1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
3
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Shayan N, Ghiyasimoghaddam N, Mirkatuli HA, Baghbani M, Ranjbarzadhagh Z, Mohtasham N. The biomarkers for maintenance Cancer stem cell features can be applicable in precision medicine of head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101906. [PMID: 38688401 DOI: 10.1016/j.jormas.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor relapse, proliferation, invasion, and drug resistance in head and neck squamous cell carcinoma (HNSCC). This narrative review aims to synthesize data from articles published between 2019 and 2023 on biomarkers for detecting CSCs in HNSCC and changes in molecular pathways, genetics, epigenetics, and non-coding RNAs (ncRNAs) in CSCs relevant to precision medicine approaches in HNSCC management. The search encompassed 41 in vitro studies and 22 clinical studies. CSCs exhibit diverse molecular profiles and unique biomarker expression patterns, offering significant potential for HNSCC diagnosis, treatment, and prognosis, thereby enhancing patient survival. Their remarkable self-renewal ability and adaptability are closely linked to tumorigenicity development and maintenance. Assessing biomarkers before and after therapy can aid in identifying various cell types associated with cancer progression and relapse. Screening for CSCs, senescent tumor cells, and cells correlated with the senescence process post-treatment has proven highly beneficial. However, the clinical application of precision medicine in HNSCC management is hindered by the lack of specific and definitive CSC biomarkers. Furthermore, our limited understanding of CSC plasticity, governed by genomic, transcriptomic, and epigenomic alterations during tumorigenesis, as well as the bidirectional interaction of CSCs with the tumor microenvironment, underscores the need for further research. Well-designed studies involving large patient cohorts are, therefore, essential to establish a standardized protocol and address these unresolved queries.
Collapse
Affiliation(s)
- Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | | | - Zahra Ranjbarzadhagh
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
6
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
8
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
10
|
Ponomarev AS, Gilazieva ZE, Solovyova VV, Rizvanov AA. Molecular Mechanisms of Tumor Cell Stemness Modulation during Formation of Spheroids. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:979-994. [PMID: 37751868 DOI: 10.1134/s0006297923070106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 09/28/2023]
Abstract
Cancer stem cells (CSCs), their properties and interaction with microenvironment are of interest in modern medicine and biology. There are many studies on the emergence of CSCs and their involvement in tumor pathogenesis. The most important property inherent to CSCs is their stemness. Stemness combines ability of the cell to maintain its pluripotency, give rise to differentiated cells, and interact with environment to maintain a balance between dormancy, proliferation, and regeneration. While adult stem cells exhibit these properties by participating in tissue homeostasis, CSCs behave as their malignant equivalents. High tumor resistance to therapy, ability to differentiate, activate angiogenesis and metastasis arise precisely due to the stemness of CSCs. These cells can be used as a target for therapy of different types of cancer. Laboratory models are needed to study cancer biology and find new therapeutic strategies. A promising direction is three-dimensional tumor models or spheroids. Such models exhibit properties resembling stemness in a natural tumor. By modifying spheroids, it becomes possible to investigate the effect of therapy on CSCs, thus contributing to the development of anti-tumor drug test systems. The review examines the niche of CSCs, the possibility of their study using three-dimensional spheroids, and existing markers for assessing stemness of CSCs.
Collapse
Affiliation(s)
- Aleksei S Ponomarev
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Zarema E Gilazieva
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Valeriya V Solovyova
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia
| | - Albert A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, 420008, Russia.
| |
Collapse
|
11
|
Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: Therapeutic implications and challenges. World J Stem Cells 2023; 15:438-452. [PMID: 37342225 PMCID: PMC10277967 DOI: 10.4252/wjsc.v15.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.
