1
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
2
|
Sun S, Liu Y, Gao H, Guan W, Zhao Y, Li G. Cell culture on suspended fiber for tissue regeneration: A review. Int J Biol Macromol 2024; 268:131827. [PMID: 38670204 DOI: 10.1016/j.ijbiomac.2024.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Cell culturing is a cornerstone of tissue engineering, playing a crucial role in tissue regeneration, drug screening, and the study of disease mechanisms. Among various culturing techniques, 3D culture systems, particularly those utilizing suspended fiber scaffolds, offer a more physiologically relevant environment than traditional 2D monolayer cultures. These 3D scaffolds enhance cell growth, differentiation, and proliferation by mimicking the in vivo cellular milieu. This review focuses on the critical role of suspended fiber scaffolds in tissue engineering. We compare the effectiveness of 3D suspended fiber scaffolds with 2D culture systems, discussing their respective benefits and limitations in the context of tissue regeneration. Furthermore, we explore the preparation methods of suspended fiber scaffolds and their potential applications. The review concludes by considering future research directions for optimizing suspended fiber scaffolds to address specific challenges in tissue regeneration, underscoring their significant promise in advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yahong Zhao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China; NMPA Key Laboratory for Quality Evaluation of Medical Protective and Implant Devices, 450018 Zhengzhou, PR China.
| |
Collapse
|
3
|
Hromada C, Szwarc-Hofbauer D, Quyen Nguyen M, Tomasch J, Purtscher M, Hercher D, Teuschl-Woller AH. Strain-induced bands of Büngner formation promotes axon growth in 3D tissue-engineered constructs. J Tissue Eng 2024; 15:20417314231220396. [PMID: 38249993 PMCID: PMC10798132 DOI: 10.1177/20417314231220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Treatment of peripheral nerve lesions remains a major challenge due to poor functional recovery; hence, ongoing research efforts strive to enhance peripheral nerve repair. In this study, we aimed to establish three-dimensional tissue-engineered bands of Büngner constructs by subjecting Schwann cells (SCs) embedded in fibrin hydrogels to mechanical stimulation. We show for the first time that the application of strain induces (i) longitudinal alignment of SCs resembling bands of Büngner, and (ii) the expression of a pronounced repair SC phenotype as evidenced by upregulation of BDNF, NGF, and p75NTR. Furthermore, we show that mechanically aligned SCs provide physical guidance for migrating axons over several millimeters in vitro in a co-culture model with rat dorsal root ganglion explants. Consequently, these constructs hold great therapeutic potential for transplantation into patients and might also provide a physiologically relevant in vitro peripheral nerve model for drug screening or investigation of pathologic or regenerative processes.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dorota Szwarc-Hofbauer
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mai Quyen Nguyen
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Janine Tomasch
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Michaela Purtscher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - David Hercher
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
4
|
Abd Razak NH, Zainey AS, Idris J, Daud MF. The Fundamentals of Schwann Cell Biology. INDUSTRIAL REVOLUTION IN KNOWLEDGE MANAGEMENT AND TECHNOLOGY 2023:105-113. [DOI: 10.1007/978-3-031-29265-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Hörner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures. Cells 2021; 10:cells10123292. [PMID: 34943800 PMCID: PMC8699767 DOI: 10.3390/cells10123292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022] Open
Abstract
Motoneurons, skeletal muscle fibers, and Schwann cells form synapses, termed neuromuscular junctions (NMJs). These control voluntary body movement and are affected in numerous neuromuscular diseases. Therefore, a variety of NMJ in vitro models have been explored to enable mechanistic and pharmacological studies. So far, selective integration of Schwann cells in these models has been hampered, due to technical limitations. Here we present robust protocols for derivation of Schwann cells from human induced pluripotent stem cells (hiPSC) and their coculture with hiPSC-derived motoneurons and C2C12 muscle cells. Upon differentiation with tuned BMP signaling, Schwann cells expressed marker proteins, S100b, Gap43, vimentin, and myelin protein zero. Furthermore, they displayed typical spindle-shaped morphologies with long processes, which often aligned with motoneuron axons. Inclusion of Schwann cells in coculture experiments with hiPSC-derived motoneurons and C2C12 myoblasts enhanced myotube growth and affected size and number of acetylcholine receptor plaques on myotubes. Altogether, these data argue for the availability of a consistent differentiation protocol for Schwann cells and their amenability for functional integration into neuromuscular in vitro models, fostering future studies of neuromuscular mechanisms and disease.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim of Heidelberg University, 68159 Mannheim, Germany;
- Hector Institute for Translational Brain Research (HITBR gGmbH), 68159 Mannheim, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany; (S.J.H.); (N.C.); (R.B.); (M.H.)
