1
|
Soltani S, Zahedi A, Vergara AJS, Noli M, Soltysik FM, Pociot F, Yarani R. Preclinical Therapeutic Efficacy of Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stromal/Stem Cells in Diabetic Wounds: a Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024; 20:2016-2031. [PMID: 38970763 DOI: 10.1007/s12015-024-10753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Extracellular vesicles isolated from adipose tissue-derived mesenchymal stromal/stem cells (ADSC-EVs) have demonstrated promising potential in wound healing treatment. To determine the therapeutic efficacy of ADSC-EVs for diabetic wounds in preclinical models, we performed a meta-analysis of available studies. PubMed and Embase were searched (to April 23, 2023). All full-text articles describing the therapeutic application of ADSC-EVs in diabetic wounds were included. Study outcomes were pooled using a random effects meta-analysis, including wound closure, angiogenesis, and collagen deposition. Other outcomes were only discussed descriptively. Seventy unique records were identified from our search; 20 full-text articles were included for qualitative analysis. Twelve studies were eligible for quantitative meta-analysis. The results showed that ADSC-EVs accelerated diabetic wound healing compared to controls with a large effect (standardized mean difference (SMD) 4.22, 95% confidence interval (CI) 3.07 to 5.36). The administration of ADSC-EVs also improved neovascularization (SMD 9.27, 95% CI 4.70 to 13.83) and collagen deposition (SMD 2.19, 95% CI 0.94 to 3.44), with a large effect. The risk of bias was unclear in all included studies. Conclusively, ADSC-EV is an effective treatment for diabetic wounds in preclinical trials, and it appears justified for transfer into the clinical field.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahora Zahedi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - April Joy S Vergara
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Marta Noli
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
2
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
3
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Influence of METTL3 knockdown on PDLSC osteogenesis in E. coli LPS-induced inflammation. Oral Dis 2024; 30:3225-3238. [PMID: 37807890 DOI: 10.1111/odi.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Liu ZX, Liu GQ, Lin ZX, Chen YQ, Chen P, Hu YJ, Yu B, Jiang N. Effects of Staphylococcus aureus on stem cells and potential targeted treatment of inflammatory disorders. Stem Cell Res Ther 2024; 15:187. [PMID: 38937829 PMCID: PMC11210046 DOI: 10.1186/s13287-024-03781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Due to the advanced studies on stem cells in developmental biology, the roles of stem cells in the body and their phenotypes in related diseases have not been covered clearly. Meanwhile, with the intensive research on the mechanisms of stem cells in regulating various diseases, stem cell therapy is increasingly being attention because of its effectiveness and safety. As one of the most widely used stem cell in stem cell therapies, hematopoietic stem cell transplantation shows huge advantage in treatment of leukemia and other blood-malignant diseases. Besides, due to the effect of anti-inflammatory and immunomodulatory, mesenchymal stem cells could be a potential therapeutic strategy for variety infectious diseases. In this review, we summarized the effects of Staphylococcus aureus (S. aureus) and its components on different types of adult stem cells and their downstream signaling pathways. Also, we reviewed the roles of different kinds of stem cells in various disease models caused by S. aureus, providing new insights for applying stem cell therapy to treat infectious diseases.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ying-Qi Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
6
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Xu W, Yang Y, Li N, Hua J. Interaction between Mesenchymal Stem Cells and Immune Cells during Bone Injury Repair. Int J Mol Sci 2023; 24:14484. [PMID: 37833933 PMCID: PMC10572976 DOI: 10.3390/ijms241914484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Fractures are the most common large organ trauma in humans. The initial inflammatory response promotes bone healing during the initial post-fracture phase, but chronic and persistent inflammation due to infection or other factors does not contribute to the healing process. The precise mechanisms by which immune cells and their cytokines are regulated in bone healing remain unclear. The use of mesenchymal stem cells (MSCs) for cellular therapy of bone injuries is a novel clinical treatment approach. Bone progenitor MSCs not only differentiate into bone, but also interact with the immune system to promote the healing process. We review in vitro and in vivo studies on the role of the immune system and bone marrow MSCs in bone healing and their interactions. A deeper understanding of this paradigm may provide clues to potential therapeutic targets in the healing process, thereby improving the reliability and safety of clinical applications of MSCs to promote bone healing.
Collapse
Affiliation(s)
| | | | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| |
Collapse
|
8
|
Khosropoor S, Alavi MS, Etemad L, Roohbakhsh A. Cannabidiol goes nuclear: The role of PPARγ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154771. [PMID: 36965374 DOI: 10.1016/j.phymed.2023.154771] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main phytocannabinoids found in Cannabis sativa. In contrast to Δ9-tetrahydrocannabinol, it has a low affinity for cannabinoid receptors CB1 and CB2, thereby it does not induce significant psychoactive effects. However, CBD may interact with other receptors, including peroxisome proliferator-activated receptor gamma (PPARγ). CBD is a PPARγ agonist and changes its expression. There is considerable evidence that CBD's effects are mediated by its interaction with PPARγ. So, we reviewed studies related to the interaction of CBD and PPARγ. METHODS In this comprehensive literature review, the term 'cannabidiol' was used in combination with the following keywords including 'PPARγ', 'Alzheimer's disease', 'Parkinson's disease', 'seizure', 'multiple sclerosis', 'immune system', 'cardiovascular system', 'cancer', and 'adipogenesis'. PubMed, Web of Science, and Google Scholar were searched until December 20, 2022. A total of 78 articles were used for the reviewing process. RESULTS CBD, via activation of PPARγ, promotes significant pharmacological effects. The present review shows that the effects of CBD on Alzheimer's disease and memory, Parkinson's disease and movement disorders, multiple sclerosis, anxiety and depression, cardiovascular system, immune system, cancer, and adipogenesis are mediated, at least in part, via PPARγ. CONCLUSION CBD not only activates PPARγ but also affects its expression in the body. It was suggested that the late effects of CBD are mediated via PPARγ activation. We suggested that CBD's chemical structure is a good backbone for developing new dual agonists. Combining it with other chemicals enhances their biological effectiveness while reducing their dosage. The present study indicated that PPARγ is a key target for CBD, and its activation by CBD should be considered in all future studies.
Collapse
Affiliation(s)
- Sara Khosropoor
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Mohamad-Fauzi N, Shaw C, Foutouhi SH, Hess M, Kong N, Kol A, Storey DB, Desai PT, Shah J, Borjesson D, Murray JD, Weimer BC. Salmonella enhances osteogenic differentiation in adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2023; 11:1077350. [PMID: 37009487 PMCID: PMC10055666 DOI: 10.3389/fcell.2023.1077350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Claire Shaw
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Soraya H. Foutouhi
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Dylan Bobby Storey
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Prerak T. Desai
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
| | - Dori Borjesson
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - James D. Murray
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, Davis, CA, United States
- *Correspondence: James D. Murray, ; Bart C. Weimer,
| |
Collapse
|
10
|
Heat-Killed Staphylococcus aureus Induces Bone Mass Loss through Telomere Erosion. Int J Mol Sci 2023; 24:ijms24043179. [PMID: 36834587 PMCID: PMC9960843 DOI: 10.3390/ijms24043179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The mechanism of systemic osteoporosis caused by chronic infection is not completely clear, and there is a lack of reasonable interventions for this disease. In this study, heat-killed S. aureus (HKSA) was applied to simulate the inflammation caused by the typical clinical pathogen and to explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of HKSA caused bone loss in mice. Further exploration found that HKSA caused cellular senescence, telomere length shortening, and telomere dysfunction-induced foci (TIF) in limb bones. As a well-known telomerase activator, cycloastragenol (CAG) significantly alleviated HKSA-induced telomere erosion and bone loss. These results suggested that telomere erosion in bone marrow cells is a possible mechanism of HKSA-induced bone loss. CAG may protect against HKSA-induced bone loss by alleviating telomere erosion in bone marrow cells.
