1
|
Li M, Wang Y, Lin X, Yang H, Zhang X, Bai Y, Li X, Zhang L, Cheng F, Cao C, Zhou Q. Evaluation of antitumor potential of an anti-glypican-1 monoclonal antibody in preclinical lung cancer models reveals a distinct mechanism of action. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:600-626. [PMID: 38966167 PMCID: PMC11220310 DOI: 10.37349/etat.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 07/06/2024] Open
Abstract
Aim The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and β-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3β at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaolin Zhang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yun Bai
- MegaNano Biotech Inc., Tampa, FL 33612, USA
| | - Xiankun Li
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Lulu Zhang
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Petrič M, Vidović A, Dolinar K, Miš K, Chibalin AV, Pirkmajer S. Phosphorylation of Na +,K +-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells. J Membr Biol 2021; 254:531-548. [PMID: 34748042 PMCID: PMC8595181 DOI: 10.1007/s00232-021-00209-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100–1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.
Collapse
Affiliation(s)
- Metka Petrič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- National Research Tomsk State University, Tomsk, Russia. .,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Ruiz-Saenz A, Zahedi F, Peterson E, Yoo A, Dreyer CA, Spassov DS, Oses-Prieto J, Burlingame A, Moasser MM. Proteomic Analysis of Src Family Kinase Phosphorylation States in Cancer Cells Suggests Deregulation of the Unique Domain. Mol Cancer Res 2021; 19:957-967. [PMID: 33727342 DOI: 10.1158/1541-7786.mcr-20-0825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
The Src family kinases (SFK) are homologs of retroviral oncogenes, earning them the label of proto-oncogenes. Their functions are influenced by positive and negative regulatory tyrosine phosphorylation events and inhibitory and activating intramolecular and extramolecular interactions. This regulation is disrupted in their viral oncogene counterparts. However, in contrast to most other proto-oncogenes, the genetic alteration of these genes does not seem to occur in human tumors and how and whether their functions are altered in human cancers remain to be determined. To look for proteomic-level alterations, we took a more granular look at the activation states of SFKs based on their two known regulatory tyrosine phosphorylations, but found no significant differences in their activity states when comparing immortalized epithelial cells with cancer cells. SFKs are known to have other less well-studied phosphorylations, particularly within their unstructured N-terminal unique domains (UD), although their role in cancers has not been explored. In comparing panels of epithelial cells with cancer cells, we found a decrease in S17 phosphorylation in the UD of Src in cancer cells. Dephosphorylated S17 favors the dimerization of Src that is mediated through the UD and suggests increased Src dimerization in cancers. These data highlight the important role of the UD of Src and suggest that a deeper understanding of proteomic-level alterations of the unstructured UD of SFKs may provide considerable insights into how SFKs are deregulated in cancers. IMPLICATIONS: This work highlights the role of the N-terminal UD of Src kinases in regulating their signaling functions and possibly in their deregulation in human cancers.
Collapse
Affiliation(s)
- Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Farima Zahedi
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Ashley Yoo
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California
| | | | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, California. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
4
|
Capra J, Eskelinen S. Correlation between E-cadherin interactions, survivin expression, and apoptosis in MDCK and ts-Src MDCK cell culture models. J Transl Med 2017; 97:1453-1470. [PMID: 28892098 DOI: 10.1038/labinvest.2017.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Survivin, a member of inhibitor of apoptosis (IAP) protein family, is a multifunctional protein expressed in most cancers. In addition to inhibition of apoptosis, it regulates proliferation and promotes migration. Its presence and function in cells is strongly regulated via transcription factors, intracellular localization, and degradation. We analyzed the presence of survivin at protein level in various culture environments and under activation of Src tyrosine kinase in epithelial canine kidney MDCK cells in order to elucidate factors controlling survivin 'lifespan'. We used untransformed and temperature sensitive ts-Src MDCK cells as a model and forced them to grow in suspension (1D), in 2D on hard and soft surfaces and in soft 3D Matrigel environment with or without EGTA. In addition, we tested the effect of stressful conditions by cultivating the cells in the presence of an anti-cancer drug and a generator of reactive oxygen species (ROS), piperlongumine (PL) with or without an antioxidant, N-acetylcysteine (NAC). We could confirm that inhibition of apoptosis and simultaneous downregulation of survivin in MDCK cells required both intact cell-cell junctions, trans-interactions of E-cadherin and soft 3D matrix environment. In ts-Src-transformed MDCK cells, survivin was upregulated as soon as the cell-cell junctions were disintegrated. ROS generation with PL-induced cell death of ts-Src MDCK cells concomitantly with survivin downregulation. NAC rescued the ts-Src MDCK cells from ROS-induced apoptosis without upregulation of survivin resulting in a situation resembling untransformed MDCK cells in 3D environment and E-cadherin delineating the lateral cell walls.
