunohistochemical staining. Correlation between immunostainings and clinicopathological parameters, follow-up data of patients, was analyzed statistically. RESULTS Abnormal E-cadherin expression was found in 60.5% (69/114) and associated with tumor depth (P = 0.003), lymph node metastasis (P = 0.001) and advanced clinical stage (P = 0.001). High-expression of HGF and c-Met were found in 64.0% (73/114) and 82.4% (94/114), respectively. High c-Met expression was significantly associated with advanced clinical stage (P = 0.001) and lymph node metastasis (P = 0.011) of GC. In univariate survival analysis, high-expression of HGF and c-Met, and abnormal E-cadherin were significantly associated with poor prognosis of GC patients. However, only abnormal E-cadherin expression (P = 0.001) and tumor depth (P = 0.010) emerged as strong independent prognostic factors for overall survival of GC patients. CONCLUSION We found significant correlation among HGF/c-Met, E-cadherin expression and worse prognosis of patients with GC. Abnormal E-cadherin expression may serve as an independent predictive factor for prognosis of GC patients.
Collapse
Affiliation(s)
- Yin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tanaka A, Sueoka-Aragane N, Nakamura T, Takeda Y, Mitsuoka M, Yamasaki F, Hayashi S, Sueoka E, Kimura S. Co-existence of positive MET FISH status with EGFR mutations signifies poor prognosis in lung adenocarcinoma patients. Lung Cancer 2011; 75:89-94. [PMID: 21733594 DOI: 10.1016/j.lungcan.2011.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 05/31/2011] [Accepted: 06/12/2011] [Indexed: 12/28/2022]
Abstract
MET, a receptor tyrosine kinase for hepatocyte growth factor, is associated with tumor progression and acquired resistance to epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI). Therefore, MET gene alterations could be both prognostic and predictive. Fluorescence in situ hybridization (FISH) is one method for assessing gene alteration, but the frequency of positive cases varies due to a lack of standardized criteria. We evaluated MET gene copy number in lung adenocarcinoma and its association with clinicopathological characteristics. FISH was applied to evaluate high MET gene copy number and true amplification in 138 lung adenocarcinoma patients using two criteria: the Cappuzzo scoring system and PathVysion. MET positive cases according to the Cappuzzo scoring system evidenced both aneuploidy and true amplification, whereas PathVysion revealed only amplification. Proportion of MET FISH positive cases was 15% and 4% determined by the Cappuzzo system and PathVysion, respectively. PathVysion demonstrated higher frequencies of MET FISH positives among men and smokers and evidenced no MET FISH positives in patients with bronchioloalveolar carcinoma. Prognosis was significantly associated with MET FISH positive only as defined by the PathVysion system (gene amplification), not by the Cappuzzo system. However, progression-free survival time of patients with both EGFR mutations and MET FISH positive defined by the Cappuzzo scoring system was significantly shorter than with EGFR mutations alone. These results suggest that MET FISH is a potential prognostic factor and coexistence of MET FISH with EGFR mutations signifies worse prognosis.
Collapse
Affiliation(s)
- Aya Tanaka
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brief treatment with heparin-binding EGF-like growth factor, but not with EGF, is sufficient to accelerate epithelial wound healing. Biochim Biophys Acta Gen Subj 2011; 1810:875-8. [PMID: 21640162 DOI: 10.1016/j.bbagen.2011.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Heparin-binding EGF-like growth factor (HB-EGF) contains, in contrast to EGF, a domain that binds to negatively charged glycans on cell surfaces and in extracellular matrix. We speculated that a short exposure to HB-EGF induces prolonged biological effects such as healing of wounds after immobilization in tissues. METHODS Epithelial cell sheets in tissue and corneas in organ culture were treated briefly with HB-EGF or EGF and binding of the growth factors, time course of activation of the EGF receptor, and healing of wounds were compared. RESULTS Treating human corneal epithelial cells for 2 min with HB-EGF resulted in 8h of detectable activation of the EGF receptor, but activation was much shorter after EGF treatment. A brief treatment with HB-EGF, but not with EGF, induced significant acceleration of healing in wounds in epithelial sheets in tissue and organ culture. Bound HB-EGF was detectable up to 16 h after brief treatments. Neutralizing antibodies added after HB-EGF treatment blocked acceleration of healing, demonstrating the role of bound HB-EGF in accelerating healing. CONCLUSIONS A brief exposure to HB-EGF, but not to EGF, is sufficient to induce prolonged activation of the EGF receptor and to enhance healing. GENERAL SIGNIFICANCE Bound HB-EGF can serve as a pool that induces prolonged activation of the EGF receptor. EGF has been used experimentally to treat poorly healing wounds, but the frequent applications that are necessary have hampered its use clinically. The findings imply that HB-EGF may be a useful long-acting alternative to EGF.