Collapse
|
11
|
Rivera-Cruz CM, Figueiredo ML. Evaluation of human adipose-derived mesenchymal stromal cell Toll-like receptor priming and effects on interaction with prostate cancer cells. Cytotherapy 2023; 25:33-45. [PMID: 36257875 DOI: 10.1016/j.jcyt.2022.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be "polarized" by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported. METHODS In this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists. RESULTS In these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro. CONCLUSIONS TLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.
Collapse
Affiliation(s)
- Cosette M Rivera-Cruz
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
12
|
Wang K, Chen Z, Jin L, Zhao L, Meng L, Kong F, He C, Kong F, Zheng L, Liang F. LPS-pretreatment adipose-derived mesenchymal stromal cells promote wound healing in diabetic rats by improving angiogenesis. Injury 2022; 53:3920-3929. [PMID: 36357245 DOI: 10.1016/j.injury.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) play a key role in wound healing, and the advantages of pretreated MSCs in wound healing have previously been reported. In the present study, we investigated the impact of LPS pretreated human adipose-derived MSCs on skin wound healing in diabetic rats. We found that some improvements occurred through improving angiogenesis. Then, we scrutinized the impact of lipopolysaccharide (LPS) treatment on human adipose-derived MSCs in a high-glucose (HG) medium, as an in vitro diabetic model. In vivo findings revealed significant improvements in epithelialization and angiogenesis of diabetic wounds which received LPS pre-MSCs. Particularly, LPS pre-MSCs-treated diabetic wounds reached considerably higher percentages of wound closure. Also, the granulation tissue of these wounds had higher pronounced epithelialization and more vascularization compared with PBS-treated and MSCs-treated diabetic ones by CD31, VEGF, CD90, collagen 1, and collagen 3 immunostaining. Western-blots analyses indicated that LPS pre-MSCs led to the upregulation of vascular endothelial growth factor (VEGF) and DNMT1. In addition, significantly higher cell viability (proliferation/colonie), and elevated VEGF and DNMT1 protein expression were observed when MSCs were treated with LPS (10 ng/ml, 6 h) in HG culture media. Based on these findings, it is suggested that LPS pre-MSCs could promote wound repair and skin regeneration, in some major processes, via the improvement of cellular behaviors of MSCs in the diabetic microenvironment. The beneficial advantages of LPS treated with mesenchymal stem cells on wound healing may lead to establishing a novel approach as an alternative therapeutic procedure to cure chronic wounds in diabetic conditions.
Collapse
Affiliation(s)
- Kuixiang Wang
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Ziying Chen
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lili Zhao
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Libin Meng
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanting Kong
- Department of Oncology Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Chenxin He
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanlei Kong
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lingtao Zheng
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fang Liang
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China.
| |
Collapse
|
13
|
Waheed TO, Hahn O, Sridharan K, Mörke C, Kamp G, Peters K. Oxidative Stress Response in Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2022; 23:13435. [PMID: 36362223 PMCID: PMC9654835 DOI: 10.3390/ijms232113435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Reactive oxygen species (ROS) can irreversibly damage biological molecules, a process known as oxidative stress. Elevated ROS levels are associated with immune cell activation. Sustained immune system activation can affect many different cells in the environment. One cell type that has been detected in almost all tissues of the body is mesenchymal stem/stromal cells (MSC). MSC possess proliferation and differentiation potential, thus facilitating regeneration processes. However, the regenerative capacity of MSC might be impaired by oxidative stress, and the effects of long-term oxidative stress on MSC functions are sparsely described. The examination of oxidative stress is often performed by exposure to H2O2. Since H2O2 is rapidly degraded, we additionally exposed the cell cultures to glucose oxidase (GOx), resulting in sustained exposure to H2O2. Using these model systems, we have focused on the effects of short- and long-term oxidative stress on viability, migration, differentiation, and signaling. All cellular functions examined were affected by the applied oxidative stress. The differences that occur between pulsed and sustained oxidative stress indicated higher oxidative stress in MSC upon direct H2O2 exposure, whereas the GOx-induced prolonged exposure to H2O2 seems to allow for better cellular adaptation. The mechanisms underlying these different responses are currently unknown.
Collapse
Affiliation(s)
- Tawakalitu Okikiola Waheed
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Olga Hahn
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Kaarthik Sridharan
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Caroline Mörke
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Günter Kamp
- AMP-Lab GmbH, Mendelstr. 11, 48149 Münster, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
14
|
Kim H, Oh N, Kwon M, Kwon OH, Ku S, Seo J, Roh S. Exopolysaccharide of Enterococcus faecium L15 promotes the osteogenic differentiation of human dental pulp stem cells via p38 MAPK pathway. Stem Cell Res Ther 2022; 13:446. [PMID: 36056447 PMCID: PMC9440579 DOI: 10.1186/s13287-022-03151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Bone has important functions in the body. Several researchers have reported that the polysaccharides and lipopolysaccharide derived from microbes can promote osteogenic differentiation of stem cells. Enterococcus faecium, a lactic acid bacterium (LAB), produces several bioactive metabolites and has been widely applied in the food and nutraceutical industries. The exopolysaccharide (EPS) from LAB has also been extensively examined for its postbiotic effects and for its in vivo and in vitro functionalities. However, studies on promoting bone differentiation using polysaccharides from LAB are lacking. Therefore, the purpose of this study was to investigate the effect of E. faecium L15 extract and EPS on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and to identify the underlying mechanisms. Methods hDPSCs were obtained from dental pulp tissue, and L15 extract and EPS were isolated from L15. Gene and protein expression of the osteogenic differentiation markers were analyzed with qPCR and western blotting and the possible signaling pathways were also investigated using western blotting. Osteogenic differentiation potential was examined by alkaline phosphatase (ALP) staining and alizarin red s (ARS) staining. In addition, osteogenic differentiation potential of L15 EPS was explored in ex vivo culture of neonate murine calvaria. Results The calcium deposition and ALP activity were enhanced by addition of L15 extract or EPS. The expression levels of RUNX2, ALP, and COL1A1 mRNA and the protein expression levels of RUNX2, ALP, and BMP4 were increased in hDPSCs treated with the L15 extract or EPS. The L15 EPS treatment enhanced phosphorylation of the p38 mitogen-activated protein kinase (MAPK). The L15 EPS-induced increases in RUNX2, ALP, and BMP4 expression were suppressed by the p38 MAPK inhibitor SB203580. The promoting effect of L15 EPS on osteogenic differentiation was not only seen in hDPSCs, but also in osteoblast precursors. ALP activity and the expression of RUNX2, ALP, and COL1A1 increased in the L15 EPS-treated osteoblast precursors. In addition, L15 EPS increased bone thickness of neonate murine calvaria in ex vivo culture. Conclusions The stimulatory effect of L15 extract and EPS on osteogenic differentiation occurred through the p38 MAPK pathway, and L15 EPS enhanced new bone formation in neonate murine calvaria. These data suggest that L15 EPS has therapeutic potential applicable to bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03151-0.