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, 68163 Mannheim, Germany
- Correspondence:
| |
Collapse
|
6
|
Doblado LR, Martínez-Ramos C, García-Verdugo JM, Moreno-Manzano V, Pradas MM. Engineered axon tracts within tubular biohybrid scaffolds. J Neural Eng 2021; 18. [PMID: 34311448 DOI: 10.1088/1741-2552/ac17d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts.
Collapse
Affiliation(s)
- Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Universidad Católica de Valencia, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
7
|
Panzer KV, Burrell JC, Helm KVT, Purvis EM, Zhang Q, Le AD, O’Donnell JC, Cullen DK. Tissue Engineered Bands of Büngner for Accelerated Motor and Sensory Axonal Outgrowth. Front Bioeng Biotechnol 2020; 8:580654. [PMID: 33330416 PMCID: PMC7714719 DOI: 10.3389/fbioe.2020.580654] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Following peripheral nerve injury comprising a segmental defect, the extent of axon regeneration decreases precipitously with increasing gap length. Schwann cells play a key role in driving axon re-growth by forming aligned tubular guidance structures called bands of Büngner, which readily occurs in distal nerve segments as well as within autografts - currently the most reliable clinically-available bridging strategy. However, host Schwann cells generally fail to infiltrate large-gap acellular scaffolds, resulting in markedly inferior outcomes and motivating the development of next-generation bridging strategies capable of fully exploiting the inherent pro-regenerative capability of Schwann cells. We sought to create preformed, implantable Schwann cell-laden microtissue that emulates the anisotropic structure and function of naturally-occurring bands of Büngner. Accordingly, we developed a biofabrication scheme leveraging biomaterial-induced self-assembly of dissociated rat primary Schwann cells into dense, fiber-like three-dimensional bundles of Schwann cells and extracellular matrix within hydrogel micro-columns. This engineered microtissue was found to be biomimetic of morphological and phenotypic features of endogenous bands of Büngner, and also demonstrated 8 and 2× faster rates of axonal extension in vitro from primary rat spinal motor neurons and dorsal root ganglion sensory neurons, respectively, compared to 3D matrix-only controls or planar Schwann cells. To our knowledge, this is the first report of accelerated motor axon outgrowth using aligned Schwann cell constructs. For translational considerations, this microtissue was also fabricated using human gingiva-derived Schwann cells as an easily accessible autologous cell source. These results demonstrate the first tissue engineered bands of Büngner (TE-BoBs) comprised of dense three-dimensional bundles of longitudinally aligned Schwann cells that are readily scalable as implantable grafts to accelerate axon regeneration across long segmental nerve defects.