Collapse
Affiliation(s)
- Janne Capra
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Sinikka Eskelinen
- Biocenter Oulu and the Institute of Diagnostics, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Wan Q, TruongVo T, Steele HE, Ozcelikkale A, Han B, Wang Y, Oh J, Yokota H, Na S. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep 2017; 7:9033. [PMID: 28831165 PMCID: PMC5567257 DOI: 10.1038/s41598-017-09495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
Focal adhesion kinase (FAK) and Src family kinases (SFK) are known to play critical roles in mechanotransduction and other crucial cell functions. Recent reports indicate that they reside in different microdomains of the plasma membrane. However, little is known about their subcellular domain-dependent roles and responses to extracellular stimuli. Here, we employed fluorescence resonance energy transfer (FRET)-based biosensors in conjunction with collagen-coupled agarose gels to detect subcellular activities of SFK and FAK in three-dimensional (3D) settings. We observed that SFK and FAK in the lipid rafts and nonrafts are differently regulated by fluid flow and pro-inflammatory cytokines. Inhibition of FAK in the lipid rafts blocked SFK response to fluid flow, while inhibition of SFK in the non-rafts blocked FAK activation by the cytokines. Ex-vivo FRET imaging of mouse cartilage explants showed that intermediate level of interstitial fluid flow selectively decreased cytokine-induced SFK/FAK activation. These findings suggest that SFK and FAK exert distinctive molecular hierarchy depending on their subcellular location and extracellular stimuli.
Collapse
Affiliation(s)
- Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - ThucNhi TruongVo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Hannah E Steele
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA.
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
6
|
Balanis N, Carlin CR. Stress-induced EGF receptor signaling through STAT3 and tumor progression in triple-negative breast cancer. Mol Cell Endocrinol 2017; 451:24-30. [PMID: 28088463 PMCID: PMC5469704 DOI: 10.1016/j.mce.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/12/2023]
Abstract
Elevated STAT3 activity is a hallmark of many epithelial carcinomas particularly in breast cancers where it is known to contribute to tumor progression through a variety of context-dependent biological responses. However, its role downstream of stress-exposed EGF receptors (EGFR) that are transactivated in endosomes independent of exogenous ligand has not been studied. This review discusses how STAT3 signaling induced by therapeutic stress in EGFR-driven triple-negative breast cancers (TNBC) might override normal epithelial homeostatic mechanisms and provide a survival advantage for tumor cells before they leave the primary tumor and spread to distant sites. Despite continued improvements in breast cancer treatment strategies, TNBC is still associated with poor prognosis and high risk of distant recurrence and death. Understanding EGFR-STAT3 signaling mechanisms regulating the earliest steps of tumor progression is a key to discovery of new targeted therapies against TNBC.
Collapse
Affiliation(s)
- Nikolas Balanis
- Departments of Physiology and Biophysics, USA; Molecular Biology and Microbiology, USA
| | - Cathleen R Carlin
- Departments of Physiology and Biophysics, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Smith AW, Huang HH, Endres NF, Rhodes C, Groves JT. Dynamic Organization of Myristoylated Src in the Live Cell Plasma Membrane. J Phys Chem B 2016; 120:867-76. [DOI: 10.1021/acs.jpcb.5b08887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam W. Smith
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of Akron, Akron, Ohio 44303, United States
| | - Hector H. Huang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Nicholas F. Endres
- Howard
Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Christopher Rhodes
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jay T. Groves
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Palacios-Moreno J, Foltz L, Guo A, Stokes MP, Kuehn ED, George L, Comb M, Grimes ML. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol 2015; 11:e1004130. [PMID: 25884760 PMCID: PMC4401789 DOI: 10.1371/journal.pcbi.1004130] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Protein phosphorylation plays a central role in creating a highly dynamic network of interacting proteins that reads and responds to signals from growth factors in the cellular microenvironment. Cells of the neural crest employ multiple signaling mechanisms to control migration and differentiation during development. It is known that defects in these mechanisms cause neuroblastoma, but how multiple signaling pathways interact to govern cell behavior is unknown. In a phosphoproteomic study of neuroblastoma cell lines and cell fractions, including endosomes and detergent-resistant membranes, 1622 phosphorylated proteins were detected, including more than half of the receptor tyrosine kinases in the human genome. Data were analyzed using a combination of graph theory and pattern recognition techniques that resolve data structure into networks that incorporate statistical relationships and protein-protein interaction data. Clusters of proteins in these networks are indicative of functional signaling pathways. The analysis indicates that receptor tyrosine kinases are functionally compartmentalized into distinct collaborative groups distinguished by activation and intracellular localization of SRC-family kinases, especially FYN and LYN. Changes in intracellular localization of activated FYN and LYN were observed in response to stimulation of the receptor tyrosine kinases, ALK and KIT. The results suggest a mechanism to distinguish signaling responses to activation of different receptors, or combinations of receptors, that govern the behavior of the neural crest, which gives rise to neuroblastoma. Neuroblastoma is a childhood cancer for which therapeutic progress has been slow. We analyzed a large number phosphorylated proteins in neuroblastoma cells to discern patterns that indicate functional signal transduction pathways. To analyze the data, we developed novel techniques that resolve data structure and visualize that structure as networks that represent both protein interactions and statistical relationships. We also fractionated neuroblastoma cells to examine the location of signaling proteins in different membrane fractions and organelles. The analysis revealed that signaling pathways are functionally and physically compartmentalized into distinct collaborative groups distinguished by phosphorylation patterns and intracellular localization. We found that two related proteins (FYN and LYN) act like central hubs in the tyrosine kinase signaling network that change intracellular localization and activity in response to activation of different receptors.