Collapse
Affiliation(s)
- Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Naeun Oh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Mijin Kwon
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea
| | - Oh-Hee Kwon
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea. .,Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do, 16641, Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, Korea.
| |
Collapse
|
15
|
Creamer DG, Schmiedt CW, Bullington AC, Caster CM, Schmiedt JM, Hurley DJ, Berghaus RD. Influence of exposure to microbial ligands, immunosuppressive drugs and chronic kidney disease on endogenous immunomodulatory gene expression in feline adipose-derived mesenchymal stem cells. J Feline Med Surg 2022; 24:e43-e56. [PMID: 35302413 PMCID: PMC11104253 DOI: 10.1177/1098612x221083074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Feline autologous mesenchymal stem cells (MSCs) show promise for immunomodulatory activity, but the functional impact of chronic kidney disease (CKD), concurrent immunosuppressive drug administration or infection is unknown. The study objectives compare endogenous cytokine gene expression (interleukin [IL]-6, IL-10, IL-12p40, IL-18 and transforming growth factor beta [TGF-β]) in adipose-derived MSCs (aMSCs) from cats with and without CKD, following in vitro exposure to microbial ligands and treatment with common immunosuppressive drugs. METHODS Previously obtained aMSCs, phenotype CD44+, CD90+, CD105+ and MHCII-, from cats with (n = 6) and without (n = 6) CKD were compared via real-time PCR (RT-PCR) for immunomodulatory gene expression. aMSCs were exposed in vitro to lipopolysaccharide (LPS), peptidoglycan or polyinosinic:polycytidylic acid (Poly I:C), simulating bacterial or viral exposure, respectively. aMSCs were also exposed to ciclosporin, dexamethasone or methotrexate. Gene expression was measured using RT-PCR, and Cq was utilized after each run to calculate the delta cycle threshold. RESULTS aMSCs isolated from healthy and CKD cats showed no significant differences in gene expression in the five measured cytokines. No significant changes in measured gene expression after drug treatment or microbial ligand stimulation were observed between normal or CKD affected cats. Proinflammatory genes (IL-6, IL-12p40 and IL-18) showed altered expression in aMSCs from both groups when compared with the same cells in standard culture after exposure to methotrexate. Poly I:C altered IL-6 and TGF-β gene expression in aMSCs from both healthy and CKD cats when compared with the same cells in standard culture. CONCLUSIONS AND RELEVANCE The five genes tested showed no statistical differences between aMSCs from healthy or CKD cats. There was altered cytokine gene expression between the control and treatment groups of both healthy and CKD cats suggesting feline aMSCs have altered function with immunosuppressive treatment or microbial ligand exposure. Although the current clinical relevance of this pilot study comparing brief exposure to select agents in vitro in aMSCs from a small number of cats is unknown, the study highlights a need for continued investigation into the effects of disease and concurrent therapies on use of cell-based therapies in feline patients.
Collapse
Affiliation(s)
- Danielle G Creamer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna Claire Bullington
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Courtney M Caster
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jennifer M Schmiedt
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Roy D Berghaus
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. Int J Mol Sci 2022; 23:ijms23095098. [PMID: 35563488 PMCID: PMC9103834 DOI: 10.3390/ijms23095098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cells from the apical papilla (SCAP) are a promising resource for use in regenerative endodontic treatment (RET) that may be adversely affected by oral bacteria, which in turn can exert an effect on the success of RET. Our work aims to study the cytokine profile of SCAP upon exposure to oral bacteria and their supernatants—Fusobacterium nucleatum and Enterococcus faecalis—as well as to establish their effect on the osteogenic and immunogenic potentials of SCAP. Further, we target the presence of key proteins of the Wnt/β-Catenin, TGF-β, and NF-κB signaling pathways, which play a crucial role in adult osteogenic differentiation of mesenchymal stem cells, using the Western blot (WB) technique. The membrane-based sandwich immunoassay and transcriptomic analysis showed that, under the influence of F. nucleatum (both bacteria and supernatant), the production of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 occurred, which was also confirmed at the mRNA level. Conversely, E. faecalis reduced the secretion of the aforementioned cytokines at both mRNA and protein levels. WB analysis showed that SCAP co-cultivation with E. faecalis led to a decrease in the level of the key proteins of the Wnt/β-Catenin and NF-κB signaling pathways: β-Catenin (p = 0.0068 *), LRP-5 (p = 0.0059 **), and LRP-6 (p = 0.0329 *), as well as NF-kB (p = 0.0034 **) and TRAF6 (p = 0.0285 *). These results suggest that oral bacteria can up- and downregulate the immune and inflammatory responses of SCAP, as well as influence the osteogenic potential of SCAP, which may negatively regulate the success of RET.
Collapse
|
17
|
Enzyme-digested Colla Corii Asini (E'jiao) suppresses lipopolysaccharide-induced inflammatory changes in THP-1 macrophages and OP9 adipocytes. Hum Cell 2022; 35:885-895. [PMID: 35359251 DOI: 10.1007/s13577-022-00694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023]
Abstract
Gut microbial lipopolysaccharides (LPS)-induced inflammatory responses in adipose tissue are associated with the dysfunction of adipocytes, insulin resistance and the development of metabolic syndrome. The aim of this study is to investigate (1) the effects of LPS on the differentiation and inflammatory responses of THP-1 monocytes and OP9 preadipocytes under serum free conditions and (2) the repressive effects of enzyme-digested Colla Corii Asini (CCAD) and fish gelatin (FGD) on LPS-induced inflammatory responses in THP-1 macrophages and OP9 adipocytes. Immunofluorescence and oil red O staining showed that a serum free medium supplied with phorbol 12-myristate 13-acetate (PMA) could induce differentiation and lipid accumulation in THP-1 cells as well as OP9 cells. ELISA showed that LPS significantly increased interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretions in PMA-differentiated THP-1 macrophages in a dose-dependent manner. LPS significantly suppressed lipid accumulation and adiponectin secretions, and enhanced IL-6 secretions in OP9 adipocytes. Both CCAD and FGD significantly reduced the levels of both macrophages- and adipocytes-derived inflammatory cytokines and increased the level of OP9-secreted adiponectin. In conclusion, LPS could induce inflammatory responses in both THP-1 and OP9 cells and cause dysfunction of OP9 adipocytes under the serum free conditions. CCAD and FGD can repress LPS-induced inflammatory responses in both THP-1 macrophages and OP9 adipocytes, and increase the secretion of adiponectin in OP9 adipocytes. They could be used as health care supplements for improving metabolic syndrome.
