1
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
2
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Kamysz W, Duzowska K, Drężek-Chyła K, Baber R, Thieme R, Gockel I, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowska A, Ryś J, Macur K, Czaplewska P, Filipowicz N, Piotrowski A, Dumanski JP, Chen Z. Mass Spectrometry Proteomics Characterization of Plasma Biomarkers for Colorectal Cancer Associated With Inflammation. Biomark Insights 2024; 19:11772719241257739. [PMID: 38911905 PMCID: PMC11191626 DOI: 10.1177/11772719241257739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Background Colorectal cancer (CRC) prognosis is determined by the disease stage with low survival rates for advanced stages. Current CRC screening programs are mainly using colonoscopy, limited by its invasiveness and high cost. Therefore, non-invasive, cost-effective, and accurate alternatives are urgently needed. Objective and design This retrospective multi-center plasma proteomics study was performed to identify potential blood-based biomarkers in 36 CRC patients and 26 healthy volunteers by high-resolution mass spectrometry proteomics followed by the validation in an independent CRC cohort (60 CRC patients and 44 healthy subjects) of identified selected biomarkers. Results Among the 322 identified plasma proteins, 37 were changed between CRC patients and healthy volunteers and were associated with the complement cascade, cholesterol metabolism, and SERPIN family members. Increased levels in CRC patients of the complement proteins C1QB, C4B, and C5 as well as pro-inflammatory proteins, lipopolysaccharide-binding protein (LBP) and serum amyloid A4, constitutive (SAA4) were revealed for first time. Importantly, increased level of C5 was verified in an independent validation CRC cohort. Increased C4B and C8A levels were correlated with cancer-associated inflammation and CRC progression, while cancer-associated inflammation was linked to the acute-phase reactant leucine-rich alpha-2-glycoprotein 1 (LRG1) and ceruloplasmin. Moreover, a 4-protein signature including C4B, C8A, apolipoprotein C2 (APO) C2, and immunoglobulin heavy constant gamma 2 was changed between early and late CRC stages. Conclusion Our results suggest that C5 could be a potential biomarker for CRC diagnosis. Further validation studies will aid the application of these new potential biomarkers to improve CRC diagnosis and patient care.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Weronika Kamysz
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Katarzyna Duzowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Kinga Drężek-Chyła
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Saxony, Germany
- Leipzig Medical Biobank, Leipzig University, Leipzig, Saxony, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Kuyavian-Pomeranian, Poland
- Department of Surgical Oncology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Kuyavian-Pomeranian, Poland
- Department of Surgical Oncology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Kuyavian-Pomeranian, Poland
- Department of Surgical Oncology, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Kuyavian-Pomeranian, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center‒Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Kuyavian-Pomeranian, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Pomeranian, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Lesser Poland, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Lesser Poland, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Lesser Poland, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Lesser Poland, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Lesser Poland, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry-Core Facility Laboratories, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Uppland, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Pomeranian, Poland
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Pomeranian, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, North Ostrobothnia, Finland
| |
Collapse
|
4
|
Deng J, Wei RQ, Zhang WM, Shi CY, Yang R, Jin M, Piao C. Crocin's role in modulating MMP2/TIMP1 and mitigating hypoxia-induced pulmonary hypertension in mice. Sci Rep 2024; 14:12716. [PMID: 38830933 PMCID: PMC11148111 DOI: 10.1038/s41598-024-62900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
To explore the molecular pathogenesis of pulmonary arterial hypertension (PAH) and identify potential therapeutic targets, we performed transcriptome sequencing of lung tissue from mice with hypoxia-induced pulmonary hypertension. Our Gene Ontology analysis revealed that "extracellular matrix organization" ranked high in the biological process category, and matrix metallopeptidases (MMPs) and other proteases also played important roles in it. Moreover, compared with those in the normoxia group, we confirmed that MMPs expression was upregulated in the hypoxia group, while the hub gene Timp1 was downregulated. Crocin, a natural MMP inhibitor, was found to reduce inflammation, decrease MMPs levels, increase Timp1 expression levels, and attenuate hypoxia-induced pulmonary hypertension in mice. In addition, analysis of the cell distribution of MMPs and Timp1 in the human lung cell atlas using single-cell RNAseq datasets revealed that MMPs and Timp1 are mainly expressed in a population of fibroblasts. Moreover, in vitro experiments revealed that crocin significantly inhibited myofibroblast proliferation, migration, and extracellular matrix deposition. Furthermore, we demonstrated that crocin inhibited TGF-β1-induced fibroblast activation and regulated the pulmonary arterial fibroblast MMP2/TIMP1 balance by inhibiting the TGF-β1/Smad3 signaling pathway. In summary, our results indicate that crocin attenuates hypoxia-induced pulmonary hypertension in mice by inhibiting TGF-β1-induced myofibroblast activation.