Collapse
Affiliation(s)
- Kate V. Panzer
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Kaila V. T. Helm
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of University of Pennsylvania, Philadelphia, PA, United States
| | - Anh D. Le
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Oral and Maxillofacial Surgery, Penn Medicine Hospital of University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Malheiro A, Morgan F, Baker M, Moroni L, Wieringa P. A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials 2020; 257:120230. [PMID: 32736264 DOI: 10.1016/j.biomaterials.2020.120230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
In vitro peripheral nerve models provide valuable tools to study neurobiology questions and assess drug performance, in a regenerative or pathology context. To this end, we have developed a representative model of the peripheral nerve that displays three-dimensional (3D) neural anisotropy and myelination, which we showcase here as a simple and low-cost platform for drug screening. The model is composed of three main parts, including rat primary Schwann cells (SCs) seeded onto an electrospun scaffold to create bands of Büngner (BoB), primed PC12 cells as neuronal cell population, and a fibrin hydrogel to provide three-dimensionality. We also validated the use of primed PC12 as a neuron population by comparing it to rat dorsal root ganglions (DRGs) neurons. In both models we could obtain well aligned neurites and mature myelin segments. In short term cultures (7 days), we found that the addition of exogenous SCs enhanced neurite length and neurite growth area, compared to scaffolds with a laminin coating only. Addition of fibrin also lead to increased outgrowth of DRG and primed PC12 neurites, compared to 2D cultures. Moreover, neurite outgrowth in fibrin cultures was simultaneously multiplanar and anisotropic, suggesting that the SC-seeded scaffold can direct not only the growth of adjacent neurites, but also those growing above it. These results highlight the feasibility of the combination of a SC pre-seeded scaffold with a fibrin hydrogel, to direct and improve neurite growth in 3D. To demonstrate the model potential, we tested our platform at an immature (7 days in vitro) and mature state (28 days in vitro) of development. At the immature stage we could inhibit neurite growth through protein blocking (via antibody binding) and show suramin (200 μM) neurotoxicity on cells. At the mature stage, when myelin is compact, we exposed cells to hyperglycemic conditions (45 mM glucose) to mimic diabetic conditions and showed that myelin deforms consequently. Moreover, we demonstrated that by supplementing cultures with epalrestat (1 μM), myelin deformation can be partly prevented. In sum, we developed a biomimetic nerve platform using an affordable and accessible cell line as neuronal population, which displays similar results to primary neurons, but does not require recurrent animal sacrifice. This platform holds great promise as it can be used to conveniently and inexpensively perform drug screenings on peripheral nerve-like tissue, in a normal or pathological state.
Collapse
Affiliation(s)
- Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD, Maastricht, the Netherlands.
| | - Francis Morgan
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Matthew Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
9
|
Prukop T, Wernick S, Boussicault L, Ewers D, Jäger K, Adam J, Winter L, Quintes S, Linhoff L, Barrantes-Freer A, Bartl M, Czesnik D, Zschüntzsch J, Schmidt J, Primas G, Laffaire J, Rinaudo P, Brureau A, Nabirotchkin S, Schwab MH, Nave KA, Hajj R, Cohen D, Sereda MW. Synergistic PXT3003 therapy uncouples neuromuscular function from dysmyelination in male Charcot-Marie-Tooth disease type 1A (CMT1A) rats. J Neurosci Res 2020; 98:1933-1952. [PMID: 32588471 DOI: 10.1002/jnr.24679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Collapse
Affiliation(s)
- Thomas Prukop
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Stephanie Wernick
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - David Ewers
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Jäger
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Adam
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lorenz Winter
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Susanne Quintes
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lisa Linhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Michael Bartl
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Czesnik
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | - Markus H Schwab
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Hadwen J, Schock S, Mears A, Yang R, Charron P, Zhang L, Xi HS, MacKenzie A. Transcriptomic RNAseq drug screen in cerebrocortical cultures: toward novel neurogenetic disease therapies. Hum Mol Genet 2019; 27:3206-3217. [PMID: 29901742 DOI: 10.1093/hmg/ddy221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/04/2018] [Indexed: 01/19/2023] Open
Abstract
Rare monogenic diseases affect millions worldwide; although over 4500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases. Many genetic diseases result from increased or decreased protein activity and identification of clinically approved drugs which moderate this pathogenic dosage holds therapeutic potential. To identify such agents for neurogenetic diseases, we have generated genome-wide transcriptome profiles of mouse primary cerebrocortical cultures grown in the presence of 218 blood-brain barrier (BBB) penetrant clinic-tested drugs. RNAseq and differential expression analyses were used to generate transcriptomic profiles; therapeutically relevant drug-gene interactions related to rare neurogenetic diseases identified in this fashion were further analyzed by quantitative reverse transcriptase-polymerase chain reaction, western blot and immunofluorescence. We have created a transcriptome-wide searchable database for easy access to the gene expression data resulting from the cerebrocortical drug screen (Neuron Screen) and have mined this data to identify a novel link between thyroid hormone and expression of the peripheral neuropathy associated gene Pmp22. Our results demonstrate the utility of cerebrocortical cultures for transcriptomic drug screening, and the database we have created will foster further discovery of novel links between over 200 clinic-tested BBB penetrant drugs and genes related to diverse neurologic conditions.