Collapse
Affiliation(s)
- Juan Palacios-Moreno
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lauren Foltz
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Emily D. Kuehn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States of America
| | - Michael Comb
- Cell Signaling Technology, Inc., Danvers, Massachusetts, United States of America
| | - Mark L. Grimes
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cinq-Frais C, Coatrieux C, Savary A, D'Angelo R, Bernis C, Salvayre R, Nègre-Salvayre A, Augé N. Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway. Redox Biol 2014; 4:169-79. [PMID: 25574848 PMCID: PMC4309845 DOI: 10.1016/j.redox.2014.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/29/2022] Open
Abstract
Actin remodeling is a dynamic process associated with cell shape modification occurring during cell cycle and proliferation. Oxidative stress plays a role in actin reorganization via various systems including p38MAPK. Beside, the mitogenic response evoked by hydrogen peroxide (H2O2) in fibroblasts and smooth muscle cells (SMC) involves the metalloproteinase (MMPs)/sphingomyelinase 2 (nSMase2) signaling pathway. The aim of this work was to investigate whether this system plays a role in actin remodeling induced by H2O2. Low H2O2 dose (5 µM) rapidly triggered a signaling cascade leading to nSMase2 activation, src and annexin 2 (AnxA2) phosphorylation, and actin remodeling, in fibroblasts and SMC. These events were blocked by pharmacological inhibitors of MMPs (Ro28-2653) and p38MAPK (SB203580), and were lacking in MMP2−/− and in nSMase2-mutant (fro) fibroblasts. Likewise, H2O2 was unable to induce actin remodeling in fro and MMP2−/− fibroblasts or in cells pretreated with p38MAPK, or MMP inhibitors. Finally we show that nSMase2 activation by H2O2, depends on MMP2 and p38MAPK, and is required for the src-dependent phosphorylation of AnxA2, and actin remodeling. Taken together, these findings indicate for the first time that AnxA2 phosphorylation and actin remodeling evoked by oxidative stress depend on the sphingolipid pathway, via MMP2 and p38MAPK. Low concentration of H2O2 activates matrix metalloproteinases MMP-2. MMP-2 activates p38MAPK, type 2 neutral sphingomyelinase. This signaling pathway induces annexin II phosphorylation via src. This pathway is involved in actin remodeling due to H2O2 stimulation.
Collapse
Affiliation(s)
- Christel Cinq-Frais
- INSERM UMR-1048, Toulouse, France; Dept de Biochimie, CHU Rangueil, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Christelle Coatrieux
- INSERM UMR-1048, Toulouse, France; Dept de Biochimie, CHU Rangueil, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Aude Savary
- INSERM UMR-1048, Toulouse, France; Dept de Biochimie, CHU Rangueil, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | | | | | - Robert Salvayre
- INSERM UMR-1048, Toulouse, France; Dept de Biochimie, CHU Rangueil, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Anne Nègre-Salvayre
- INSERM UMR-1048, Toulouse, France; Université Paul Sabatier, Toulouse, France
| | - Nathalie Augé
- INSERM UMR-1048, Toulouse, France; Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
10
|
Jiménez-Garduño AM, Mitkovski M, Alexopoulos IK, Sánchez A, Stühmer W, Pardo LA, Ortega A. KV10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:921-31. [DOI: 10.1016/j.bbamem.2013.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
|
11
|
Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res 2011; 318:103-13. [PMID: 22036648 DOI: 10.1016/j.yexcr.2011.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 12/29/2022]
Abstract
Recent studies have identified caveolin-1, a protein best known for its functions in caveolae, in apical endocytic recycling compartments in polarized epithelial cells. However, very little is known about the regulation of caveolin-1 in the endocytic recycling pathway. To address this question, in the current study we compared the relationship between compartments enriched in sub-apical caveolin-1 and Rab11a, a well-defined marker of apical recycling endosomes, using polarized MDCK cells as a model. We show that caveolin-1-containing vesicles define a compartment that partially overlaps with Rab11a, and that the distribution of subapical caveolin-1 and Rab11a shows a similar dependence on microtubule disruption. Mutants of the Rab11a effector, Rab11-FIP2 also altered the localization of caveolin-1. These findings indicate that caveolin-1 is coordinately regulated with Rab11a within the apical recycling system of polarized epithelial cells, suggesting that the two proteins are components of the same pathway.
Collapse
|
12
|
Scorticati C, Formoso K, Frasch AC. Neuronal glycoprotein M6a induces filopodia formation via association with cholesterol-rich lipid rafts. J Neurochem 2011; 119:521-31. [PMID: 21426347 DOI: 10.1111/j.1471-4159.2011.07252.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A neuronal integral membrane glycoprotein M6a has been suggested to be involved in a number of biological processes, including neuronal remodeling and differentiation, trafficking of mu-opioid receptors, and Ca(2+) transportation. Moreover, pathological situations such as chronic stress in animals and depression in humans have been associated with alterations in M6a sequence and expression. The mechanism of action of M6a is essentially unknown. In this work, we analyze the relevance of M6a distribution in plasma membrane, namely its lipid microdomain targeting, for its biological function in filopodia formation. We demonstrate that M6a is localized in membrane microdomains compatible with lipid rafts in cultured rat hippocampal neurons. Removal of cholesterol from neuronal membranes with methyl-β-cyclodextrin decreases M6a-induced filopodia formation, an effect that is reversed by the addition of cholesterol. Inhibition of Src kinases and MAPK prevents filopodia formation in M6a-over-expressing neurons. Src-deficient SYF cells over-expressing M6a fail to promote filopodia formation. Taken together, our findings reveal that the association of M6a with lipid rafts is important for its role in filopodia formation and Src and MAPK kinases participate in M6a signal propagation.