Collapse
Affiliation(s)
- Jing Deng
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China
| | - Rui-Qi Wei
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Wen-Mei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Chang-Yu Shi
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, 100020, China
| | - Rui Yang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China
| | - Ming Jin
- School of Basic Medical Sciences, Yanbian University, Yanji, 133000, China.
| | - Chunmei Piao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
5
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
6
|
Li X, Poire A, Jeong KJ, Zhang D, Ozmen TY, Chen G, Sun C, Mills GB. C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer. Nat Commun 2024; 15:4485. [PMID: 38802355 PMCID: PMC11130309 DOI: 10.1038/s41467-024-48637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.
Collapse
Affiliation(s)
- Xi Li
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Alfonso Poire
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kang Jin Jeong
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Dong Zhang
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tugba Yildiran Ozmen
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon B Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
7
|
Luan X, Lei T, Fang J, Liu X, Fu H, Li Y, Chu W, Jiang P, Tong C, Qi H, Fu Y. Blockade of C5a receptor unleashes tumor-associated macrophage antitumor response and enhances CXCL9-dependent CD8 + T cell activity. Mol Ther 2024; 32:469-489. [PMID: 38098230 PMCID: PMC10861991 DOI: 10.1016/j.ymthe.2023.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023] Open
Abstract
Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.
Collapse
Affiliation(s)
- Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Department of Gynecology, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Xue Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yong Fu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Lin D, Zheng T, Huang S, Liu R, Guan S, Zhang Z. Identification of a novel macrophage-related prognostic signature in colorectal cancer. Sci Rep 2024; 14:2767. [PMID: 38307957 PMCID: PMC10837438 DOI: 10.1038/s41598-024-53207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadliest illnesses all around the world. Growing proofs demonstrate that tumor-associated macrophages (TAMs) are of critical importance in CRC pathogenesis, but their mechanisms remain yet unknown. The current research was designed to recognize underlying biomarkers associated with TAMs in CRC. We screened macrophage-related gene modules through WGCNA, selected hub genes utilizing the LASSO algorithm and COX regression, and established a model. External validation was performed by expression analysis using datasets GSE14333, GSE74602, and GSE87211. After validating the bioinformatics results using real-time quantitative reverse transcription PCR, we identified SPP1, C5AR1, MMP3, TIMP1, ADAM8 as potential biomarkers associated with macrophages in CRC.
Collapse
Affiliation(s)
- Dongfa Lin
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, School of Life Sciences, Changchun, 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China
| | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China
| | - Rui Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shuwen Guan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, School of Life Sciences, Changchun, 130012, China.
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China.