Collapse
Affiliation(s)
- Jeremiah Hadwen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Sarah Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Alan Mears
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Robert Yang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Philippe Charron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Liying Zhang
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Hualin S Xi
- Computational Sciences Centre of Emphasis, Pfizer, Boston, MA, USA
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
George DS, Anderson WA, Sommerhage F, Willenberg AR, Hines RB, Bosak AJ, Willenberg BJ, Lambert S. Bundling of axons through a capillary alginate gel enhances the detection of axonal action potentials using microelectrode arrays. J Tissue Eng Regen Med 2019; 13:385-395. [PMID: 30636354 DOI: 10.1002/term.2793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 11/09/2022]
Abstract
Microelectrode arrays (MEAs) have become important tools in high throughput assessment of neuronal activity. However, geometric and electrical constraints largely limit their ability to detect action potentials to the neuronal soma. Enhancing the resolution of these systems to detect axonal action potentials has proved both challenging and complex. In this study, we have bundled sensory axons from dorsal root ganglia through a capillary alginate gel (Capgel™) interfaced with an MEA and observed an enhanced ability to detect spontaneous axonal activity compared with two-dimensional cultures. Moreover, this arrangement facilitated the long-term monitoring of spontaneous activity from the same bundle of axons at a single electrode. Finally, using waveform analysis for cultures treated with the nociceptor agonist capsaicin, we were able to dissect action potentials from multiple axons on an individual electrode, suggesting that this model can reproduce the functional complexity associated with sensory fascicles in vivo. This novel three-dimensional functional model of the peripheral nerve can be used to study the functional complexities of peripheral neuropathies and nerve regeneration as well as being utilized in the development of novel therapeutics.
Collapse
Affiliation(s)
- Dale S George
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Wesley A Anderson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Alicia R Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Robert B Hines
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alexander J Bosak
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Bradley J Willenberg
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.,Saisijin Biotech LLC, St. Cloud, FL, USA
| | - Stephen Lambert
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
12
|
Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Sci Rep 2018; 8:15961. [PMID: 30374154 PMCID: PMC6206093 DOI: 10.1038/s41598-018-34280-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023] Open
Abstract
The ability to discriminate between diverse types of sensation is mediated by heterogeneous populations of peripheral sensory neurons. Human peripheral sensory neurons are inaccessible for research and efforts to study their development and disease have been hampered by the availability of relevant model systems. The in vitro differentiation of peripheral sensory neurons from human embryonic stem cells therefore provides an attractive alternative since an unlimited source of biological material can be generated for studies that specifically address development and injury. The work presented in this study describes the derivation of peripheral sensory neurons from human embryonic stem cells using small molecule inhibitors. The differentiated neurons express canonical- and modality-specific peripheral sensory neuron markers with subsets exhibiting functional properties of human nociceptive neurons that include tetrodotoxin-resistant sodium currents and repetitive action potentials. Moreover, the derived cells associate with human donor Schwann cells and can be used as a model system to investigate the molecular mechanisms underlying neuronal death following peripheral nerve injury. The quick and efficient derivation of genetically diverse peripheral sensory neurons from human embryonic stem cells offers unlimited access to these specialised cell types and provides an invaluable in vitro model system for future studies.
Collapse
|
13
|
George D, Ahrens P, Lambert S. Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 2018. [DOI: 10.1002/glia.23320] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dale George
- Burnett School of Biomedical Sciences, College of Medicine; University of Central Florida; Orlando Florida
| | - Paige Ahrens
- Department of Medical Education, College of Medicine; University of Central Florida; Orlando Florida
| | - Stephen Lambert
- Department of Medical Education, College of Medicine; University of Central Florida; Orlando Florida
| |
Collapse
|
14
|
Matsuoka H, Tanaka H, Sayanagi J, Iwahashi T, Suzuki K, Nishimoto S, Okada K, Murase T, Yoshikawa H. Neurotropin ® Accelerates the Differentiation of Schwann Cells and Remyelination in a Rat Lysophosphatidylcholine-Induced Demyelination Model. Int J Mol Sci 2018; 19:ijms19020516. [PMID: 29419802 PMCID: PMC5855738 DOI: 10.3390/ijms19020516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/21/2018] [Accepted: 02/03/2018] [Indexed: 12/23/2022] Open
Abstract
Neurotropin® (NTP), a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs) in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT) activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.