Collapse
Affiliation(s)
- Priyanka Joshi
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanjeev Waghmare
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
12
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
13
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Chen SMY, Popolizio V, Woolaver RA, Ge H, Krinsky AL, John J, Danis E, Ke Y, Kramer Y, Bian L, Nicklawsky AG, Gao D, Liu S, Chen Z, Wang XJ, Wang JH. Differential responses to immune checkpoint inhibitor dictated by pre-existing differential immune profiles in squamous cell carcinomas caused by same initial oncogenic drivers. J Exp Clin Cancer Res 2022; 41:123. [PMID: 35366939 PMCID: PMC8976353 DOI: 10.1186/s13046-022-02337-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND While immune checkpoint inhibitors (ICI) were approved for head and neck squamous cell carcinomas (HNSCCs), the response rate remains relatively low. Mechanisms underlying ICI unresponsiveness versus sensitivity are not fully understood. METHOD To better delineate differential responses to ICI treatment, we employed mouse SCC models, termed KPPA tumors that were caused by deleting p53 and hyperactivating PIK3CA, two most frequently mutated genes in human HNSCCs. We transplanted two KPPA tumor lines (TAb2 versus TCh3) into C57BL/6 recipients and examined the immune tumor microenvironment using flow cytometry. Furthermore, we employed single-cell RNA sequencing to identify the difference in tumor infiltrating lymphocytes (TILs). RESULTS We found that different KPPA tumors exhibited heterogeneous immune profiles pre-existing treatment that dictated their sensitivity or unresponsiveness to anti-PD-L1. Unresponsive TAb2 tumors were highly enriched with functional tumor-associated macrophages (TAMs), especially M2-TAMs. In contrast, sensitive TCh3 tumors contained more CD8 TILs with better effector functions. TAb2 tumor cells drastically expanded F4/80+ TAMs from bone marrow precursors, requiring CSF1 and VEGF. Consistently, a higher combined expression of VEGF-C and CSF1 predicts worse survival in PIK3CAAmp/TP53Mutated HNSCC patients. Unresponsive TAb2 tumors upregulated distinct signaling pathways that correlate with aggressive tumor phenotypes. While anti-PD-L1 did not affect the TME of TAb2 tumors, it significantly increased the number of CD8 TILs in TCh3 tumors. CONCLUSIONS We uncovered tumor-intrinsic differences that may underlie the differential responses to ICI by establishing and employing two SCC tumor lines, TAb2 vs. TCh3, both of which harbor TP53 deletion and PIK3CA hyperactivation. Our study indicates the limitation of stratifying cancers according to their genetic alterations and suggests that evaluating HNSCC tumor-intrinsic cues along with immune profiles in the TME may help better predict ICI responses. Our experimental models may provide a platform for pinpointing tumor-intrinsic differences underlying an immunosuppressive TME in HNSCCs and for testing combined immunotherapies targeting either tumor-specific or TAM-specific players to improve ICI efficacy.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Yao Ke
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Yonatan Kramer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Li Bian
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Andrew G Nicklawsky
- Department of Pediatrics and Department of Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Dexiang Gao
- Department of Pediatrics and Department of Biostatistics and Informatics, Cancer Center Biostatistics Core, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
xCT contributes to colorectal cancer tumorigenesis through upregulation of the MELK oncogene and activation of the AKT/mTOR cascade. Cell Death Dis 2022; 13:373. [PMID: 35440604 PMCID: PMC9019093 DOI: 10.1038/s41419-022-04827-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
AbstractColorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignant tumors globally, and its occurrence and progression are closely related to the poor histological features and complex molecular characteristics among patients. It is urgent to identify specific biomarkers for effective treatment of CRC. In this study, we performed comprehensive experiments to validate the role of xCT expression in CRC tumorigenesis and stemness and confirmed xCT knockdown significantly suppressed the proliferation, migration, and stemness of CRC cells in vitro and effectively inhibited CRC tumorigenesis and metastasis in vivo. In addition, bioinformatic analysis and luciferase assays were used to identify E2F1 as a critical upstream transcription factor of SLC7A11 (the gene encoding for xCT) that facilitated CRC progression and cell stemness. Subsequent RNA sequencing, western blotting, rescue assay, and immunofluorescence assays revealed MELK directly co-expressed with xCT in CRC cells, and its upregulation significantly attenuated E2F1/xCT-mediated tumorigenesis and stemness in CRC. Further molecular mechanism exploration confirmed that xCT knockdown may exert an antitumor effect by controlling the activation of MELK-mediated Akt/mTOR signaling. Erastin, a specific inhibitor of xCT, was also proven to effectively inhibit CRC tumorigenesis and cell stemness. Altogether, our study showed that E2F1/xCT is a promising therapeutic target of CRC that promotes tumorigenesis and cell stemness. Erastin is also an effective antitumoral agent for CRC.