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248 East Street, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
9
|
Panebianco M, Ciccarese C, Strusi A, Beccia V, Carbone C, Agostini A, Piro G, Tortora G, Iacovelli R. The Role of the Complement in Clear Cell Renal Carcinoma (ccRCC)-What Future Prospects Are There for Its Use in Clinical Practice? Cancers (Basel) 2024; 16:490. [PMID: 38339243 PMCID: PMC10854780 DOI: 10.3390/cancers16030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, the first-line available therapeutic options for metastatic renal cell carcinoma (mRCC) have radically changed with the introduction into clinical practice of new immune checkpoint inhibitor (ICI)-based combinations. Many efforts are focusing on identifying novel prognostic and predictive markers in this setting. The complement system (CS) plays a central role in promoting the growth and progression of mRCC. In particular, mRCC has been defined as an "aggressive complement tumor", which encompasses a group of malignancies with poor prognosie and highly expressed complement components. Several preclinical and retrospective studies have demonstrated the negative prognostic role of the complement in mRCC; however, there is little evidence on its possible role as a predictor of the response to ICIs. The purpose of this review is to explore more deeply the physio-pathological role of the complement in the development of RCC and its possible future use in clinical practice as a prognostic and predictive factor.
Collapse
Affiliation(s)
- Martina Panebianco
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Chiara Ciccarese
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Alessandro Strusi
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Viria Beccia
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Geny Piro
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| | - Roberto Iacovelli
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (C.C.); (C.C.); (A.A.); (G.P.); (G.T.)
- Medical Oncology, Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.S.); (V.B.)
| |
Collapse
|
10
|
Liu Y, Liang Y, Su Y, Hu J, Sun J, Zheng M, Huang Z. Exploring the potential mechanisms of Yi-Yi-Fu-Zi-Bai-Jiang-San therapy on the immune-inflamed phenotype of colorectal cancer via combined network pharmacology and bioinformatics analyses. Comput Biol Med 2023; 166:107432. [PMID: 37729701 DOI: 10.1016/j.compbiomed.2023.107432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. METHODS Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb-compound-target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. RESULTS A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb-compound-target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. CONCLUSION This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Youcheng Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Yongjian Su
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Jiaqi Hu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China
| | - Jianbo Sun
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China
| | - Mingbin Zheng
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, Guangdong, PR China.
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, Guangdong, PR China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, PR China; Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, PR China.
| |
Collapse
|
11
|
Gu X, Shen H, Zhu G, Li X, Zhang Y, Zhang R, Su F, Wang Z. Prognostic Model and Tumor Immune Microenvironment Analysis of Complement-Related Genes in Gastric Cancer. J Inflamm Res 2023; 16:4697-4711. [PMID: 37872955 PMCID: PMC10590588 DOI: 10.2147/jir.s422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Introduction The complement system is integral to the innate and adaptive immune response, helping antibodies eliminate pathogens. However, the potential role of complement and its modulators in the tumor microenvironment (TME) of gastric cancer (GC) remains unclear. Methods This study assessed the expression, frequency of somatic mutations, and copy number variations of complement family genes in GC derived from The Cancer Genome Atlas (TCGA). Lasso and Cox regression analyses were conducted to develop a prognostic model based on the complement genes family, with the training and validation sets taken from the TCGA-GC cohort (n=371) and the International Gene Expression Omnibus (GEO) cohort (n=433), correspondingly. The nomogram assessment model was used