Collapse
Affiliation(s)
- Camila Scorticati
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.
| | | | | |
Collapse
|
13
|
Abstract
The Src/FAK complex is involved in many signaling pathways and plays crucial roles in cell adhesion/migration. It becomes clear that the subcellular localization of Src and FAK is crucial for their activities and functions. In this article, we first overview the molecular mechanisms and functions of Src and FAK involved in cell adhesion/migration. We then introduce the development of genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) to visualize the activities of Src and FAK in live cells with high spatiotemporal resolutions. Different kinds of signal peptides targeting subcellular compartments are also discussed. FRET-based biosensors fused with these targeting signals peptides are further introduced to provide an overview on how these targeting signals can facilitate the localization of biosensors to continuously monitor the local activity of Src and FAK at subcellular compartments. In summary, genetically-encoded FRET biosensors integrated with subcellular compartment-targeting signals can provide powerful tools for the visualization of subcellular Src and FAK activities in live cells and advance our in-depth understanding of Src/FAK functions at different subcellular compartments.
Collapse
Affiliation(s)
- Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
14
|
D′auria L, Van Der Smissen P, Bruyneel F, Courtoy PJ, Tyteca D. Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids? PLoS One 2011; 6:e17021. [PMID: 21386970 PMCID: PMC3046177 DOI: 10.1371/journal.pone.0017021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/14/2011] [Indexed: 01/06/2023] Open
Abstract
Background We recently reported that sphingomyelin (SM) analogs substituted on the alkyl chain by various fluorophores (e.g. BODIPY) readily inserted at trace levels into the plasma membrane of living erythrocytes or CHO cells and spontaneously concentrated into micrometric domains. Despite sharing the same fluorescent ceramide backbone, BODIPY-SM domains segregated from similar domains labelled by BODIPY-D-e-lactosylceramide (D-e-LacCer) and depended on endogenous SM. Methodology/Principal Findings We show here that BODIPY-SM further differed from BODIPY-D-e-LacCer or -glucosylceramide (GlcCer) domains in temperature dependence, propensity to excimer formation, association with a glycosylphosphatidylinositol (GPI)-anchored fluorescent protein reporter, and lateral diffusion by FRAP, thus demonstrating different lipid phases and boundaries. Whereas BODIPY-D-e-LacCer behaved like BODIPY-GlcCer, its artificial stereoisomer, BODIPY-L-t-LacCer, behaved like BODIPY- and NBD-phosphatidylcholine (PC). Surprisingly, these two PC analogs also formed micrometric patches yet preferably at low temperature, did not show excimer, never associated with the GPI reporter and showed major restriction to lateral diffusion when photobleached in large fields. This functional comparison supported a three-phase micrometric compartmentation, of decreasing order: BODIPY-GSLs > -SM > -PC (or artificial L-t-LacCer). Co-existence of three segregated compartments was further supported by double labelling experiments and was confirmed by additive occupancy, up to ∼70% cell surface coverage. Specific alterations of BODIPY-analogs domains by manipulation of corresponding endogenous sphingolipids suggested that distinct fluorescent lipid partition might reflect differential intrinsic propensity of endogenous membrane lipids to form large assemblies. Conclusions/Significance We conclude that fluorescent membrane lipids spontaneously concentrate into distinct micrometric assemblies. We hypothesize that these might reflect preexisting compartmentation of endogenous PM lipids into non-overlapping domains of differential order: GSLs > SM > PC, resulting into differential self-adhesion of the two former, with exclusion of the latter.
Collapse
Affiliation(s)
- Ludovic D′auria
- CELL Unit, de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | | | - Frédéric Bruyneel
- CHOM Unit, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre J. Courtoy
- CELL Unit, de Duve Institute and Université catholique de Louvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
15
|
The effects of membrane compartmentalization of csk on TCR signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:367-76. [PMID: 21167217 DOI: 10.1016/j.bbamcr.2010.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 12/06/2010] [Indexed: 12/29/2022]
Abstract
The TCR signal transduction is initiated by the activation of Src-family kinases (SFK) which phosphorylate Immunoreceptor tyrosine-based activation motifs (ITAM) present in the intracellular parts of the T-cell receptor (TCR) signaling subunits. Numerous data suggest that after stimulation TCR interacts with membrane rafts and thus it gains access to SFK and other important molecules involved in signal transduction. However, the precise mechanism of this process is unclear. One of the key questions is how SFK access TCR and what is the importance of non-raft and membrane raft-associated SFK for the initiation and maintenance of the TCR signaling. To answer this question we targeted a negative regulator of SFK, C-terminal Src kinase (Csk) to membrane rafts, recently described "heavy rafts" or non-raft membrane. Our data show that only Csk targeted into "classical" raft but not to "heavy raft" or non-raft membrane effectively inhibits TCR signaling, demonstrating the critical role of membrane raft-associated SFK in this process.