Collapse
|
16
|
Kumbar VM, Muddapur UM, Bhat KG, Shwetha HR, Kugaji MS, Peram MR, Dindawar S. Cancer Stem Cell Traits in Tumor Spheres Derived from Primary Laryngeal Carcinoma Cell Lines. Contemp Clin Dent 2021; 12:247-254. [PMID: 34759681 PMCID: PMC8525812 DOI: 10.4103/ccd.ccd_252_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Cancer stem cells (CSCs) belong to a subpopulation of undifferentiated cells present within tumors that have the potential to regenerate, differentiate, maintenance of pluripotency, drug resistance, and tumorigenicity when transplanted into an innate host. These can influence the growth and behavior of these tumors and are used to investigate the initiation, progression, and treatment strategies of laryngeal cancer. Research on CSC science and targeted therapies were hinge on their isolation and/or enrichment procedures. The object of the study is to isolate cancer stem cells from primary laryngeal carcinoma (CSCPLC) by tumor spheres enrichment. We checked the properties of self-renewal, stemness, clonogenicity, and chemotherapeutic resistance. Materials and Methods We performed tumor sphere formation assay (primary, secondary, and tertiary) chemotherapy resistance by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were performed to evaluate the CSC cells. Immunofluorescence for stem cell markers (CD133+, CD44+) and gene expression of stem cell markers for CD133+, CD44+, OCT4, SOX2, and NANOG was done using the real-time polymerase chain reaction technique. Results We were able to isolated CSC subpopulations from PLC cell lines by the tumor sphere method. These cells exhibited good primary, secondary, and tertiary tumor sphere formation efficiency and also disclosed a resistant index of more than 2. Immunofluorescence for stem cell markers (CD133+ and CD44+) confirms the presence of CSC. There was significantly higher mRNA expression of stem cell markers in CSC enriched subpopulations compared to the parental cell lines. Conclusion We conclude that tumor spheres enrichment is an efficient, economical, and reliable approach for the isolation and characterization of CSC from PLC cell lines. These cells demonstrated the properties of self-renewal, stemness, clonogenicity, and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Vijay Mahadev Kumbar
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Hubballi, India.,Department of Biotechnology, KLE Technological University, BVB Campus, Hubballi, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University, BVB Campus, Hubballi, India
| | - Kishore G Bhat
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Hubballi, India
| | - H R Shwetha
- Department of Oral Pathology, Maratha Mandal's N. G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Manohar S Kugaji
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Hubballi, India.,Department of Biotechnology, KLE Technological University, BVB Campus, Hubballi, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Hubballi, India.,Department of Pharmaceutics, Maratha Mandal's College of Pharmacy, Belagavi, Karnataka, India
| | - Santosh Dindawar
- Department of Oral and Maxillofacial Surgery, Maratha Mandal's N. G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
17
|
Cirillo N, Wu C, Prime SS. Heterogeneity of Cancer Stem Cells in Tumorigenesis, Metastasis, and Resistance to Antineoplastic Treatment of Head and Neck Tumours. Cells 2021; 10:cells10113068. [PMID: 34831291 PMCID: PMC8619944 DOI: 10.3390/cells10113068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The discovery of a small subset of cancer cells with self-renewal properties that can give rise to phenotypically diverse tumour populations has shifted our understanding of cancer biology. Targeting cancer stem cells (CSCs) is becoming a promising therapeutic strategy in various malignancies, including head and neck squamous cell carcinoma (HNSCC). Diverse sub-populations of head and neck cancer stem cells (HNCSCs) have been identified previously using CSC specific markers, the most common being CD44, Aldehyde Dehydrogenase 1 (ALDH1), and CD133, or by side population assays. Interestingly, distinct HNCSC subsets play different roles in the generation and progression of tumours. This article aims to review the evidence for a role of specific CSCs in HNSCC tumorigenesis, invasion, and metastasis, together with resistance to treatment.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
- Correspondence:
| | - Carmen Wu
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
| | - Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
18
|
Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma-Treatment Modalities. BALKAN JOURNAL OF DENTAL MEDICINE 2021. [DOI: 10.2478/bjdm-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Head and neck squamous cell carcinoma (HNSCC) belongs to the most frequent cancer subtypes in the world. Mutations due to genetic and chromosomal instability, syndromes such as Fanconi anemia and the Bloom syndrome, environmental risk factors such as tobacco smoking, alcohol and human papillomavirus infection (HPV) subtypes 16,18,31,33,35,52,58 are implicated in its pathogenesis. The HNSCC belongs to the solid tumors of epithelial origin and consists of stromal, inflammatory, cancer cells and most importantly a fraction of them, the cancer stem cells (CSCs). The identification of the CSCs through their biomarkers such as CD44, CD10, CD166, CD133, CD271, ALDH, Oct4, Nanog, Sox2 and Bmi1, the maintenance of their subpopulation through epithelial to mesenchymal transition, the role of HPV infection regarding their prognosis and of their microenvironment regarding their resistance to therapy, all constitute key elements that must be taken thoroughly into consideration in order to develop an effective targeted therapy. There are already therapies in place targeting specific related biomarkers, important biochemical pathways and growth factors. The aim of this literature review is to illustrate the treatment modalities available against the cancer stem cells of head and neck squamous cell carcinoma.