Collapse
|
18
|
Chen M, Lin X, Zhang L, Hu X. Effects of nuclear factor-κB signaling pathway on periodontal ligament stem cells under lipopolysaccharide-induced inflammation. Bioengineered 2022; 13:7951-7961. [PMID: 35297308 PMCID: PMC9208442 DOI: 10.1080/21655979.2022.2051690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. This study focused on the effect of nuclear factor kappa B (NF-κB) signaling pathway on proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) after LPS induction and its mechanism. We first isolated hPDLSCs from human tooth root samples in vitro. Then, flow cytometry detected positive expression of cell surface antigens CD146 and STRO-1 and negative expression of CD45, suggesting the hPDLSCs were successfully isolated. LPS significantly induced increased apoptosis and diminished proliferation of hPDLSCs. The NF-κB pathway agonist phorbol 12-myristate 13-acetate (PMA) or p65 overexpression inhibited the proliferation of LPS-treated hPDLSCs and promoted apoptosis. PMA also promoted LPS-induced up-regulation of the expression of inflammatory factors TNF-α and IL-6 and down-regulation of the expression of anti-inflammatory factor IL-10. Additionally, LPS was confirmed to lead to a reduction of alkaline phosphatase (ALP) activity, calcium nodules, and expression of osteogenic markers Runt-related transcription factor 2 (Runx2) and osteopontin. This reduction could be promoted by PMA. Western blotting further indicated that PMA could promote LPS-induced decrease of expression of p65 (cytoplasm), and total cellular proteins IKKα and IKKβ in hPDLSCs, while protein expression of p-IκBα (cytoplasm) and p65 (nucleus), and p-IκBα/IκBα ratio was elevated. By contrast, inhibition of the NF-κB pathway (PDTC) or small-interfering RNA targeting NF-κB/p65 (p65 siRNA) showed the opposite results. In conclusion, activation of NF-κB signaling in LPS-induced inflammatory environment can inhibit the proliferation and osteogenic differentiation of hPDLSCs. This study provides a theory foundation for the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaobo Lin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaoli Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
19
|
Lipoaspirate Shows In Vitro Potential for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14020447. [PMID: 35214179 PMCID: PMC8878490 DOI: 10.3390/pharmaceutics14020447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies.
Collapse
|
20
|
Hofmann J, Klingele S, Haberkorn U, Schmidmaier G, Grossner T. Impact of High-Dose Anti-Infective Agents on the Osteogenic Response of Mesenchymal Stem Cells. Antibiotics (Basel) 2021; 10:antibiotics10101257. [PMID: 34680837 PMCID: PMC8532700 DOI: 10.3390/antibiotics10101257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment of infected nonunions and severe bone infections is a huge challenge in modern orthopedics. Their treatment routinely includes the use of anti-infective agents. Although frequently used, little is known about their impact on the osteogenesis of mesenchymal stem cells. In a high- and low-dose set-up, this study evaluates the effects of the antibiotics Gentamicin and Vancomycin as well as the antifungal agent Voriconazole on the ability of mesenchymal stem cells to differentiate into osteoblast-like cells and synthesize hydroxyapatite in a monolayer cell culture. The osteogenic activity was assessed by measuring calcium and phosphate concentrations as well as alkaline phosphatase activity and osteocalcin concentration in the cell culture medium supernatant. The amount of hydroxyapatite was measured directly by radioactive 99mTechnetium-HDP labeling. Regarding the osteogenic markers, it could be concluded that the osteogenesis was successful within the groups treated with osteogenic cell culture media. The results revealed that all anti-infective agents have a cytotoxic effect on mesenchymal stem cells, especially in higher concentrations, whereas the measured absolute amount of hydroxyapatite was independent of the anti-infective agent used. Normed to the number of cells it can therefore be concluded that the above-mentioned anti-infective agents actually have a positive effect on osteogenesis while high-dose Gentamycin, in particular, is apparently capable of boosting the deposition of minerals.
Collapse
Affiliation(s)
- Jakob Hofmann
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.H.); (G.S.)
| | - Sabrina Klingele
- Tissue & Cell Banking GmbH (TICEBA GmbH), 69120 Heidelberg, Germany;
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Nuclear Medicine, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.H.); (G.S.)
| | - Tobias Grossner
- Clinic for Orthopedics and Trauma Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (J.H.); (G.S.)
- Correspondence: ; Tel.: +49-6221-56-35-443
| |
Collapse
|
21
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
22
|
Mende W, Götzl R, Kubo Y, Pufe T, Ruhl T, Beier JP. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021; 10:cells10050975. [PMID: 33919377 PMCID: PMC8143357 DOI: 10.3390/cells10050975] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone regeneration is a complex process that is influenced by tissue interactions, inflammatory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the administered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture healing. The aim of this review is a comprehensive overview of ASCs for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Wolfgang Mende
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rebekka Götzl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Tim Ruhl
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Justus P Beier
- Hand Surgery-Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
23
|
Zhou R, Chen F, Liu H, Zhu X, Wen X, Yu F, Shang G, Qi S, Xu Y. Berberine ameliorates the LPS-induced imbalance of osteogenic and adipogenic differentiation in rat bone marrow-derived mesenchymal stem cells. Mol Med Rep 2021; 23:350. [PMID: 33760123 PMCID: PMC7974461 DOI: 10.3892/mmr.2021.11989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) from oral pathogenic bacteria is an important factor leading to alveolar bone absorption and the implant failure. The present study aimed to evaluate the modulation of berberine hydrochloride (BBR) on the LPS-mediated osteogenesis and adipogenesis imbalance in rat bone marrow-derived mesenchymal stem cells (BMSCs). Cell viability, osteoblastic and adipogenic differentiation levels were measured using the Cell Counting Kit-8 assay, alkaline phosphatase (ALP) staining and content assay, and oil red O staining, respectively. Reverse transcription-quantitative PCR and immunoblotting were used to detect the related gene and protein expression levels. In undifferentiated cells, BBR increased the mRNA expression levels of the osteoblastic genes (Alp, RUNX family transcription factor 2, osteocalcin and secreted phosphoprotein 1) but not the adipogenic genes (fatty acid binding protein 4, Adipsin and peroxisome proliferator-activated receptorγ). LPS-induced osteoblastic gene downregulation, adipogenic gene enhancement and NF-κB activation were reversed by BBR treatment. In osteoblastic differentiated cells, decreased ALP production by LPS treatment was recovered with BBR co-incubation. In adipogenic differentiated cells, LPS-mediated lipid accumulation was decreased by BBR administration. The mRNA expression levels of the pro-inflammatory factors (MCP-1, TNF-α, IL-6 and IL-1β) were increased by LPS under both adipogenic and osteoblastic conditions, which were effectively ameliorated by BBR. The actions of BBR were attenuated by compound C, suggesting that the role of BBR may be partly due to AMP-activated protein kinase activation. The results demonstrated notable pro-osteogenic and anti-adipogenic actions of BBR in a LPS-stimulated inflammatory environment. This indicated a potential role of BBR for bacterial infected-related peri-implantitis medication.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xueyun Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fang Yu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
24
|
Shojaeian A, Mehri-Ghahfarrokhi A, Banitalebi-Dehkordi M. Monophosphoryl Lipid A and Retinoic Acid Combinations Increased Germ Cell Differentiation Markers Expression in Human Umbilical Cord-derived Mesenchymal Stromal Cells in an In vitro Ovine Acellular Testis Scaffold. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:288-296. [PMID: 33688486 PMCID: PMC7936076 DOI: 10.22088/ijmcm.bums.9.4.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/17/2021] [Indexed: 11/22/2022]
Abstract
Infertility is known as one of the most common problems among couples. In this regard, generation of male germ cells from adult stem ones are among the current promising priorities of researchers. Mesenchymal stromal cells (MSCs) were previously induced to differentiate into germ-like progenitors in vitro. Monophosphoryl lipid A (MPLA) is a detoxified derivative of lipopolysaccharides (LPS) that lacks many of the endotoxic properties of LPS. Our present study aimed to investigate the expression of migration genes (CXCR4, VCAM1, VEGF, MMP2, and VLA4), and differentiation markers during human umbilical mesenchymal stromal cells (hUMSCs) culture in the presence of retinoic acid (RA) and MPLA-treated acellular testis. Accordingly, the high expression levels of deleted in azoospermia-like (DAZL), piwi-like RNA-mediated gene silencing 2 (PIWIL2) transcripts as well as protein were consequently observed in treated hUMSCs. It was concluded that combination treatment (i.e., MPLA/RA) had more prominent results than each of the treatments alone, even though MPLA and RA could be regarded as inducer of migration and differentiation, respectively. Ultimately, it was suggested to introduce the use of combination treatment as a more effective strategy to improve therapies in regenerative medicine.