Collapse
|
37
|
Yang H, Wang Z, Capó-Aponte JE, Zhang F, Pan Z, Reinach PS. Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. Exp Eye Res 2010; 91:462-71. [PMID: 20619260 DOI: 10.1016/j.exer.2010.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
Corneal epithelial injury induces release of endogenous metabolites that are cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1) agonists. We determined the functional contributions by CB1 and TRPV1 activation to eliciting responses underlying wound healing in human corneal epithelial cells (HCEC). Both the selective CB1 and TRPV1 agonists (i.e., WIN55,212-2 [WIN] and capsaicin [CAP], respectively) induced EGFR phosphorylation whereas either inhibition of its tyrosine kinase activity with AG1478 or functional blockage eliminated this response. Furthermore, EGFR transactivation was abolished by inhibitors of proteolytic release of heparin bound EGF (HB-EGF). CB1-induced Ca(2+) transients were reduced during exposure to either the CB1 antagonist, AM251 or AG1478. Both CAP and WIN induced transient increases in Erk1/2, p38, JNK1/2 MAPK and Akt/PI-3K phosphorylation status resulting in cell proliferation and migration increases which mirrored those elicited by EGF. Neither EGF nor WIN induced any increases in IL-6 and IL-8 release. On the other hand, CAP-induced 3- and 6-fold increases, which were fully attenuated during exposure to CPZ, but AG1478 only suppressed them by 21%. The mixed CB1 and TRPV1 antagonist, AM251, enhanced the CAP-induced rise in IL-8 release to a higher level than that elicited by CAP alone. In conclusion, CB1 and TRPV1 activation induces increases in HCEC proliferation and migration through EGFR transactivation leading to global MAPK and Akt/PI-3K pathway stimulation. On the other hand, the TRPV1-mediated increases in IL-6 and IL-8 release are elicited through both EGFR dependent and EGFR-independent signaling pathways.
Collapse
Affiliation(s)
- H Yang
- Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhang F, Yang H, Pan Z, Wang Z, Wolosin JM, Gjorstrup P, Reinach PS. Dependence of resolvin-induced increases in corneal epithelial cell migration on EGF receptor transactivation. Invest Ophthalmol Vis Sci 2010; 51:5601-9. [PMID: 20538990 DOI: 10.1167/iovs.09-4468] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether resolvin E1 (RvE1), an endogenous oxygenation product of eicosapentaenoic acid (EPA), induces increases in migration in human corneal epithelial cells (HCECs) and to identify signal pathways mediating this response. METHODS Migration was measured with the scratch wound assay. Western blot analysis identified changes in the phosphorylation status of prospective intracellular signal transduction mediators. Immunocytochemistry probed for intracellular paxillin localization and actin reorganization. RESULTS RvE1 enhanced HCEC migratory rates to levels comparable to those induced by epidermal growth factor (EGF). These increases were accompanied by increases in the phosphorylation status of epidermal growth factor receptor (EGFR), Akt, p38 MAPK, GSK-3α/β, and paxillin, which essentially persisted for up to 60 minutes. The EGFR inhibitor AG1478 blocked the subsequent effects of RvE1 to induce increases in phosphorylation status and cell migration. The PI3-K inhibitor LY294002 or wortmannin or the p38 inhibitor BIRB796 blocked resolvin-induced increases in cell migration. Either the matrix metalloproteinase (MMP) inhibitor GM6001 or the specific heparin-bound EGF-like growth factor inhibitor CRM197 suppressed RvE1-induced stimulation of EGFR/PI3-K/Akt phosphorylation and cell migration. CONCLUSIONS RvE1 enhances HCEC migration through MMP and sheddase-mediated EGFR transactivation. This response is dependent on PI3-K and p38-linked signaling eliciting paxillin (Tyr118) phosphorylation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biological Sciences, State University of New York, College of Optometry, New York, New York 10036, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Xie LQ, Bian LJ, Li Z, Li Y, Li ZX, Li B. Altered Expression of E-cadherin by Hepatocyte Growth Factor and Effect on the Prognosis of Nasopharyngeal Carcinoma. Ann Surg Oncol 2010; 17:1927-36. [DOI: 10.1245/s10434-010-0922-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Indexed: 12/23/2022]