Collapse
|
16
|
Acute ligand-independent Src activation mimics low EGF-induced EGFR surface signalling and redistribution into recycling endosomes. Exp Cell Res 2010; 316:3239-53. [PMID: 20832399 DOI: 10.1016/j.yexcr.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/12/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
Src, a non-receptor tyrosine kinase, is a key signal transduction partner of epidermal growth factor (EGF) receptor (EGFR). In human breast cancer, EGFR and Src are frequently over-expressed and/or over-activated. Although reciprocal activation is documented, mechanisms underlying Src:EGFR interactions are incompletely understood. We here exploited ts/v-Src thermo-activation in MDCK monolayers to test whether acute Src activation impacts on signalling and trafficking of non-liganded EGFR. We found that thermo-activation caused rapid Src recruitment to the plasma membrane, concomitant association with EGFR, and its phosphorylation at Y845 and Y1173 predominantly at the cell surface. Like low EGF concentrations, activated Src (i) decreased EGF surface binding without affecting the total EGFR pool; (ii) triggered EGFR endocytosis via clathrin-coated vesicles; (iii) and led to its sequestration in perinuclear/recycling endosomes with avoidance of multivesicular bodies and lysosomal degradation. Combined Src activation and EGF were synergistic for EGFR-Y845 and -Y1173 phosphorylation at some endosomes. We conclude that acute effects of Src in MDCK cells may mimic those of low EGF on EGFR activation and redistribution. Src:EGFR interactions may be sufficient to trigger EGFR activation and might contribute to its local signalling, without requiring either soluble extracellular signal or receptor over-expression.
Collapse
|
17
|
Das S, Chakraborty S, Basu A. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3′ kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. J Neurochem 2010; 115:537-49. [DOI: 10.1111/j.1471-4159.2010.06951.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Ponce J, Brea D, Carrascal M, Guirao V, Degregorio-Rocasolano N, Sobrino T, Castillo J, Dávalos A, Gasull T. The effect of simvastatin on the proteome of detergent-resistant membrane domains: decreases of specific proteins previously related to cytoskeleton regulation, calcium homeostasis and cell fate. Proteomics 2010; 10:1954-65. [PMID: 20217863 DOI: 10.1002/pmic.200900055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell death induced by over-activation of glutamate receptors occurs in different neuropathologies. Cholesterol depletors protect from neurotoxic over-activation of glutamate receptors, and we have recently reported that this neuroprotection is associated with a reduction of the N-methyl-D-aspartate subtype of glutamate receptors in detergent-resistant membrane domains (DRM). In the present study we used comparative proteomics to further identify which proteins, besides the N-methyl-D-aspartate receptor, change its percentage of association to DRM after treatment of neurons with simvastatin. We detected 338 spots in neuronal DRM subjected to 2-DE; eleven of these spots changed its intensity after treatment with simvastatin. All 11 differential spots showed reduced intensity in simvastatin-treated samples and were identified as adipocyte plasma membrane associated protein, enolase, calretinin, coronin 1a, f-actin capping protein alpha1, f-actin capping protein alpha2, heat shock cognate protein 71, malate dehydrogenase, n-myc downregulated gene 1, prohibitin 2, Rab GDP dissociation inhibitor, translationally controlled tumor protein and voltage dependent anion selective channel protein 1. The proteins tested colocalized with the lipid raft marker caveolin-1. Interestingly, the proteins we have identified in the present study had been previously reported to play a role in cell fate and, thus, they might represent novel targets for neuroprotection.
Collapse
Affiliation(s)
- Jovita Ponce
- Cellular and Molecular Neurobiology Research Group and Grup de Recerca en Neurociencies del IGTP, Department of Neurosciences, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol-Universitat Autónoma de Barcelona, Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Different responses in transformation of MDCK cells in 2D and 3D culture by v-Src as revealed by microarray techniques, RT-PCR and functional assays. J Transl Med 2010; 90:915-28. [PMID: 20212454 DOI: 10.1038/labinvest.2010.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Differentiation and transformation of untransformed and ts-Src-transformed canine kidney MDCK cells in 2D and 3D environment were investigated using microarray technique, RT-PCR, confocal microscopy and functional assays. Activated Src induced epithelial-mesenchymal transition (EMT) in 2D environment followed by translocation of junctional proteins to the cytoplasm, without significant changes in protein expression. In 3D environment untransformed MDCK cells formed cell cysts with apical domain facing a lumen, E-cadherin delineating the lateral membranes, ZO-1 at tight junctions and caspase-3 in apoptotic cells captured within the lumen. This was accompanied by reduced expression of an apoptosis inhibitor, survivin and vesicle transport effectors, rab 7 and 8, whereas rab 5 expression increased. In 3D environment activated Src induced changes in expression of over 100 genes as revealed by microarray analysis, mostly involved in cell signaling, division and energy metabolism. Only response in cytoskeletal components was decreased expression of actin and Arp2/3 by v-Src, whereas two p120catenin binding proteins Kaiso and Nanos increased their expression. Concomitantly, apoptosis was inhibited by v-Src resulting in formation of a sphere with epitheloid cells facing extracellular matrix and undifferentiated cells captured within the cluster. This was accompanied by increased expression of apoptosis inhibitor survivin, as revealed by western blotting. Mitochondrial membrane potential in untransformed MDCK cells was lower than in ts-Src-MDCK cells in early days of cluster formation correlating with the induction of apoptosis. Hence, v-Src activation in 3D environment did not induce EMT, but brought about inhibition of apoptosis and increased proliferation where increased expression of survivin and inhibition of the mitochondrial permeability have a role.