Collapse
|
19
|
Tran K, Brice R, Yao L. Bioscaffold-based study of glioblastoma cell behavior and drug delivery for tumor therapy. Neurochem Int 2021; 147:105049. [PMID: 33945833 DOI: 10.1016/j.neuint.2021.105049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is a severe form of brain cancer with an average five-year survival rate of 6.7%. Current treatment strategies include surgical resection of the tumor area and lining the lesion site with therapeutics, which offer only a moderate impact on increasing survival rates. Drug-testing models based on the monolayer cell culture method may partially explain the lack of advancement in effective GBM treatment, because this model is limited in its ability to show heterogeneous cell-cell and cell-environment interactions as tumor cells in the in vivo state. The development of bioscaffold-based culture models is an important improvement in GBM research, preclinical trials, and targeted drug testing, through better mimicking of the heterogeneity of tumor environmental conditions. A major hurdle towards better GBM outcomes is in delivering medication across the blood-brain barrier (BBB), which normally prevents the crossing of materials into the treatment site. The delivery of therapeutics using bioscaffolds is a potential means of overcoming the BBB and could potentially facilitate long-lasting drug release. A number of natural and synthetic materials have been studied for their biodegradability, toxicity, distribution, and pharmaceutical stability, which are needed to determine the overall effectiveness and safety of glioblastoma treatment. This review summarizes advancements in the research of bioscaffold-based GBM cell growth systems and the potential of using bioscaffolds as a carrier for drug delivery.
Collapse
Affiliation(s)
- Kimmy Tran
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
20
|
The distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. Histochem Cell Biol 2021; 156:47-58. [PMID: 33710418 DOI: 10.1007/s00418-021-01979-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
The survival of cancer stem cells is usually limited to a specific tumor microenvironment, and this microenvironment plays a vital role in the development of tumors. The mechanical properties of the microenvironment differ in different regions of solid tumors. However, in solid tumors, whether the distribution of cancer stem cells relates to the mechanical microenvironment of different regions is still unclear. In this study, we undertook a biophysical and biochemical assessment of the changes in the mechanical properties of liver tissue during the progression of liver cancer and explored the distribution of liver cancer stem cells in liver cancer tissues. Our analysis confirmed previous observations that the stiffness of liver tissue gradually increased with the progress of fibrosis. In liver cancer tissues, we found obvious mechanical heterogeneity: the core of the tumor was soft, the invasive front tissue was the hardest, and the para-cancer tissue was in an intermediate state. Interestingly, the greatest number of liver cancer stem cells was found in the invasive front part of the tumor. We finally established that stroma stiffness correlated with the number of liver cancer stem cells. These findings indicate that the distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. This result provides a theoretical basis for the development of targeted therapies against the mechanical microenvironment of liver cancer stem cells.
Collapse
|
21
|
Demers I, Donkers J, Kremer B, Speel EJ. Ex Vivo Culture Models to Indicate Therapy Response in Head and Neck Squamous Cell Carcinoma. Cells 2020; 9:E2527. [PMID: 33238461 PMCID: PMC7700693 DOI: 10.3390/cells9112527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a poor 5 year survival and varying response rates to both standard-of-care and new treatments. Despite advances in medicine and treatment methods, mortality rates have hardly decreased in recent decades. Reliable patient-derived tumor models offer the chance to predict therapy response in a personalized setting, thereby improving treatment efficacy by identifying the most appropriate treatment regimen for each patient. Furthermore, ex vivo tumor models enable testing of novel therapies before introduction in clinical practice. A literature search was performed to identify relevant literature describing three-dimensional ex vivo culture models of HNSCC to examine sensitivity to chemotherapy, radiotherapy, immunotherapy and targeted therapy. We provide a comprehensive overview of the currently used three-dimensional ex vivo culture models for HNSCC with their advantages and limitations, including culture success percentage and comparison to the original tumor. Furthermore, we evaluate the potential of these models to predict patient therapy response.
Collapse
Affiliation(s)
- Imke Demers
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| | - Johan Donkers
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, GROW-School for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands; (J.D.); (B.K.)
| | - Ernst Jan Speel
- Department of Pathology, GROW-school for Oncology and Development Biology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
22
|
Sudan SK, Deshmukh SK, Poosarla T, Holliday NP, Dyess DL, Singh AP, Singh S. Resistin: An inflammatory cytokine with multi-faceted roles in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188419. [PMID: 32822824 DOI: 10.1016/j.bbcan.2020.188419] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Systemic and organ-confined inflammation has been associated with cancer development and progression. Resistin, initially described as an adipocyte-derived cytokine in mice, is mostly expressed by the macrophages in humans. It has potent pro-inflammatory properties, and its elevated serum levels are detected in cancer patients. Aberrant expression of resistin receptors is also reported in several malignancies and associated with aggressive clinicopathological features. Several lines of evidence demonstrate that resistin, acting through its different receptors, promotes tumor growth, metastasis, and chemoresistance by influencing a variety of cellular phenotypes as well as by modulating the tumor microenvironment. Racially disparate expression of resistin has also attracted much interest, considering prevalent cancer health disparities. This review discusses the aberrant expression of resistin and its receptors, its diverse downstream signaling and impact on tumor growth, metastasis, angiogenesis, and therapy resistance to support its clinical exploitation in biomarker and therapeutic development.