|
40
|
Wang X, Li K, Chen H, Wang D, Zhang Y, Bai C. Does hepatocyte growth factor/c-Met signal play synergetic role in lung cancer? J Cell Mol Med 2010; 14:833-9. [PMID: 20178463 PMCID: PMC3823115 DOI: 10.1111/j.1582-4934.2010.01040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that the signal pathway between hepatocyte growth factor (HGF) and its receptor c-Met plays an important role in the development of lung cancer, although the specificity of such role is to be clarified. It seems clear that the HGF/c-Met signal contributes to the metastasis of cancer cells to the lung by stimulating the hyperproduction and overactivation of cytokines and enzymes, e.g. HGF, vascular endothelial growth factor and matrix metalloproteases. The HGF/c-Met signal may act as the candidate responsible for the development of epidermal growth factor receptor (EGFR) kinase inhibitor resistance. Experimental evidence showed that the combination of both EGFR and c-Met inhibitors had synergetic or additive therapeutic effects on lung cancer. Although the mechanism of interaction between HGF/c-Met and transforming growth factor-a/EGFR remains unclear, the cross-talk and balance between those two signal pathways are critical and necessary in the development of new therapies for lung cancer.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
41
|
Saghizadeh M, Kramerov AA, Yu FSX, Castro MG, Ljubimov AV. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Invest Ophthalmol Vis Sci 2009; 51:1970-80. [PMID: 19933191 DOI: 10.1167/iovs.09-4569] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose. Diabetic corneas display altered basement membrane and integrin markers, increased expression of proteinases, decreased hepatocyte growth factor (HGF) receptor, c-met proto-oncogene, and impaired wound healing. Recombinant adenovirus (rAV)-driven c-met overexpression in human organ-cultured corneas was tested for correction of diabetic abnormalities. Methods. Forty-six human corneas obtained postmortem from 23 donors with long-term diabetes (5 with diabetic retinopathy) were organ cultured and transduced with rAV-expressing c-met gene (rAV-cmet) under the cytomegalovirus promoter at approximately 10(8) plaque-forming units per cornea for 48 hours. Each control fellow cornea received control rAV (rAV expressing the beta-galactosidase gene or vector alone). After an additional 4 to 5 days of incubation, 5-mm epithelial wounds were created with n-heptanol, and healing was monitored. The corneas were analyzed afterward by immunohistochemistry and Western blot analysis. Signaling molecule expression and role was examined by immunostaining, phosphokinase antibody arrays, Western blot analysis, and inhibitor analysis. Results. rAV-cmet transduction led to increased epithelial staining for c-met (total, extracellular, and phosphorylated) and normalization of the patterns of select diabetic markers compared with rAV-vector-transduced control fellow corneas. Epithelial wound healing time in c-met-transduced diabetic corneas decreased twofold compared with rAV-vector-transduced corneas and became similar to normal. c-Met action apparently involved increased activation of p38 mitogen-activated protein kinase. c-Met transduction did not change tight junction protein patterns, suggesting unaltered epithelial barrier function. Conclusions. rAV-driven c-met transduction into diabetic corneas appears to restore HGF signaling, normalize diabetic marker patterns, and accelerate wound healing. c-Met gene therapy could be useful for correcting human diabetic corneal abnormalities.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Ophthalmology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
42
|
A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: activation of proteinase-activated receptor 1 and epidermal growth factor receptor. Exp Cell Res 2009; 316:376-89. [PMID: 19879874 DOI: 10.1016/j.yexcr.2009.10.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/21/2022]
Abstract
Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR(1)), and by PAR(1) inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR(1)-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.