Collapse
|
20
|
Tyteca D, D'Auria L, Der Smissen PV, Medts T, Carpentier S, Monbaliu J, de Diesbach P, Courtoy P. Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:909-27. [DOI: 10.1016/j.bbamem.2010.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 01/01/2023]
|
21
|
Mateos MV, Salvador GA, Giusto NM. Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:624-36. [PMID: 20026046 DOI: 10.1016/j.bbamem.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/19/2009] [Accepted: 12/14/2009] [Indexed: 01/21/2023]
Abstract
Detergent-resistant membranes (DRMs) are a class of specialized microdomains that compartmentalize several signal transduction processes. In this work, DRMs were isolated from cerebral cortex synaptic endings (Syn) on the basis of their relative insolubility in cold Triton X-100 (1%). The lipid composition and marker protein content were analyzed in DRMs obtained from adult and aged animals. Both DRM preparations were enriched in Caveolin, Flotillin-1 and c-Src and also presented significantly higher sphingomyelin (SM) and cholesterol content than purified Syn. Total phospholipid-fatty acid composition presented an increase in 16:0 (35%), and a decrease in 20:4n-6 (67%) and 22:6n-3 (68%) content in DRM from adults when compared to entire synaptic endings. A more dramatic decrease was observed in the 20:4n-6 and 22:6n-3 content in DRMs from aged animals (80%) with respect to the results found in adults. The coexistence of phosphatidylcholine-specific-phospholipase C (PC-PLC) and phospholipase D (PLD) in Syn was previously reported. The presence of these signaling pathways was also investigated in DRMs isolated from adult and aged rats. Both PC-PLC and PLD pathways generate the lipid messenger diacylglycerol (DAG) by catalyzing PC hydrolysis. PC-PLC and PLD1 localization were increased in the DRM fraction. The increase in DAG generation (60%) in the presence of ethanol, confirmed that PC-PLC was also activated when compartmentalized in DRMs. Conversely, PLD2 was excluded from the DRM fraction. Our results show an age-related differential fatty acid composition and a selective localization of PC-derived signaling in synaptic DRMs obtained from adult and aged rats.
Collapse
Affiliation(s)
- M V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|
22
|
Eisinger DA, Ammer H. Down-regulation of c-Cbl by morphine accounts for persistent ERK1/2 signaling in delta-opioid receptor-expressing HEK293 cells. J Biol Chem 2009; 284:34819-28. [PMID: 19828455 DOI: 10.1074/jbc.m109.042937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Opioids display ligand-specific differences in the time course of ERK1/2 signaling. Whereas full agonists, like etorphine, induce only transient activation of ERK1/2, the partial agonist morphine mediates persistent stimulation of mitogenic signaling. Here we report that in stably delta-opioid receptor (DOR)-expressing HEK293 (HEK/DOR) cells, the transient nature of etorphine-induced ERK1/2 signaling is due to desensitization of epidermal growth factor (EGF) receptor-mediated activation of the Ras/Raf-1/ERK1/2 cascade. Desensitization of ERK1/2 activity by etorphine is associated with down-regulation of EGF receptors, an effect mediated by the ubiquitin ligase c-Cbl. In contrast, chronic morphine treatment failed to desensitize EGF receptors, resulting in unimpeded ERK1/2 signaling. The failure of morphine to desensitize ERK1/2 signaling is mediated by persistent activation of c-Src, which induces degradation of c-Cbl. The role of c-Src in opioid-specific ERK1/2 signaling is further demonstrated by pretreatment of the cells with PP2 and SKI-I as well as overexpression of a dominant negative c-Src mutant (c-Src(dn)) or a c-Src-resistant c-Cbl mutant (CblY3F), both of which facilitate desensitization of ERK1/2 signaling by morphine. Conversely, overexpression of c-Src as well as down-regulation of c-Cbl by small interfering RNA results in persistent etorphine-induced stimulation of ERK1/2 activity. Subcellular fractionation experiments finally attributed the ability of morphine to persistently activate c-Src to its redistribution from Triton X-100-insensitive membrane rafts to DOR and EGF receptor containing high density membrane compartments implicated in ERK1/2 signaling. These results demonstrate that agonist-specific differences in the temporal and spatial pattern of c-Src activation determine the kinetics of DOR-mediated regulation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University Munich, 80539 Muenchen, Germany.