to predict patient outcomes. Additionally, the link between immune checkpoints, immune cells, and the prognostic model was investigated. Results In contrast to patients at low risk, those at high risk had a less favorable outcome. The prognostic model-derived risk score was shown to serve as a prognostic marker of GC independently, as per the multivariate Cox analysis. Nomogram assessment showed that the model had high reliability for predicting the survival of patients with GC in the 1, 3, 5 years. Additionally, the risk score was positively linked to the expression of immune checkpoints, notably CTLA4, LAG3, PDCD1, and CD274, according to an analysis of immune processes. The core gene C5aR1 in the prognostic model was found to be upregulated in GC tissues in contrast to adjoining normal tissues, and patients with elevated expressed levels of C5aR1 had lower 10-year overall survival (OS) rates. Conclusion Our work reveals that complement genes are associated with the diversity and complexity of TME. The complement prognosis model help improves our understanding of TME infiltration characteristics and makes immunotherapeutic strategies more effective.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Guangzheng Zhu
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Rong Zhang
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| |
Collapse
|
12
|
Brown LN, Barth JL, Jafri S, Rumschlag JA, Jenkins TR, Atkinson C, Lang H. Complement factor B is essential for the proper function of the peripheral auditory system. Front Neurol 2023; 14:1214408. [PMID: 37560455 PMCID: PMC10408708 DOI: 10.3389/fneur.2023.1214408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Shabih Jafri
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Tyreek R. Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary Medicine, University of Florida, Gainesville, FL, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
13
|
Guo K, Zhao Y, Cao Y, Li Y, Yang M, Tian Y, Dai J, Song L, Ren S, Wang Z. Exploring the key genetic association between chronic pancreatitis and pancreatic ductal adenocarcinoma through integrated bioinformatics. Front Genet 2023; 14:1115660. [PMID: 37501719 PMCID: PMC10369079 DOI: 10.3389/fgene.2023.1115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/19/2023] [Indexed: 07/29/2023] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) develops rapidly and has a poor prognosis. It has been demonstrated that pancreatic ductal adenocarcinoma and chronic pancreatitis (CP) have a close connection. However, the underlying mechanisms for chronic pancreatitis transforming into pancreatic ductal adenocarcinoma are still unclear. The purpose of this study was to identify real hub genes in the development of chronic pancreatitis and pancreatic ductal adenocarcinoma. Methods: RNA-seq data of chronic pancreatitis and pancreatic ductal adenocarcinoma were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network between chronic pancreatitis and pancreatic ductal adenocarcinoma. GEO2R and a Venn diagram were used to identify differentially expressed genes. Then visualized networks were constructed with ClueGO, and modules of PPI network were calculated by MCODE plugin. Further validation of the results was carried out in two additional cohorts. Analyses of CEL-coexpressed genes and regulators including miRNAs and transcription factors were performed by using the corresponding online web tool. Finally, the influence of CEL in the tumor immune microenvironment (TIME) was assessed by immune contextual analysis. Results: With the help of WGCNA and GEO2R, four co-expression modules and six hub genes were identified, respectively. ClueGO enrichment analysis and MCODE cluster analysis revealed that the dysfunctional transport of nutrients and trace elements might contribute to chronic pancreatitis and pancreatic ductal adenocarcinoma development. The real hub gene CEL was identified with a markedly low expression in pancreatic ductal adenocarcinoma in external validation sets. According to the miRNA-gene network construction, hsa-miR-198 may be the key miRNA. A strong correlation exists between CEL and TIME after an evaluation of the influence of CEL in TIME. Conclusion: Our study revealed the dysfunctional transport of nutrients and trace elements may be common pathogenesis of pancreatic ductal adenocarcinoma and chronic pancreatitis. Examination on these common pathways and real hub genes may shed light on the underlying mechanism.