Collapse
Affiliation(s)
- Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
25
|
Lienard A, Hosny M, Jneid J, Schuldiner S, Cellier N, Sotto A, La Scola B, Lavigne JP, Pantel A. Escherichia coli Isolated from Diabetic Foot Osteomyelitis: Clonal Diversity, Resistance Profile, Virulence Potential, and Genome Adaptation. Microorganisms 2021; 9:microorganisms9020380. [PMID: 33668594 PMCID: PMC7918245 DOI: 10.3390/microorganisms9020380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
This study assessed the clonal diversity, the resistance profile and the virulence potential of Escherichia coli strains isolated from diabetic foot infection (DFI) and diabetic foot osteomyelitis (DFOM). A retrospective single-centre study was conducted on patients diagnosed with E. coli isolated from deep DFI and DFOM at Clinique du Pied Diabétique Gard-Occitanie (France) over a two-year period. Phylogenetic backgrounds, virulence factors (VFs) and antibiotic resistance profiles were determined. Whole-genome analysis of E. coli strains isolated from same patients at different periods were performed. From the two-years study period, 35 E. coli strains isolated from 33 patients were analysed; 73% were isolated from DFOM. The majority of the strains belonged to the virulent B2 and D phylogenetic groups (82%). These isolates exhibited a significant higher average of VFs number than strains belonging to other groups (p < 0.001). papG2 gene was significantly more detected in strains belonging to B2 phylogroup isolated from DFI compared to DFOM (p = 0.003). The most prevalent antibiotic resistance pattern was observed for ampicillin (82%), cotrimoxazole (45%), and ciprofloxacin (33%). The genome analysis of strains isolated at two periods in DFOM showed a decrease of the genome size, and this decrease was more important for the strain isolated at nine months (vs. four months). A shared mutation on the putative acyl-CoA dehydrogenase-encoding gene aidB was observed on both strains. E. coli isolates from DFOM were highly genetically diverse with different pathogenicity traits. Their adaptation in the bone structure could require genome reduction and some important modifications in the balance virulence/resistance of the bacteria.
Collapse
Affiliation(s)
- Alexi Lienard
- VBIC, INSERM U1047, Université de Montpellier, UFR de Médecine, 30908 Nîmes CEDEX 2, France;
| | - Michel Hosny
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Joanne Jneid
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Sophie Schuldiner
- VBIC, INSERM U1047, Université de Montpellier, Service des Maladies Métaboliques et Endocriniennes, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Nicolas Cellier
- Service d’Orthopédie, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Albert Sotto
- VBIC, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, 13005 Marseille, France; (M.H.); (J.J.); (B.L.S.)
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
- Correspondence:
| | - Alix Pantel
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30029 Nîmes CEDEX 09, France;
| |
Collapse
|
26
|
Bacteria Residing at Root Canals Can Induce Cell Proliferation and Alter the Mechanical Properties of Gingival and Cancer Cells. Int J Mol Sci 2020; 21:ijms21217914. [PMID: 33114460 PMCID: PMC7672538 DOI: 10.3390/ijms21217914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the importance of oral microbiota in human health and disease also leads to an expansion of the knowledge on functional, metabolic, and molecular alterations directly contributing to oral and systemic pathologies. To date, a compelling number of studies have documented the crucial role of some oral cavity-occurring microbes in the initiation and progression of cancers. Although this effect was noted primarily for Fusobacterium spp., the potential impact of other oral microbes is also worthy of investigation. In this study, we aimed to assess the effect of Enterococcus faecalis, Actinomyces odontolyticus, and Propionibacterium acnes on the proliferation capability and mechanical features of gingival cells and cell lines derived from lung, breast, and ovarian cancers. For this purpose, we incubated selected cell lines with heat-inactivated bacteria and supernatants collected from biofilms, cultured in both anaerobic and aerobic conditions, in the presence of surgically removed teeth and human saliva. The effect of oral bacteria on cell population growth is variable, with the highest growth-promoting abilities observed for E. faecalis in relation to human primary gingival fibroblasts (HGF) and lung cancer A549 cells, and P. acnes in relation to breast cancer MCF-7 and ovarian cancer SKOV-3 cells. Notably, this effect seems to depend on a delicate balance between the pro-stimulatory and toxic effects of bacterial-derived products. Regardless of the diverse effect of bacterial products on cellular proliferation capability, we observed significant alterations in stiffness of gingival and lung cancer cells stimulated with E. faecalis bacteria and corresponding biofilm supernatants, suggesting a novel molecular mechanism involved in the pathogenesis of diseases in oral cavities and tooth tissues. Accordingly, it is proposed that analysis of cancerogenic features of oral cavity bacteria should be multivariable and should include investigation of potential alterations in cell mechanical properties. These findings corroborate the important role of oral hygiene and root canal treatment to assure the healthy stage of oral microbiota.
Collapse
|
27
|
The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: a comparative study. Pharmacol Rep 2020; 73:143-153. [PMID: 33026642 DOI: 10.1007/s43440-020-00166-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The inflammatory sequence is the first phase of wound healing. Macrophages (MPhs) and mesenchymal stromal cells (MSCs) respond to an inflammatory microenvironment by adapting their functional activity, which polarizes them into the pro-inflammatory phenotypes M1 and MSC1. Prolongation of the inflammatory phase results in the formation of chronic wounds. The endocannabinoid system (ECS) possesses immunomodulatory properties that may impede this cellular phenotypic switch. METHODS We investigated the immunosuppressive influence of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on the M1 and MSC1 cytokine secretion. Lipopolysaccharides (LPS) were used as inflammagen to stimulate MPhs and MSCs. Both inflammatory phenotypes were co-exposed to AEA or 2-AG, the specific cannabinoid receptor CB2 agonist JWH-133 served as reference. The inflammatory responses were detected by CD80/163 immuno-labelling and by ELISA measures of secreted IL-6, IL-8, MIF, TNF-α, TGF-β, and VEGF. RESULTS M1 cells were found positive for CD80 expression and secreted less IL-6 and IL-8 than MSC1 cells, while both cell types produced similar amounts of MIF. TNF-α release was increased by M1, and growth factors were secreted by MSC1, only. Cannabinoid receptor ligands efficiently decreased the inflammatory response of M1, while their impact was less pronounced in MSC1. CONCLUSIONS The ECS down-regulated the inflammatory responses of MPhs and MSCs by decreasing the cytokine release upon LPS treatment, while CB2 appeared to be of particular importance. Hence, stimulating the ECS by manipulation of endo- or use of exogenous cannabinoids in vivo may constitute a potent therapeutic option against inflammatory disorders.