| | | |
Collapse
|
23
|
Kaimachnikov NP, Kholodenko BN. Toggle switches, pulses and oscillations are intrinsic properties of the Src activation/deactivation cycle. FEBS J 2009; 276:4102-18. [PMID: 19627364 DOI: 10.1111/j.1742-4658.2009.07117.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Src-family kinases (SFKs) play a pivotal role in growth factor signaling, mitosis, cell motility and invasiveness. In their basal state, SFKs maintain a closed autoinhibited conformation, where the Src homology 2 domain interacts with an inhibitory phosphotyrosine in the C-terminus. Activation involves dephosphorylation of this inhibitory phosphotyrosine, followed by intermolecular autophosphorylation of a specific tyrosine residue in the activation loop. The spatiotemporal dynamics of SFK activation controls cell behavior, yet these dynamics remain largely uninvestigated. In the present study, we show that the basic properties of the Src activation/deactivation cycle can bring about complex signaling dynamics, including oscillations, toggle switches and excitable behavior. These intricate dynamics do not require imposed external feedback loops and occur at constant activities of Src inhibitors and activators, such as C-terminal Src kinase and receptor-type protein tyrosine phosphatases. We demonstrate that C-terminal Src kinase and receptor-type protein tyrosine phosphatase underexpression or their simultaneous overexpression can transform Src response patterns into oscillatory or bistable responses, respectively. Similarly, Src overexpression leads to dysregulation of Src activity, promoting sustained self-perpetuating oscillations. Distinct types of responses can allow SFKs to trigger different cell-fate decisions, where cellular outcomes are determined by the stimulation threshold and history. Our mathematical model helps to understand the puzzling experimental observations and suggests conditions where these different kinetic behaviors of SFKs can be tested experimentally.
Collapse
Affiliation(s)
- Nikolai P Kaimachnikov
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Abstract
Rafts are domains of the plasma membrane, enriched in cholesterol and sphingolipids; they form a platform for signaling proteins and receptors. The lipid rafts are utilized in the replication cycle of numerous viruses. Internalization receptors of many viruses localize to rafts or are recruited there after virus binding. Arrays of signal transduction proteins found in rafts contribute to efficient trafficking and productive infection. Some viruses are dependent on raft domains for the biogenesis of their membranous replication structures. Finally, rafts are often important in virus assembly and budding. Subsequently, raft components in the viral envelope may be vital for the entry to a new host cell. Here, we summarize the current knowledge of the involvement of rafts in virus infection.
Collapse
Affiliation(s)
- Paula Upla
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| | - Timo Hyypiä
- Department of Virology, University of Turku, FI-20520 Turku, Finland
| | - Varpu Marjomäki
- Department of Biological & Environmental Science/Nanoscience Center, University of Jyväskylä, FI-40351 Jyväskylä, Finland
| |
Collapse
|
25
|
Oakley FD, Abbott D, Li Q, Engelhardt JF. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 2009; 11:1313-33. [PMID: 19072143 PMCID: PMC2842130 DOI: 10.1089/ars.2008.2363] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers.
Collapse
Affiliation(s)
- Fredrick D Oakley
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
26
|
Tournaviti S, Pietro ES, Terjung S, Schafmeier T, Wegehingel S, Ritzerfeld J, Schulz J, Smith DF, Pepperkok R, Nickel W. Reversible phosphorylation as a molecular switch to regulate plasma membrane targeting of acylated SH4 domain proteins. Traffic 2009; 10:1047-60. [PMID: 19453972 DOI: 10.1111/j.1600-0854.2009.00921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acylated SH4 domains represent N-terminal targeting signals that anchor peripheral membrane proteins such as Src kinases in the inner leaflet of plasma membranes. Here we provide evidence for a novel regulatory mechanism that may control the levels of SH4 proteins being associated with plasma membranes. Using a fusion protein of the SH4 domain of Leishmania HASPB and GFP as a model system, we demonstrate that threonine 6 is a substrate for phosphorylation. Substitution of threonine 6 by glutamate (to mimic a phosphothreonine residue) resulted in a dramatic redistribution from plasma membranes to intracellular sites with a particular accumulation in a perinuclear region. As shown by both pharmacological inhibition and RNAi-mediated down-regulation of the threonine/ serine-specific phosphatases PP1 and PP2A, recycling back to the plasma membrane required dephosphorylation of threonine 6. We provide evidence that a cycle of phosphorylation and dephosphorylation may also be involved in intracellular targeting of other SH4 proteins such as the Src kinase Yes.
Collapse
|
27
|
Donovan C, Bramkamp M. Characterization and subcellular localization of a bacterial flotillin homologue. MICROBIOLOGY-SGM 2009; 155:1786-1799. [PMID: 19383680 DOI: 10.1099/mic.0.025312-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of endospore formation in Bacillus subtilis is complex, requiring the generation of two distinct cell types, a forespore and larger mother cell. The development of these cell types is controlled and regulated by cell type-specific gene expression, activated by a sigma-factor cascade. Activation of these cell type-specific sigma factors is coupled with the completion of polar septation. Here, we describe a novel protein, YuaG, a eukaryotic reggie/flotillin homologue that is involved in the early stages of sporulation of the Gram-positive model organism B. subtilis. YuaG localizes in discrete foci in the membrane and is highly dynamic. Purification of detergent-resistant membranes revealed that YuaG is associated with negatively charged phospholipids, e.g. phosphatidylglycerol (PG) or cardiolipin (CL). However, localization of YuaG is not always dependent on PG/CL in vivo. A yuaG disruption strain shows a delay in the onset of sporulation along with reduced sporulation efficiency, where the spores develop to a certain stage and then appear to be trapped at this stage. Our results indicate that YuaG is involved in the early stage of spore development, probably playing a role in the signalling cascade at the onset of sporulation.