Collapse
Affiliation(s)
- Sarabjeet Kour Sudan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | - Donna Lynn Dyess
- Department of Surgery, University of South Alabama, Mobile, AL 36617, USA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Pathology, University of South Alabama, Mobile, AL 36617, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
23
|
Kumbar VM, Muddapur UM, Bhat KG, Shwetha H.R., Kugaji MS, Peram MR. Indirect Immunofluorescence and Tumorspheres Enrichment Technique for Identifying Cancer Stem Cell Markers in Cancer Cell Lines From Primary Oral Cancer Tissues: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820941379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aim: The cancer stem cells (CSCs) are known to be responsible for drug resistance and cancer relapse in the treatment of cancer. Identification and isolation of CSCs and study of their properties will play a crucial role in developing an effective drug against these targets. The aim of the study was to isolate CSCs from primary cancer by the tumorspheres enrichment method, to confirm by indirect immunofluorescence and gene expression of stem cell markers by using real-time polymerase chain reaction (RT-PCR) technique. Materials and Methods: In this in vitro study, we enriched oral CSCs through tumorsphere formation assay from seven primary cultures of OSCC patients with defined serum media. The expression and localization of the cell surface markers of CD133 and CD44 were tested by indirect immunofluorescence. Gene expression of stem cell markers such as CD44, CD133, Oct4, Sox2, and Nanog were quantified by RT-PCR technique. One-way analysis of variance was applied to analyze gene expression. Results: Tumorsphere formation has been used to isolate the CSCs from the OSCC tissue culture. Both CD133 and CD44 antibody confirmed the presence of CSCs through indirect immunofluorescence. In comparison to parental cell lines, the expression levels of CD133, CD44, Oct4, Sox2, and Nanog stem cell were significantly higher in CSC-enriched subpopulations. Conclusions: The cost-effective spheroid enrichment and the indirect immunofluorescence methods are useful for the isolation of CSCs from the primary tumor.
Collapse
Affiliation(s)
- Vijay M. Kumbar
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Uday M. Muddapur
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Kishore G. Bhat
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
| | - Shwetha H.R.
- Department of Oral Pathology, Maratha Mandal’s N G Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Manohar S. Kugaji
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Biotechnology, KLE Technological University (Formerly Known as B V Bhoomaraddi College of Engineering and Technology), BVB Campus, Hubballi, Karnataka, India
| | - Malleswara Rao Peram
- Central Research Laboratory, Maratha Mandal’s Nathajirao G Halgekar Institute of Dental, Sciences & Research Centre, Belagavi, Karnataka, India
- Department of Pharmaceutics, Maratha Mandal’s College of Pharmacy, Belagavi, Karnataka, India
| |
Collapse
|
24
|
Head and Neck Cancer Stem Cell-Enriched Spheroid Model for Anticancer Compound Screening. Cells 2020; 9:cells9071707. [PMID: 32708734 PMCID: PMC7408407 DOI: 10.3390/cells9071707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs), a rare cell population in tumors, are resistant to conventional chemotherapy and thus responsible for tumor recurrence. To screen for active compounds targeting CSCs, a good CSC-enriched model compatible with high-throughput screening (HTS) is needed. Here, we describe a new head and neck cancer stem cell-enriched spheroid model (SCESM) suitable for HTS analyses of anti-CSC compounds. We used FaDu cells, round-bottom ultra-low adherent (ULA) microplates, and stem medium. The formed spheroids displayed increased expression of all stem markers tested (qRT-PCR and protein analysis) in comparison to the FaDu cells grown in a standard adherent culture or in a well-known HTS-compatible multi-cellular tumor spheroid model (MCTS). Consistent with increased stemness of the cells in the spheroid, confocal microscopy detected fast proliferating cells only at the outer rim of the SCESM spheroids, with poorly/non-proliferating cells deeper in. To confirm the sensitivity of our model, we used ATRA treatment, which strongly reduced the expression of selected stem markers. Altogether, we developed a CSC-enriched spheroid model with a simple protocol, a microplate format compatible with multimodal detection systems, and a high detection signal, making it suitable for anti-CSC compounds' HTS.
Collapse
|
25
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Chen D, Wang CY. Targeting cancer stem cells in squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2019; 2:152-165. [PMID: 31598386 PMCID: PMC6770277 DOI: 10.1093/pcmedi/pbz016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth
most common cancer worldwide. Current treatment strategies for HNSCC are surgery,
radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall
5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a
small population among tumor cells, are able to self-renew and differentiate into
different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC,
CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug
resistance, and recurrence. In this review, we discuss the molecular and cellular
characteristics of CSCs in HNSCC. We summarize current approaches used in the literature
for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also
highlight the role of CSCs in treatment failure and therapeutic targeting options for
eliminating CSCs in HNSCC.