Collapse
|
28
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Hosseiniyan Khatibi SM, Kheyrolahzadeh K, Barzegari A, Rahbar Saadat Y, Zununi Vahed S. Medicinal signaling cells: A potential antimicrobial drug store. J Cell Physiol 2020; 235:7731-7746. [PMID: 32352173 DOI: 10.1002/jcp.29728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
Medicinal signaling cells (MSCs) are multipotent cells derived from mammalian bone marrow and periosteum that can be extended in culture. They can keep their ability in vitro to form a variety of mesodermal phenotypes and tissues. Over recent years, there has been great attention over MSCs since they can impact the organ transplantation as well as autoimmune and bacterial diseases. MSCs can secrete different bioactive factors such as growth factors, antimicrobial peptides/proteins and cytokines that can suppress the immune system and prevent infection via direct and indirect mechanisms. Moreover, MSCs are able to increase bacterial clearance in sepsis models by producing antimicrobial peptides such as defensins, cathelicidins, lipocalin and hepcidin. It is the aim of the present review to focus on the antibacterial effector functions of MSCs and their mechanisms of action against the pathogenic microbes.
Collapse
Affiliation(s)
| | - Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Azad University, Tabriz Branch, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
30
|
Isolation, Characterization, Differentiation and Immunomodulatory Capacity of Mesenchymal Stromal/Stem Cells from Human Perirenal Adipose Tissue. Cells 2019; 8:cells8111346. [PMID: 31671899 PMCID: PMC6928994 DOI: 10.3390/cells8111346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are immature multipotent cells, which represent a rare population in the perivascular niche within nearly all tissues. The most abundant source to isolate MSCs is adipose tissue. Currently, perirenal adipose tissue is rarely described as the source of MSCs. MSCs were isolated from perirenal adipose tissue (prASCs) from patients undergoing tumor nephrectomies, cultured and characterized by flow cytometry and their differentiation potential into adipocytes, chondrocytes, osteoblasts and epithelial cells. Furthermore, prASCs were stimulated with lipopolysaccharide (LPS), lipoteichoic acid (LTA) or a mixture of cytokines (cytomix). In addition, prASC susceptibility to human cytomegalovirus (HCMV) was investigated. The expression of inflammatory readouts was estimated by qPCR and immunoassay. HCMV infection was analyzed by qPCR and immunostaining. Characterization of cultured prASCs shows the cells meet the criteria of MSCs and prASCs can undergo trilineage differentiation. Cultured prASCs can be induced to differentiate into epithelial cells, shown by cytokeratin 18 expression. Stimulation of prASCs with LPS or cytomix suggests the cells are capable of initiating an inflammation-like response upon stimulation with LPS or cytokines, whereas, LTA did not induce a significant effect on the readouts (ICAM-1, IL-6, TNFα, MCP-1 mRNA and IL-6 protein). HCMV broadly infects prASCs, showing a viral load dependent cytopathological effect (CPE). Our current study summarizes the isolation and culture of prASCs, clearly characterizes the cells, and demonstrates their immunomodulatory potential and high permissiveness for HCMV.
Collapse
|
31
|
Zhang R, Yang J, Wu J, Xiao L, Miao L, Qi X, Li Y, Sun W. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration. Eur J Pharmacol 2019; 851:144-150. [PMID: 30776366 DOI: 10.1016/j.ejphar.2019.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/01/2022]
Abstract
Periodontal disease is a bacterial infection-associated disease of the periodontal tissues characterized by the destruction of tooth-supporting structures, including alveolar bone. The ideal goal of periodontal therapy is the complete regeneration of alveolar bone in a healthy microenvironment free of infection. In this study, we found that berberine, a benzylisoquinoline plant alkaloid from Coptidis Rhizoma, strongly inhibited the growth of Porphyromonas gingivalis. Gingipain is the most important virulence factor of Porphyromonas gingivalis in the process of periodontal tissue destruction. Berberine also had an inhibitory effect on gingipain activity in a concentration dependent manner. Remarkably, berberine restored the downregulation of osteogenesis-related genes expression in bone mesenchymal stem cells (BMSCs) induced by Porphyromonas gingivalis infection, and significantly increased the expression of osteogenesis-related genes such as OSX, COLI, ALP, OCN and OPN compared to the control group. This results suggested that berberine may directly promote osteogenesis. Further in-vitro studies demonstrated that berberine statistically significantly promoted the osteogenic differentiation of BMSCs at concentrations of 1-10 μM. In the research on the mechanisms, we found that both total β-catenin and nuclear β-catenin accumulation were statistically significantly increased by berberine. And the transcriptional activity of β-catenin/TCF was about 2 folds higher than the control group. Furthermore, Wnt signalling specific inhibitor DKK-1 blocked the above effects of berberine. These demonstrated that Wnt/β-catenin signalling pathway was involved in the osteogenic differentiation induced by berberine. The antibacterial actions in combination with the promotion role in osteogenic differentiation position berberine as a prospective drug for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
| | - Jie Yang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
| | - Lingling Xiao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
32
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Xing Y, Zhang Y, Jia L, Xu X. Lipopolysaccharide from Escherichia coli stimulates osteogenic differentiation of human periodontal ligament stem cells through Wnt/β-catenin-induced TAZ elevation. Mol Oral Microbiol 2018; 34. [PMID: 30387555 DOI: 10.1111/omi.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/β-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/β-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Linglu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
34
|
Hassanshahi A, Hassanshahi M, Khabbazi S, Hosseini‐Khah Z, Peymanfar Y, Ghalamkari S, Su Y, Xian CJ. Adipose‐derived stem cells for wound healing. J Cell Physiol 2018; 234:7903-7914. [DOI: 10.1002/jcp.27922] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alireza Hassanshahi
- Department of Genetics Faculty of Basic Sciences, Islamic Azad University Shahrekord Iran
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Samira Khabbazi
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Zahra Hosseini‐Khah
- Department of Immunology School of Medicine, Mazandaran University of Medical Sciences Sari Iran
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | | | - Yu‐Wen Su
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| | - Cory J. Xian
- School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, University of South Australia Adelaide South Australia Australia
| |
Collapse
|
35
|
Ruhl T, Kim BS, Beier JP. Cannabidiol restores differentiation capacity of LPS exposed adipose tissue mesenchymal stromal cells. Exp Cell Res 2018; 370:653-662. [DOI: 10.1016/j.yexcr.2018.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 02/01/2023]
|
36
|
Adipose-derived mesenchymal stem cells release microvesicles with procoagulant activity. Int J Biochem Cell Biol 2018; 100:49-53. [PMID: 29778527 DOI: 10.1016/j.biocel.2018.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles are produced by a number of different cell types, among them mesenchymal stromal/stem cells (MSC) of different sources. It has been shown that extracellular vesicles of MSC exert similar therapeutic effects as the cells themselves. Here, we isolated and characterized extracellular vesicles produced by adipose-derived MSC (adMSC) in vitro upon stimulation with the proinflammatory substances lipopolysaccharide (LPS) and tumor necrosis factor (TNF). We found that the number of vesicles produced by adMSC does not change upon stimulation of the cells with LPS and TNF. Furthermore, adMSC-derived extracellular vesicles exert procoagulant activity independent of previous stimulation with LPS or TNF. We found evidence that the vesicles induce coagulation via both the intrinsic and the extrinsic pathway of coagulation.
Collapse
|
37
|
Abnave P, Ghigo E. Role of the immune system in regeneration and its dynamic interplay with adult stem cells. Semin Cell Dev Biol 2018; 87:160-168. [PMID: 29635020 DOI: 10.1016/j.semcdb.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration.