Collapse
Affiliation(s)
- Catriona Donovan
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Bramkamp
- Institut für Biochemie, Universität zu Köln, Zülpicher Str. 47, D-50674 Köln, Germany
| |
Collapse
|
28
|
Hayes MJ, Moss SE. Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J Biol Chem 2009; 284:10202-10. [PMID: 19193640 PMCID: PMC2665074 DOI: 10.1074/jbc.m807043200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/04/2009] [Indexed: 01/03/2023] Open
Abstract
Cell transformation by v-Src involves rearrangement of the actin cytoskeleton, disassembly of focal adhesions, and the development of anchorage-independent growth. Here, we report that this is dependent on annexin 2, a v-Src substrate and calcium-dependent regulator of actin dynamics. Using a thermoactivatable mutant of v-Src, we show that at the permissive temperature, annexin 2 becomes phosphorylated and colocalizes with activated v-Src and focal adhesion kinase both at the plasma membrane and in a Rab11-positive compartment of the endosomal pathway. In cells depleted of annexin 2 by small interfering RNA, v-Src becomes activated at the permissive temperature but does not target to the plasma membrane or to perinuclear vesicles, and cell transformation does not occur. Our findings reveal a dual role for annexin 2, first as a regulator of v-Src trafficking and targeting and second as a v-Src effector in the reorganization of actin.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, University College London Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, United Kingdom
| | | |
Collapse
|
29
|
Seong J, Lu S, Ouyang M, Huang H, Zhang J, Frame MC, Wang Y. Visualization of Src activity at different compartments of the plasma membrane by FRET imaging. ACTA ACUST UNITED AC 2009; 16:48-57. [PMID: 19171305 DOI: 10.1016/j.chembiol.2008.11.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 12/11/2022]
Abstract
Membrane compartments function as segregated signaling platforms for different cellular functions. It is not clear how Src is regulated at different membrane compartments. To visualize local Src activity in live cells, a FRET-based Src biosensor was targeted in or outside of lipid rafts at the plasma membrane, via acylation or prenylation modifications on targeting tags either directly fused to the biosensor or coupled to the biosensor through an inducible heterodimerization system. In response to growth factors and pervanadate, the induction of Src activity in rafts was slower and weaker, dependent on actin and possibly its mediated transportation of Src from perinuclear regions to the plasma membrane. In contrast, the induction of Src activity in nonrafts was faster and stronger, dependent on microtubules. Hence, Src activity is differentially regulated via cytoskeleton at different membrane compartments.
Collapse
Affiliation(s)
- Jihye Seong
- Neuroscience Program, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Recruitment of protein phosphatase 2A to dorsal ruffles by platelet-derived growth factor in smooth muscle cells: Dephosphorylation of Hsp27. Exp Cell Res 2009; 315:836-48. [DOI: 10.1016/j.yexcr.2008.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/10/2008] [Accepted: 12/03/2008] [Indexed: 01/01/2023]
|
31
|
Endosomal trafficking of Src tyrosine kinase. Trends Cell Biol 2008; 18:322-9. [PMID: 18515107 DOI: 10.1016/j.tcb.2008.05.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/01/2008] [Accepted: 05/06/2008] [Indexed: 12/29/2022]
Abstract
Endosomal trafficking is an essential cellular process involved in the transport of proteins such as integrins, hormone receptors, growth factor receptors, receptor tyrosine kinases, and lipids (e.g. sphingomyelin). Regulation of this process is highly complex and involves Arf GAPs, SNAREs, Rab proteins, Rho GTPases and the actin cytoskeleton. In this article, we focus on the intracellular targeting of the Src family of non-receptor tyrosine kinases (nRTKs), and the role of endosomes in the delivery of nRTKs to the plasma membrane. Furthermore, we discuss the role of the actin cytoskeleton in this process and consider how endosome-regulated intracellular trafficking affects cell signalling.
Collapse
|
32
|
CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol 2008; 28:5710-23. [PMID: 18644869 DOI: 10.1128/mcb.00186-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD44 is present in detergent-resistant, cholesterol-rich microdomains, called lipid rafts, in many types of cells. However, the functional significance of CD44 in lipid rafts is still unknown. We have previously demonstrated that osteopontin-mediated engagement of CD44 spliced variant isoforms promotes an extracellular matrix-derived survival signal through integrin activation. By using a series of CD44 mutants and pharmacological inhibitors selectively targeted to various cellular pathways, we show in this study that engagement of CD44 induces lipid raft coalescence to facilitate a CD44-Src-integrin signaling axis in lipid rafts, leading to increased matrix-derived survival. Palmitoylation of the membrane-proximal cysteine residues and carboxyl-terminal linkage to the actin cytoskeleton both contribute to raft targeting of CD44. The enrichment of integrin beta1 in lipid rafts is tightly coupled to CD44 ligation-elicited lipid raft reorganization and associated with temporally delayed endocytosis. Through the interaction with the CD44 carboxyl-terminal ankyrin domain, Src is cotranslocated to lipid rafts, where it induces integrin activation via an inside-out mechanism. Collectively, this study demonstrates an important role of the dynamic raft reorganization induced by CD44 clustering in eliciting the matrix-derived survival signal.
Collapse
|