Collapse
Affiliation(s)
- Demeng Chen
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X. CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field. Int J Nanomedicine 2019; 14:7549-7560. [PMID: 31571863 PMCID: PMC6754337 DOI: 10.2147/ijn.s215087] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor in the world. Studies in recent years have demonstrated that cancer stem cells (CSCs) are present in many tumor tissues, including HNSCC, and CSCs are the root cause of tumor recurrence and metastasis. Thus, taking new treatment measures to target the killing of CSCs that are resistant to chemotherapy and radiotherapy is key to the success of cancer treatment. Methods We explored a method for preparing anti-CD44 antibody-modified superparamagnetic iron oxide nanoparticles (SPIONPs). Biocompatibility was evaluated by a CCK-8 assay. The CSCs were obtained by a 3D cell culture technique from Cal-27 (human oral squamous cell carcinoma) cells, and then the CSCs were identified by quantitative real-time polymerase chain reaction (qRT-PCR). The targeting efficiency of the CD44-SPIONPs to CSCs was confirmed by Prussian blue staining and visualized by laser scanning confocal microscopy (LSCM). Flow cytometry was used to detect the apoptosis of CSCs after alternating magnetic field (AMF) treatment. The efficacy of tumor growth inhibition by CD44-SPIONP-mediated magnetic hyperthermia therapy was evaluated with tumor xenografts in nude mice. Results The CD44-SPIONPs exhibited no negative effect on CSCs, indicating good biocompatibility. After SPIONPs were cocultured with stem cells, the majority of CD44-SPIONPs labeled with FITC penetrated the cell membrane into the cytoplasm. After AMF treatment, CD44-SPIONPs induced CSCs to undergo programmed death. The inhibitory ratio of the treated group was 33.43%, and necrotic areas in the tumor tissue were mainly distributed around the magnetic fluid. Conclusion These results demonstrate that it is possible to kill CSCs using targeted magnetic nanoparticles and an AMF and that magnetic fluid hyperthermia significantly inhibited the growth of grafted Cal-27 tumors in mice.
Collapse
Affiliation(s)
- Zhan Su
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Duanqin Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Liying Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lu Ru
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Zhiyu Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Zhennan Gao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xuxia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, People's Republic of China.,Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
28
|
Zhou JM, Hu SQ, Jiang H, Chen YL, Feng JH, Chen ZQ, Wen KM. OCT4B1 Promoted EMT and Regulated the Self-Renewal of CSCs in CRC: Effects Associated with the Balance of miR-8064/PLK1. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:7-20. [PMID: 31650021 PMCID: PMC6804455 DOI: 10.1016/j.omto.2019.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are the main cause of tumor generation, recurrence, metastasis, and therapy failure in various malignancies including colorectal cancer (CRC). Accumulating evidence suggests that tumor cells can acquire CSC characteristics through the epithelial-mesenchymal transition (EMT) process. However, the molecular mechanism of CSCs remains unclear. OCT4B1 is a transcript of OCT4, which is initially expressed in embryonic stem and carcinoma cells, and is involved in the regulation and maintenance of an undifferentiated state of stem cells. In this study, three-dimensional (3D) microspheres were confirmed as CRC stem cells. Compared with that of parental cells, their self-renewal ability was significantly increased, and OCT4B1 expression was increased and promoted the EMT process. The knockdown of OCT4B1 decreased the self-renewal of CSCs and reversed EMT. Moreover, OCT4B1 induced the expression of Polo-like kinase 1 (PLK1), which is a key regulator of EMT in tumor cells. Further examination showed that OCT4B1 regulated the miR-8064/PLK1 balance to exert its function. Taken together, our data suggest that OCT4B1 may be involved in regulating the self-renewal of colorectal CSCs through EMT, which is at least partially due to the miR-8064/PLK1 balance. This study indicates that OCT4B1 is a potential therapeutic target for CRC by targeting CSCs.
Collapse
Affiliation(s)
- Jun-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shui-Qing Hu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hang Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yi-Lin Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ji-Hong Feng
- Department of Oncology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zheng-Quan Chen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
29
|
Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:89-102. [PMID: 29139089 DOI: 10.1007/5584_2017_116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.