Collapse
Affiliation(s)
- Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junichi Sayanagi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toru Iwahashi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Suzuki
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-0064, Japan.
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Medical Center for Translational and Clinical Research, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Tan GA, Furber KL, Thangaraj MP, Sobchishin L, Doucette JR, Nazarali AJ. Organotypic Cultures from the Adult CNS: A Novel Model to Study Demyelination and Remyelination Ex Vivo. Cell Mol Neurobiol 2018; 38:317-328. [PMID: 28795301 DOI: 10.1007/s10571-017-0529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Experimental models of multiple sclerosis (MS) have significantly advanced our understanding of pathophysiology and therapeutic interventions. Although in vivo rodent models are considered to most closely represent the complex cellular and molecular disease states of the human central nervous system (CNS), these can be costly to maintain and require long timelines. Organotypic slice cultures maintain the cytotypic organization observed in the intact CNS, yet provide many of the experimental advantages of in vitro cell culture models. Cerebellar organotypic cultures have proven useful for studying myelination and remyelination, but this model has only been established using early postnatal tissue. This young brain tissue allows for neuro development ex vivo to mimic the 'mature' CNS; however, there are many differences between postnatal and adult organotypic cultures. This may be particularly relevant to MS, as a major barrier to myelin regeneration is age. This paper describes a modified protocol to study demyelination and remyelination in adult cerebellar tissue, which has been used to demonstrate neuroprotection with omega-3 fatty acids. Thus, adult cerebellar organotypic cultures provide a novel ex vivo platform for screening potential therapies in myelin degeneration and repair.
Collapse
Affiliation(s)
- Glaiza A Tan
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Models for Studying Myelination, Demyelination and Remyelination. Neuromolecular Med 2017; 19:181-192. [DOI: 10.1007/s12017-017-8442-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
17
|
Axonal Degeneration in Retinal Ganglion Cells Is Associated with a Membrane Polarity-Sensitive Redox Process. J Neurosci 2017; 37:3824-3839. [PMID: 28275163 DOI: 10.1523/jneurosci.3882-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Axonal degeneration is a pathophysiological mechanism common to several neurodegenerative diseases. The slow Wallerian degeneration (WldS) mutation, which results in reduced axonal degeneration in the central and peripheral nervous systems, has provided insight into a redox-dependent mechanism by which axons undergo self-destruction. We studied early molecular events in axonal degeneration with single-axon laser axotomy and time-lapse imaging, monitoring the initial changes in transected axons of purified retinal ganglion cells (RGCs) from wild-type and WldS rat retinas using a polarity-sensitive annexin-based biosensor (annexin B12-Cys101,Cys260-N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethylenediamine). Transected axons demonstrated a rapid and progressive change in membrane phospholipid polarity, manifested as phosphatidylserine externalization, which was significantly delayed and propagated more slowly in axotomized WldS RGCs compared with wild-type axons. Delivery of bis(3-propionic acid methyl ester)phenylphosphine borane complex, a cell-permeable intracellular disulfide-reducing drug, slowed the onset and velocity of phosphatidylserine externalization in wild-type axons significantly, replicating the WldS phenotype, whereas extracellular redox modulation reversed the WldS phenotype. These findings are consistent with an intra-axonal redox mechanism for axonal degeneration associated with the initiation and propagation of phosphatidylserine externalization after axotomy.SIGNIFICANCE STATEMENT Axonal degeneration is a neuronal process independent of somal apoptosis, the propagation of which is unclear. We combined single-cell laser axotomy with time-lapse imaging to study the dynamics of phosphatidylserine externalization immediately after axonal injury in purified retinal ganglion cells. The extension of phosphatidylserine externalization was slowed and delayed in Wallerian degeneration slow (WldS) axons and this phenotype could be reproduced by intra-axonal disulfide reduction in wild-type axons and reversed by extra-axonal reduction in WldS axons. These results are consistent with a redox mechanism for propagation of membrane polarity asymmetry in axonal degeneration.