Collapse
Affiliation(s)
- Prasad Abnave
- URMITE, CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385 Marseille Cedex 05, France.
| | - Eric Ghigo
- Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, 13385 Marseille Cedex 05, France; CNRS, 21 chemin de Joseph Aiguier, 13009 Marseille.
| |
Collapse
|
38
|
Ding H, Jin M, Liu D, Wang S, Zhang J, Song X, Huang R. Tenascin‑C promotes the migration of bone marrow stem cells via toll‑like receptor 4‑mediated signaling pathways: MAPK, AKT and Wnt. Mol Med Rep 2018; 17:7603-7610. [PMID: 29620204 PMCID: PMC5983947 DOI: 10.3892/mmr.2018.8855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
There are currently limitations in stem cell therapy due to the low rate of homing and proliferation of cells following transplantation. The present study was designed to investigate the effects of Tenascin-C (TN-C) on bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms. BMSCs were obtained from C57BL/6 mice. The survival and proliferation of BMSCs was analyzed by Cell Counting Kit-8 assay, migration was evaluated using the Transwell method, and differentiation was assessed by immunocytochemistry and immunofluorescence. In addition, the levels of proteins were detected by western blotting. High concentrations of TN-C promoted the migration of BMSCs. H2O2 at concentrations of 60–90 µmol/ml induced cell death in BMSCs, and thus, it was used to simulate oxidative stress in the microenvironment of acute myocardial infarction (AMI). High concentrations of TN-C were able to protect BMSCs from cell death, and promoted the migration of BMSCs (P<0.05). However, TAK-242 [the inhibitor of Toll-like receptor 4, (TLR4)] reduced the promoting effect of TN-C (P<0.05). By contrast, TN-C had no effect on the proliferation and differentiation of BMSCs. TN-C reduced the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), and increased the phosphorylation levels of Ser473 protein kinase B (AKT) and β-catenin, all of which were inhibited by TAK-242 (P<0.05). In the simulated AMI microenvironment, TN-C promoted the migration of BMSCs via TLR4-mediated signaling pathways, including MAPK, AKT and Wnt.
Collapse
Affiliation(s)
- Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingyu Jin
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dai Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianing Zhang
- College of Life Sciences and Pharmacy, Dalian University of Technology, Dalian, Liaoning 116027, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Rongchong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
39
|
Widbiller M, Eidt A, Wölflick M, Lindner SR, Schweikl H, Hiller KA, Buchalla W, Galler KM. Interactive effects of LPS and dentine matrix proteins on human dental pulp stem cells. Int Endod J 2018; 51:877-888. [PMID: 29377169 DOI: 10.1111/iej.12897] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022]
Abstract
AIM To investigate the combinatorial effects of lipopolysaccharide (LPS) and extracted dentine matrix proteins (eDMP) on regenerative and inflammatory responses in human dental pulp stem cells (DPSCs). METHODOLOGY Culture media were supplemented with several concentrations of LPS, eDMP and combinations of both. Cell viability was assessed over 1 week by MTT assay; cell survival was evaluated after 24 h and 7 days by flow cytometry. The expression of mineralization-associated marker genes was determined by real-time quantitative polymerase chain reaction (RT-qPCR). To analyse the inflammatory response, secretion of interleukin 6 (IL-6) was quantified in the initial and the late phase of cell culture by enzyme-linked immunosorbent assay (ELISA). Data were treated nonparametrically and Mann-Whitney U-tests were performed to compare all experimental groups (α = 0.05). RESULTS Whereas LPS had no impact on viability, eDMP led to a concentration-dependent decrease, which was significant after 7 days (P ≤ 0.024). A moderate decline of cell survival induced by LPS was detected after 48 h (P ≤ 0.026), whereas eDMP was able to reverse this effect. eDMP alone caused increased expression of tested marker genes, LPS had no regulatory effect. Combined eDMP and LPS induced an upregulation of collagen type I and osteocalcin, whereas expression levels of dentine matrix acidic phosphoprotein and dentine sialophosphoprotein were similar to the control. IL-6-secretion was increased by LPS over time. eDMP markedly elevated initial production of IL-6 (P ≤ 0.002), but suppressed LPS-induced cytokine production in the later phase. CONCLUSIONS Lipopolysaccharide did not affect cell viability but interfered with odontoblast-like cell differentiation of DPSCs. Proteins from the dentine matrix may have a protective effect, attenuate the detrimental impact of LPS and thus play an important role during pulp repair.
Collapse
Affiliation(s)
- M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - A Eidt
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - M Wölflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - S R Lindner
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - H Schweikl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - K-A Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - K M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Ren LR, Wang ZH, Wang H, He XQ, Song MG, Xu YQ. Staphylococcus Aureus Induces Osteoclastogenesis via the NF-κB Signaling Pathway. Med Sci Monit 2017; 23:4579-4590. [PMID: 28942456 PMCID: PMC5629995 DOI: 10.12659/msm.903371] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Osteomyelitis is one of the refractory diseases encountered in orthopedics, while Staphylococcus aureus (S. aureus) is the most common causative organism in osteomyelitis. However, the precise mechanisms underlying the bone loss caused by S. aureus infection have not been well defined. Here, we investigated the effect of S. aureus on osteoclast differentiation and the probable molecular mechanism. Material/Methods RAW 264.7 cells were treated for 5 days with live S. aureus, inactivated S. aureus, and S. aureus filtrate. Then, the formation of osteoclast-like cells and resorption pits was observed, and the expression of osteoclast-specific genes (TRAP, MMP-9, cathepsin K, CTR and Atp6v0d2) was detected by real-time PCR. Moreover, key proteins in the signaling pathway associated with osteoclast differentiation were detected with Western blot. Results The data showed that live S. aureus, inactivated S. aureus, and S. aureus filtrate induced osteoclast formation, promoted bone resorption, and increased the expression of osteoclast-specific genes in a dose-dependent manner in the absence RANKL. In addition, we found that the S. aureus-induced osteoclastogenesis was related to the degradation of IκB-α, phosphorylation of NF-κB p65, and increased expression of NFATc1. Thus, we used JSH-23 to inhibit NF-κB transcriptional activity. The effect of the S. aureus-induced osteoclastogenesis and the expression of osteoclast-specific genes and NFATc1 were inhibited, which indicated that the NF-κB signaling pathway plays a role in S. aureus-induced osteoclastogenesis. Conclusions This study demonstrated that S. aureus induces osteoclastogenesis through its cell wall compound and secretion of small soluble molecules, and the NF-κB signaling pathway plays a role in this process.
Collapse
Affiliation(s)
- Li-Rong Ren
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zhi-Hua Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hai Wang
- Department of Orthopaedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China (mainland)
| | - Xiao-Qing He
- Department of Orthopaedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China (mainland)
| | - Mu-Guo Song
- Department of Orthopaedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China (mainland)
| | - Yong-Qing Xu
- Department of Orthopaedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China (mainland)
| |
Collapse
|
41
|
Mouse Bone Marrow Sca-1 + CD44 + Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun 2017; 85:IAI.00471-17. [PMID: 28739828 DOI: 10.1128/iai.00471-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4-p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1β (IL-1β), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1β expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4-MyD88-IRAK-4-p38-NF-κB-Camp-IL-1β pathway to survive inside bone marrow stem cells.