Collapse
|
30
|
Liu X, Fu Y, Huang J, Wu M, Zhang Z, Xu R, Zhang P, Zhao S, Liu L, Jiang H. ADAR1 promotes the epithelial-to-mesenchymal transition and stem-like cell phenotype of oral cancer by facilitating oncogenic microRNA maturation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:315. [PMID: 31315644 PMCID: PMC6637647 DOI: 10.1186/s13046-019-1300-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Background Adenosine deaminases acting on RNA (ADARs) are involved in adenosine-to-inosine (A-to-I) editing and implicated in tumorigenesis and prognosis. Emerging evidence has indicated that ADAR1, an ADAR family member, participates in the regulation of various cancers; however, its biological function in oral squamous cell carcinoma (OSCC) remains unclear. This study aimed to determine the role of ADAR1 in OSCC progression. Methods ADAR1 expression in both normal tissues and carcinoma tissues and in OSCC cell lines was examined by real-time PCR and western blotting. Gain-of-function and loss-of-function approaches were used to examine the effect of ADAR1 on the migration, invasion, epithelial-mesenchymal transition (EMT) and stemness of OSCC. Furthermore, the relationship between ADAR1 and Dicer was determined by co-immunoprecipitation, and the expression of OSCC-associated oncogenic miRNAs was evaluated by real-time PCR. For in vivo experiments, a xenograft model where OSCC cells stably expressing ADAR1 were implanted was used to investigate the effect of ADAR1 on tumor growth and progression, and the expression of ADAR1, PCNA, SOX2 and POU5F1 was further detected by immunohistochemistry. The impact of ADAR1 expression on the survival status of OSCC patients was determined by survival analysis. Results ADAR1 was overexpressed in OSCC and significantly associated with poor patient survival. There was a positive correlation between ADAR1 and the migration, invasion, EMT and stemness of OSCC. Mechanistically, ADAR1 was physically associated with Dicer, and six OSCC-associated oncogenic miRNAs were increased in OSCC cells with ADAR1 overexpression. In the mouse xenograft model of OSCC, ADAR1 overexpression promoted tumor growth and progression. Moreover, ADAR1 was highly expressed in OSCC patients with low survival rates. Conclusions Our findings demonstrated that ADAR1 may play a significant role in OSCC progression via combining with Dicer to regulate oncogenic miRNA maturation and further affect cell migration and invasion. Electronic supplementary material The online version of this article (10.1186/s13046-019-1300-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jiadong Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Meng Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhenxing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Shouwei Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
31
|
Pankova D, Jiang Y, Chatzifrangkeskou M, Vendrell I, Buzzelli J, Ryan A, Brown C, O'Neill E. RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J 2019; 38:e100532. [PMID: 31268606 PMCID: PMC6600643 DOI: 10.15252/embj.2018100532] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/03/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related death due to poor treatment responses and resistance arising from tumour heterogeneity. Here, we show that adverse prognosis associated with epigenetic silencing of the tumour suppressor RASSF1A is due to increased deposition of extracellular matrix (ECM), tumour stiffness and metastatic dissemination in vitro and in vivo. We find that lung cancer cells with RASSF1A promoter methylation display constitutive nuclear YAP1 accumulation and expression of prolyl 4-hydroxylase alpha-2 (P4HA2) which increases collagen deposition. Furthermore, we identify that elevated collagen creates a stiff ECM which in turn triggers cancer stem-like programming and metastatic dissemination in vivo. Re-expression of RASSF1A or inhibition of P4HA2 activity reverses these effects and increases markers of lung differentiation (TTF-1 and Mucin 5B). Our study identifies RASSF1A as a clinical biomarker associated with mechanical properties of ECM which increases the levels of cancer stemness and risk of metastatic progression in lung adenocarcinoma. Moreover, we highlight P4HA2 as a potential target for uncoupling ECM signals that support cancer stemness.
Collapse
Affiliation(s)
| | - Yanyan Jiang
- Department of OncologyUniversity of OxfordOxfordUK
- Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | | | - Iolanda Vendrell
- Department of OncologyUniversity of OxfordOxfordUK
- TDI Mass Spectrometry LaboratoryNuffield Department of MedicineTarget Discovery Institute University of OxfordOxfordUK
| | - Jon Buzzelli
- Department of OncologyUniversity of OxfordOxfordUK
| | - Anderson Ryan
- Department of OncologyUniversity of OxfordOxfordUK
- Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Cameron Brown
- School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQldAustralia
| | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
- Systems Biology IrelandUniversity College DublinDublin 4Ireland
| |
Collapse
|
32
|
Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel) 2019; 11:cancers11050616. [PMID: 31052565 PMCID: PMC6562868 DOI: 10.3390/cancers11050616] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells.
Collapse
Affiliation(s)
- Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
| | - Jacqueline Nathansen
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sebastian I Schniewind
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Franziska Schwarz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| |
Collapse
|
33
|
Güler G, Guven U, Oktem G. Characterization of CD133 +/CD44 + human prostate cancer stem cells with ATR-FTIR spectroscopy. Analyst 2019; 144:2138-2149. [PMID: 30742170 DOI: 10.1039/c9an00093c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current cancer treatments destroy the tumor mass but cannot prevent the recurrence of cancer. The heterogeneous structure of the tumor mass includes cancer stem cells that are responsible for tumor relapse, treatment resistance, invasion and metastasis. The biology of these cells is still not fully understood; therefore, effective treatments cannot be developed sufficiently. Herein, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, combined with unsupervised multivariate analysis, was applied to prostate cancer stem cells (CSCs), non-stem cancer cells (non-CSCs) and normal prostate epithelial cells to elucidate the molecular mechanisms and features of CSCs, which are crucial to improving the target specific therapies. This work revealed the spectral differences in the cellular mechanisms and biochemical structures among three different cell types. Particularly, prostate CSCs exhibit differences in the lipid composition and dynamics when compared to other cell types. CSCs also harbor pronounced differences in their major cellular macromolecules, including differences in the protein amount and content (mainly α-helices), the abundance of nucleic acids (DNA/RNA), altered nucleic acid conformation and carbohydrate composition. Interestingly, macromolecules containing the C[double bond, length as m-dash]O groups and negatively charged molecules having the COO- groups are abundant in prostate CSCs in comparison to prostate non-CSCs and normal prostate cells. Overall, this study demonstrates the potential use of ATR-FTIR spectroscopy as a powerful tool to obtain new insights into the understanding of the CSC features, which may provide new strategies for cancer treatment by selectively targeting the CSCs.