Collapse
|
18
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination. Sci Rep 2015; 5:15122. [PMID: 26456300 PMCID: PMC4601011 DOI: 10.1038/srep15122] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination.
Collapse
|
20
|
Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci 2015; 9:298. [PMID: 26300733 PMCID: PMC4523890 DOI: 10.3389/fncel.2015.00298] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl) is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.
Collapse
Affiliation(s)
- Shunsuke Nishimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Michio Okamoto
- Department of Orthopaedic Surgery, Toyonaka Municipal Hospital, Toyonaka Japan
| | - Kiyoshi Okada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan ; Medical Center for Translational and Clinical Research, Osaka University Hospital, Suita Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita Japan
| |
Collapse
|
21
|
Kraus D, Boyle V, Leibig N, Stark GB, Penna V. The Neuro-spheroid—A novel 3D in vitro model for peripheral nerve regeneration. J Neurosci Methods 2015; 246:97-105. [DOI: 10.1016/j.jneumeth.2015.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/27/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
|
22
|
Chumakov I, Milet A, Cholet N, Primas G, Boucard A, Pereira Y, Graudens E, Mandel J, Laffaire J, Foucquier J, Glibert F, Bertrand V, Nave KA, Sereda MW, Vial E, Guedj M, Hajj R, Nabirotchkin S, Cohen D. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J Rare Dis 2014; 9:201. [PMID: 25491744 PMCID: PMC4279797 DOI: 10.1186/s13023-014-0201-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models. We thus hypothesized that a polytherapeutic approach using several drugs, previously approved for other diseases, could be beneficial by simultaneously targeting PMP22 and pathways important for myelination and axonal integrity. A combination of drugs for CMT1A polytherapy was chosen from a group of authorised drugs for unrelated diseases using a systems biology approach, followed by pharmacological safety considerations. Testing and proof of synergism of these drugs were performed in a co-culture model of DRG neurons and Schwann cells derived from a Pmp22 transgenic rat model of CMT1A. Their ability to lower Pmp22 mRNA in Schwann cells relative to house-keeping genes or to a second myelin transcript (Mpz) was assessed in a clonal cell line expressing these genes. Finally in vivo efficacy of the combination was tested in two models: CMT1A transgenic rats, and mice that recover from a nerve crush injury, a model to assess neuroprotection and regeneration. Combination of (RS)-baclofen, naltrexone hydrochloride and D-sorbitol, termed PXT3003, improved myelination in the Pmp22 transgenic co-culture cellular model, and moderately down-regulated Pmp22 mRNA expression in Schwannoma cells. In both in vitro systems, the combination of drugs was revealed to possess synergistic effects, which provided the rationale for in vivo clinical testing of rodent models. In Pmp22 transgenic CMT1A rats, PXT3003 down-regulated the Pmp22 to Mpz mRNA ratio, improved myelination of small fibres, increased nerve conduction and ameliorated the clinical phenotype. PXT3003 also improved axonal regeneration and remyelination in the murine nerve crush model. Based on these observations in preclinical models, a clinical trial of PTX3003 in CMT1A, a neglected orphan disease, is warranted. If the efficacy of PTX3003 is confirmed, rational polytherapy based on novel combinations of existing non-toxic drugs with pleiotropic effects may represent a promising approach for rapid drug development.
Collapse
|
23
|
Davis H, Gonzalez M, Stancescu M, Love R, Hickman JJ, Lambert S. A phenotypic culture system for the molecular analysis of CNS myelination in the spinal cord. Biomaterials 2014; 35:8840-8845. [PMID: 25064806 DOI: 10.1016/j.biomaterials.2014.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
Studies of central nervous system myelination lack defined in vitro models which would effectively dissect molecular mechanisms of myelination that contain cells of the correct phenotype. Here we describe a co-culture of purified motoneurons and oligodendrocyte progenitor cells, isolated from rat embryonic spinal cord using a combination of immunopanning techniques. This model illustrates differentiation of oligodendrocyte progenitors into fully functional mature oligodendrocytes that myelinate axons. It also illustrates a contribution of axons to the rate of oligodendrocyte maturation and myelin gene expression. The defined conditions used allow molecular analysis of distinct stages of myelination and precise manipulation of inductive cues affecting axonal-oligodendrocyte interactions. This phenotypic in vitro myelination model can provide valuable insight into our understanding of demyelinating disorders, such as multiple sclerosis and traumatic diseases such as spinal cord injury where demyelination represents a contributing factor to the pathology of the disorder.