Collapse
|
42
|
Ren LR, Wang H, He XQ, Song MG, Chen XQ, Xu YQ. Staphylococcus aureus Protein A induces osteoclastogenesis via the NF‑κB signaling pathway. Mol Med Rep 2017; 16:6020-6028. [PMID: 28849198 PMCID: PMC5865801 DOI: 10.3892/mmr.2017.7316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 06/29/2017] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is the most common organism causing osteomyelitis, and Staphylococcus aureus protein A (SpA) is an important virulence factor anchored in its cell wall. However, the precise mechanisms underlying the bone loss caused by SpA have not been well understood. The present study aimed to investigate the effect of SpA on osteoclast differentiation, and the probable mechanism was investigated. Raw264.7 cells were treated with SpA in the absence or presence of receptor-activated (NF)-κB ligand for 5 days, and morphological and biochemical assays were used to assess osteoclastogenesis and explore the underlying mechanisms. Data demonstrated that SpA induced osteoclast differentiation and promoted bone resorption in a dose-dependent manner in the absence or presence of RANKL. In addition, the expression of osteoclast-specific genes, such as the tartrate resistant acid phosphatase, matrix metalloproteinase-9, cathepsin K, calcitonin receptors and d2 isoform of the vacuolar ATPase Vo domain, were enhanced by SpA. Furthermore, the SpA-induced osteoclast differentiation was associated with the degradation of inhibitor of κB-α, phosphorylation of NF-κB p65 and increased expression of nuclear factor of activated T-cells. However, by treatment with JSH-23, an NF-κB inhibitor, the formation of osteoclast-like cells and resorption pits was significantly reduced, and the expression of osteoclast-specific genes was also inhibited. Collectively, in the present study SpA induced osteoclast differentiation, promoted bone resorption, and the NF-κB signaling pathway was involved in this process.
Collapse
Affiliation(s)
- Li-Rong Ren
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Hai Wang
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Xiao-Qing He
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Mu-Guo Song
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Xue-Qiu Chen
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| | - Yong-Qing Xu
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
43
|
Innate Immunity of Adipose Tissue in Rodent Models of Local and Systemic Staphylococcus aureus Infection. Mediators Inflamm 2017; 2017:5315602. [PMID: 28428684 PMCID: PMC5385907 DOI: 10.1155/2017/5315602] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022] Open
Abstract
Background. The role of adipose tissue in systemic inflammation during bacterial infection is unclear. Effects of Staphylococcus aureus infection on adipocytes in rodent models of experimental endocarditis and peritonitis, the impact of S. aureus infection on gene expression in epididymal and subcutaneous adipose tissue, and effects of S. aureus infection on the toll-like receptor-2- (TLR2-) cathelicidin pathway in vivo and in vitro were investigated. Material and methods. The rat model of catheter-induced S. aureus endocarditis and the mouse model of S. aureus-induced peritonitis were used for infection experiments, gene expression profiling in adipose tissue, and measurement of cytokines. 3T3-L1 adipocytes were analyzed for expression of the TLR2-cathelicidin pathway. Results. Upon systemic bacterial infection by S. aureus, there is a shift from anti- to proinflammatory cytokines in serum and in adipose tissue gene expression. The TLR2-cathelicidin pathway is increasingly expressed during adipocyte differentiation in vitro and is induced upon stimulation by synthetic lipopeptides. Conclusions. Systemic infection by Gram-positive bacteria induces proinflammatory transformation of adipose tissue sites distinct from infection sites, documented on the levels of gene expression and secreted mediators. The TLR2-cathelicidine pathway is expressed and highly inducible in adipocytes in vitro. Lipopeptides are important immune-modulators of adipocytes in both gene expression and protein secretion.
Collapse
|
44
|
Herzmann N, Salamon A, Fiedler T, Peters K. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp Cell Res 2017; 350:115-122. [DOI: 10.1016/j.yexcr.2016.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022]
|
45
|
NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model. Acta Biomater 2016; 41:273-81. [PMID: 27260104 DOI: 10.1016/j.actbio.2016.05.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. STATEMENT OF SIGNIFICANCE Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone-resorbing cells), and osteoblasts (bone-forming cells) could potentially mitigate this disease. Here we demonstrated that local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) mitigated ultra-high molecular weight polyethylene (UHMWPE) wear particle induced bone loss in a clinically relevant murine model. The protective effects of decoy ODN was associated with reduced macrophage infiltration and osteoclast activation, but had no significant effects on osteoblast numbers. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced bone loss.
Collapse
|
46
|
Kusuyama J, Komorizono A, Bandow K, Ohnishi T, Matsuguchi T. CXCL3 positively regulates adipogenic differentiation. J Lipid Res 2016; 57:1806-1820. [PMID: 27512010 DOI: 10.1194/jlr.m067207] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)β and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Anna Komorizono
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
47
|
Herzmann N, Salamon A, Fiedler T, Peters K. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro. Exp Cell Res 2016; 342:95-103. [PMID: 26997527 DOI: 10.1016/j.yexcr.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022]
Abstract
Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC.
Collapse
Affiliation(s)
- Nicole Herzmann
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany
| | - Tomas Fiedler
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock, Germany.
| |
Collapse
|
48
|
TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS One 2016; 11:e0149876. [PMID: 26930594 PMCID: PMC4773221 DOI: 10.1371/journal.pone.0149876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/06/2016] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.
Collapse
|
49
|
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168:208-14. [DOI: 10.1016/j.imlet.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
|
50
|
Meyer J, Salamon A, Herzmann N, Adam S, Kleine HD, Matthiesen I, Ueberreiter K, Peters K. Isolation and differentiation potential of human mesenchymal stem cells from adipose tissue harvested by water jet-assisted liposuction. Aesthet Surg J 2015; 35:1030-9. [PMID: 26006726 DOI: 10.1093/asj/sjv075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In recent years the therapeutic application of extracted adipose tissue for autologous fat grafting and the application of adipose tissue-derived mesenchymal stem cells (adMSC) isolated thereof has progressed. Water-jet assisted liposuction (WAL) is 1 procedure for harvesting adipose tissue and provides a favorable aesthetic outcome combined with high tissue protection. Tissue aspirated by WAL has been successfully applied in grafting procedures. OBJECTIVES The aims of this study were to confirm the tissue viability and to understand the abundance and mesenchymal differentiation capacity of stem cells within the tissue. METHODS We analyzed tissue integrity of WAL tissue particles via fluorescence microscopy. The adMSC content was determined by isolating the cells from the tissue. The mesenchymal differentiation capacity was confirmed with cytochemical staining methods. RESULTS The stromal vascular fraction of WAL tissue showed high viability and contained an average of 2.6 × 105 CD34-positive cells per milliliter of tissue. Thus WAL tissue contains a high number of stem cells. Furthermore adMSC isolated from WAL tissue showed typical mesenchymal differentiation potential. CONCLUSIONS WAL of adipose tissue is well suited for autologous fat grafting because it retains tissue viability. Furthermore it is a valid source for the subsequent isolation of adMSC with multipotent differentiation potential. LEVEL OF EVIDENCE 3 Therapeutic.
Collapse
Affiliation(s)
- Juliane Meyer
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Achim Salamon
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Nicole Herzmann
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Stefanie Adam
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Hans-Dieter Kleine
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Inge Matthiesen
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Klaus Ueberreiter
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| | - Kirsten Peters
- Mrs Meyer and Mrs Herzmann are PhD Students, Dr Salamon is a Post-doctoral Fellow, Mrs Adam is a Technical Assistant, and Dr Peters is Head of the Stem Cell Biology Group, Department of Cell Biology, Rostock University Medical Center, Rostock, Germany. Dr Kleine is on the Executive Board of Seracell Stammzelltechnologie GmbH, Rostock, Germany. Dr Matthiesen is Head of the Department of Medical Affairs, human med AG, Schwerin, Germany. Dr Ueberreiter is a Plastic Surgeon in private practice in Birkenwerder, Germany
| |
Collapse
|