Collapse
|
43
|
Accornero P, Martignani E, Miretti S, Starvaggi Cucuzza L, Baratta M. Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells. J Dairy Sci 2009; 92:3667-75. [PMID: 19620648 DOI: 10.3168/jds.2008-1835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this work was to explore whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) could increase the biological responses of a mammary epithelial cell line of bovine origin when added simultaneously. We also investigated a possible molecular mechanism underlying this cooperation. The development of mammary gland requires several circulating and locally produced hormones. Hepatocyte growth factor and its tyrosine kinase receptor, mesenchymal-epithelial transition factor (MET), are expressed and temporally regulated during mammary development and differentiation. Epidermal growth factor receptor and its ligands have also been implicated in the growth and morphogenesis of the mammary epithelium. Both EGF and HGF seem to exert a morphogenic program in this tissue; therefore, we hypothesized that these cytokines could act cooperatively in bovine mammary epithelial cells. We have already shown that the bovine BME-UV cell line, a nontumorigenic mammary epithelial line, expresses both MET and EGF receptor. Simultaneous treatment with HGF and EGF elicited an increase in proliferation, dispersion, degradation of extracellular matrix, and motility. Following EGF treatment, BME-UV mammary cells exhibited an increase in MET expression at both the mRNA and protein levels. Long-term treatment of BME-UV cells with HGF and EGF together increased the level of activation of the extracellular signal-regulated kinase 1/2 and protein kinase B signaling pathways when compared with HGF or EGF alone. These data outline a possible cooperative role of the EGF and HGF pathways and indicate that cross-talk between their respective receptors may modulate mammary gland development in the cow.
Collapse
Affiliation(s)
- P Accornero
- Department of Veterinary Morphophysiology, University of Torino, 10095, Grugliasco, TO, Italy.
| | | | | | | | | |
Collapse
|
44
|
Yu FSX, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull 2009; 81:229-35. [PMID: 19733636 DOI: 10.1016/j.brainresbull.2009.08.024] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
In this article, we briefly review recent findings in the effects of growth factors including the EGF family, KGF, HGF, IGF, insulin, and TGF-beta on corneal epithelial wound healing. We discuss the essential role of EGFR in inter-receptor cross-talk in response to wounding in corneal epithelium and bring forward a concept of "alarmins" to the field of wound healing research.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St. Antoine Blvd., Detroit, MI, 48201, USA.
| | | | | | | |
Collapse
|
45
|
Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4:e4992. [PMID: 19352430 PMCID: PMC2661372 DOI: 10.1371/journal.pone.0004992] [Citation(s) in RCA: 595] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/11/2009] [Indexed: 12/20/2022] Open
Abstract
Background Tumor associated fibroblasts (TAF), are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells. Methodology/Principal Findings We provide evidence that TAF are derived from mesenchymal stem cells (MSC) that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1) fibroblast specific protein and fibroblast activated protein; 2) markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3) production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4) factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF–like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6. Conclusions/Significance Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the contribution of microvascularization, stromal networks, and the production of tumor-stimulating paracrine factors.