Collapse
Affiliation(s)
- Günnur Güler
- Center for Drug Research & Development and Pharmacokinetic Applications (ARGEFAR), Ege University, 35100, Izmir, Turkey. and Department of Physics, Science Faculty, Izmir Institute of Technology, 35430, Izmir, Turkey
| | - Ummu Guven
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey.
| | - Gulperi Oktem
- Department of Stem Cell, Ege University Health Science Institute, Izmir, 35100, Turkey. and Department of Embryology and Histology, School of Medicine, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
34
|
Mohajertehran F, Sahebkar A, Zare R, Mohtasham N. The promise of stem cell markers in the diagnosis and therapy of epithelial dysplasia and oral squamous cell carcinoma. J Cell Physiol 2018; 233:8499-8507. [PMID: 29797575 DOI: 10.1002/jcp.26789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer. Epithelial dysplasia is often initiated in the cells and cell nuclei adjacent to the epithelial cell membrane. Reduced cell-cell adhesions enable cancer cells to detach from the tumor and disseminate to other organs. The mutations in epithelial dysplasia markers such as E-cadherin and epithelial cell adhesion molecules (CD326) can lead to proliferation, growth and survival of the tumor cells and persistence of numerous malignancies that play a key role in epithelial dysplasia of OSCC. Accordingly, these genes can be considered prognostic markers or potential therapeutic targets for the tailored management of patients with OSCC. The gene expression profile of OSCC stem cells indicates a differential pattern that facilitates establishing a cell signature. Owing to the highly tumorigenic behavior of cancer stem cells and the role of these cells in tumor differentiation, treatment resistance, relapse, and metastasis, we reviewed the role of stem cell markers in epithelial dysplasia and OSCC.
Collapse
Affiliation(s)
- Farnaz Mohajertehran
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Zare
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol 2017; 44:25-42. [PMID: 28323021 DOI: 10.1016/j.semcancer.2017.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
|
36
|
Aponte PM, Caicedo A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int 2017; 2017:5619472. [PMID: 28473858 PMCID: PMC5394399 DOI: 10.1155/2017/5619472] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/31/2017] [Accepted: 02/19/2017] [Indexed: 02/06/2023] Open
Abstract
Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Andrés Caicedo
- Mito-Act Research Consortium, Quito, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), 170901 Quito, Ecuador
| |
Collapse
|
37
|
Zhu M, Chen S, Hua L, Zhang C, Chen M, Chen D, Dong Y, Zhang Y, Li M, Song X, Chen H, Zheng H. Self-targeted salinomycin-loaded DSPE-PEG-methotrexate nanomicelles for targeting both head and neck squamous cell carcinoma cancer cells and cancer stem cells. Nanomedicine (Lond) 2017; 12:295-315. [PMID: 28093940 DOI: 10.2217/nnm-2016-0382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To target both head and neck squamous cell carcinoma (HNSCC) cells and cancer stem cells (CSCs) by salinomycin-loaded DSPE-PEG-MTX (synthesized using DSPE-PEG2000-NH2 and methotrexate) nanomicelles (M-SAL-MTX). MATERIALS & METHODS The characterization, antitumor activity and mechanism of M-SAL-MTX were evaluated. RESULTS & CONCLUSION M-SAL-MTX showed enhanced inhibitory effect toward both HNSCC CSCs and non-CSCs compared with a single treatment of methotrexate and salinomycin. In nude mice-bearing HNSCC xenografts, M-SAL-MTX suppressed tumor growth more effectively than other controls including combination of methotrexate and salinomycin. Therefore, M-SAL-MTX may provide a strategy for treating HNSCC by targeting both HNSCC CSCs and HNSCC cells.
Collapse
Affiliation(s)
- Minhui Zhu
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Shicai Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Libo Hua
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Caiyun Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Mengjie Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Donghui Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yinmei Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yingying Zhang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Meng Li
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xianmin Song
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huaiwen Chen
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China.,Sunlipo Biotech Research Center for Nanomedicine, 3688 Tingwei Road, Shanghai 201507, China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Changhai Hospital, the Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|