Collapse
Affiliation(s)
- Hedvika Davis
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Mercedes Gonzalez
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA; Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Rachal Love
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA; Department of Chemistry, University of Central Florida, Orlando, FL, USA.
| | - Stephen Lambert
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
24
|
Kaiser O, Aliuos P, Wissel K, Lenarz T, Werner D, Reuter G, Kral A, Warnecke A. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain. PLoS One 2013; 8:e80490. [PMID: 24349001 PMCID: PMC3861243 DOI: 10.1371/journal.pone.0080490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/13/2013] [Indexed: 01/10/2023] Open
Abstract
The formation of gliosis around implant electrodes for deep brain stimulation impairs electrode–tissue interaction. Unspecific growth of glial tissue around the electrodes can be hindered by altering physicochemical material properties. However, in vitro screening of neural tissue–material interaction requires an adequate cell culture system. No adequate model for cells dissociated from the inferior colliculus (IC) has been described and was thus the aim of this study. Therefore, IC were isolated from neonatal rats (P3_5) and a dissociated cell culture was established. In screening experiments using four dissociation methods (Neural Tissue Dissociation Kit [NTDK] T, NTDK P; NTDK PN, and a validated protocol for the dissociation of spiral ganglion neurons [SGN]), the optimal media, and seeding densities were identified. Thereafter, a dissociation protocol containing only the proteolytic enzymes of interest (trypsin or papain) was tested. For analysis, cells were fixed and immunolabeled using glial- and neuron-specific antibodies. Adhesion and survival of dissociated neurons and glial cells isolated from the IC were demonstrated in all experimental settings. Hence, preservation of type-specific cytoarchitecture with sufficient neuronal networks only occurred in cultures dissociated with NTDK P, NTDK PN, and fresh prepared papain solution. However, cultures obtained after dissociation with papain, seeded at a density of 2×104 cells/well and cultivated with Neuro Medium for 6 days reliably revealed the highest neuronal yield with excellent cytoarchitecture of neurons and glial cells. The herein described dissociated culture can be utilized as in vitro model to screen interactions between cells of the IC and surface modifications of the electrode.
Collapse
Affiliation(s)
- Odett Kaiser
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Pooyan Aliuos
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Darja Werner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Günter Reuter
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
25
|
Myelination and node of Ranvier formation on sensory neurons in a defined in vitro system. In Vitro Cell Dev Biol Anim 2013; 49:608-618. [PMID: 23949775 DOI: 10.1007/s11626-013-9647-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.
Collapse
|
26
|
Stettner M, Wolffram K, Mausberg AK, Wolf C, Heikaus S, Derksen A, Dehmel T, Kieseier BC. A reliable in vitro model for studying peripheral nerve myelination in mouse. J Neurosci Methods 2013; 214:69-79. [PMID: 23348045 DOI: 10.1016/j.jneumeth.2013.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/16/2022]
Abstract
The rat dorsal root ganglia (DRG) model is a long-standing in vitro model for analysis of myelination in the peripheral nervous system. For performing systematic, high throughput analysis with transgenic animals, a simplified BL6 mouse protocol is indispensable. Here we present a stable and reliable protocol for myelinating co-cultures producing a high myelin ratio using cells from C57BL/6 mice. As an easy accessible and operable method, Sudan staining proved to be efficient in myelin detection for fixed cultures. Green fatty acid stain turned out to be highly reliable for analysis of the dynamic biological processes of myelination in vital cultures. Once myelinated we were able to induce demyelination by the addition of forskolin into the model system. In addition, we provide an optimised rat DRG protocol with significantly improved myelin ratio and a comparison of the protocols presented. Our results strengthen the value of ex vivo myelination models in neurobiology.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Neurology, Medical Faculty, Research Group for Clinical and Experimental Neuroimmunology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|