Collapse
Affiliation(s)
- Erika L. Spaeth
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jennifer L. Dembinski
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - A. Kate Sasser
- Department of Pediatrics, The Ohio State University and Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, Ohio, United States of America
| | - Keri Watson
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ann Klopp
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Brett Hall
- Department of Pediatrics, The Ohio State University and Center for Childhood Cancer, Columbus Children's Research Institute, Columbus, Ohio, United States of America
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Frank Marini
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Liu KX, Kato Y, Matsumoto K, Nakamura T, Kaku T, Sugiyama Y. Characterization of the Enhancing Effect of Protamine on the Proliferative Activity of Hepatocyte Growth Factor in Rat Hepatocytes. Pharm Res 2009; 26:1012-21. [DOI: 10.1007/s11095-008-9810-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
47
|
Zhu G, Huang L, Song M, Yu Z, Wu X, Zhao X, Jin J, Zhao G, Chen J, Yu S. Over-expression of hepatocyte growth factor in smooth muscle cells regulates endothelial progenitor cells differentiation, migration and proliferation. Int J Cardiol 2008; 138:70-80. [PMID: 19095317 DOI: 10.1016/j.ijcard.2008.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/27/2008] [Accepted: 10/25/2008] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endothelial repair is one of key events after vascular injury. The mechanisms by which hepatocyte growth factor (HGF) and endothelial progenitor cells (EPCs) may be responsible for re-endothelialization of injured blood vessel wall are poorly understood. METHODS Primary culture SMCs were transfected with pcDNA3.0-HGF followed by G418 selection, one of G418-resistant colonies in well was picked, propagated and used as donor cells for further experiments. HGF and VEGF expression in SMCs were detected with western blot and enzyme linked immunosorbent assays (ELISA). Rat EPCs were cultured in untreated, pcDNA3.0 and pcDNA3.0-HGF transfected SMCs conditioned medium with or without anti-VEGF or exogenous recombinant HGF addition. eNOS, KDR and CD31 expression in EPCs was determined by real-time quantitative polymerase chain reaction (RT-qPCR) or flow cytometry; EPCs migration and proliferation were measured by using a modified Boyden chambers and MTT assay respectively. RESULTS Abundant and stable expression of HGF was found in G418-resistant colony-derived SMCs. VEGF expression significantly increased in HGF transfected SMCs. Exogenous recombinant HGF (rHGF) markedly up-regulated eNOS mRNA expression in EPCs and promoted EPCs migration and proliferation, but no significant changes were found in KDR and CD31 mRNA expression. HGF transfection in SMCs was more effective than exogenous HGF for EPCs differentiation, proliferation and migration. CONCLUSIONS Over-expression of HGF in SMCs can be helpful for promoting EPCs differentiation, increasing EPCs migration and proliferation. It may be responsible for angiogenesis of arteriosclerosis lesions and useful for blood vessel tissue engineering.
Collapse
Affiliation(s)
- Guangxu Zhu
- Institute of Cardiovascular Diseases, XinQiao Hospital, Third Military Medical University, Chong Qing 400037, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Melenhorst WBWH, Mulder GM, Xi Q, Hoenderop JGJ, Kimura K, Eguchi S, van Goor H. Epidermal growth factor receptor signaling in the kidney: key roles in physiology and disease. Hypertension 2008; 52:987-93. [PMID: 18981331 DOI: 10.1161/hypertensionaha.108.113860] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wynand B W H Melenhorst
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lozano JS, Chay EY, Healey J, Sullenberger R, Klarlund JK. Activation of the epidermal growth factor receptor by hydrogels in artificial tears. Exp Eye Res 2007; 86:500-5. [PMID: 18242602 DOI: 10.1016/j.exer.2007.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/23/2007] [Accepted: 12/10/2007] [Indexed: 01/12/2023]
Abstract
Most formulations of artificial tears include high-molecular weight hydrophilic polymers (hydrogels) that are usually thought to serve to enhance viscosity and to act as demulcents. A few reports have indicated that application of some of the polymers accelerates healing of wounds in epithelia. Since activation of the epidermal growth factor (EGF) receptor is critical for spontaneous corneal epithelial wound healing, we tested commonly used hydrogels for their ability to activate the EGF receptor and enhance closure of wounds. Five structurally unrelated hydrogels used in artificial tears were found to activate the EGF receptor. Importantly, two of the hydrogels enhanced wound healing in an organ culture model. We propose that the efficacy of hydrogels in treating dry eye may be related to their ability to activate the EGF receptor, and that hydrogels are inexpensive, safe agents to promote healing of wounds in the cornea and possibly in other tissues.
Collapse
Affiliation(s)
- Jennifer S Lozano
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|