Collapse
Affiliation(s)
- Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Cao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Li
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Yang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianmeng Dai
- School of Medicine, Tongji University, Shanghai, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
15
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
16
|
Yang C, Yang F, Chen X, Li Y, Hu X, Guo J, Yao J. Overexpression of complement C5a indicates poor survival and therapeutic response in metastatic renal cell carcinoma. Int J Biol Markers 2023:3936155231161366. [PMID: 36883235 DOI: 10.1177/03936155231161366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
INTRODUCTION Complement C5a is an important component of the innate immune system. An increasing number of reports have revealed the relevance of C5a in tumor progression; however, its exact role in metastatic renal cell carcinoma (mRCC) remains unknown. METHODS We evaluated C5a expression in tumor tissue microarrays of 231 mRCC patients and analyzed the relationship between C5a levels and clinical outcomes, and the expression of epithelial-mesenchymal transition (EMT)-related proteins, programmed cell death protein 1 (PD-1), and programmed cell death-ligand 1 (PD-L1). In-vitro functional experiments using exogenous C5a stimulation and C5a silencing in renal cell carcinoma cells were used to validate the tissue findings. RESULTS High C5a expression was associated with poor therapeutic responses, poor overall and progression-free survival, and high expression of EMT-related proteins and PD-1/PD-L1 in mRCC patients. Exogenous C5a promoted proliferation, migration, and invasion of renal cell carcinoma cells, and induced the expression of EMT-related proteins and PD-1/PD-L1. Conversely, C5a silencing inhibited migration and invasion of renal cell carcinoma cells and decreased the expression of EMT-related proteins and PD-1/PD-L1. CONCLUSIONS Our findings indicate that elevated C5a expression is associated with poor outcomes in patients with mRCC, and this effect may be partly attributed to the ability of C5a to promote EMT and PD-1/PD-L1 expression. C5a may be a potential novel target for the treatment of mRCC.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Urology, Hexi University Affiliated Zhangye People's Hospital, Gansu, China.,Institute of Urology, 74786Hexi University, Zhangye Gansu, China
| | - Faying Yang
- Department of Urology, Hexi University Affiliated Zhangye People's Hospital, Gansu, China.,Institute of Urology, 74786Hexi University, Zhangye Gansu, China
| | - Xiang Chen
- Department of Urology, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Yunpeng Li
- Department of Urology, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Xiaoyi Hu
- Department of Urology, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Jiaxi Yao
- Department of Urology, Hexi University Affiliated Zhangye People's Hospital, Gansu, China.,Institute of Urology, 74786Hexi University, Zhangye Gansu, China
| |
Collapse
|
17
|
Vallejos PA, Fuller RN, Kabagwira J, Kwong ML, Gonda A, McMullen JRW, Le N, Selleck MJ, Miller LD, Perry CC, Senthil M, Wall NR. Exosomal proteins as a source of biomarkers in colon cancer-derived peritoneal carcinomatosis - A pilot study. Proteomics Clin Appl 2023; 17:e2100085. [PMID: 36217952 DOI: 10.1002/prca.202100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 03/15/2023]
Abstract
PURPOSE Peritoneal carcinomatosis (PC), metastasized from colorectal cancer (CRC), remains a highly lethal disease. Outcomes of PC is significantly influenced by the amount of intra-abdominal tumor burden and therefore diagnostic tests that facilitate earlier diagnosis could improve PC treatment and patient outcomes. EXPERIMENTAL DESIGN Using mass-spectrometry-based proteomics, we characterized the protein features of circulating exosomes in the context of CRC PC, CRC with liver metastasis, and primary CRC limited to the colon. We profiled exosomes isolated from patient plasma to identify exosome-associated protein cargoes released by these cancer types. RESULTS Analysis of the resulting data identified metastasis-specific exosome protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. CONCLUSION AND CLINICAL RELEVANCE This research yielded distinct protein profiles for the CRC patient groups and suggests the utility of plasma exosome proteomic analysis for a better understanding of PC development and metastasis.
Collapse
Affiliation(s)
- Paul A Vallejos
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Ryan N Fuller
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Janviere Kabagwira
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Mei Li Kwong
- Department of General Surgery, National Institutes of Health, Bethesda, Maryland, USA
| | - Amber Gonda
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA.,Department of Surgery, Division of Surgical Oncology, University of California at Irvine, Orange, California, USA
| | - James R W McMullen
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Natasha Le
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Matthew J Selleck
- Department of Surgery, Mountain View Hospital, Las Vegas, Nevada, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher C Perry
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, University of California at Irvine, Orange, California, USA
| | - Nathan R Wall
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, California, USA
| |
Collapse
|
18
|
Cai H, Chen Y, Chen X, Sun W, Li Y. Tumor-associated macrophages mediate gastrointestinal stromal tumor cell metastasis through CXCL2/CXCR2. Cell Immunol 2023; 384:104642. [PMID: 36577281 DOI: 10.1016/j.cellimm.2022.104642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are linked with the progression and poor prognosis of multifarious solid tumors, but the regulatory mechanisms involved in gastrointestinal stromal tumors (GIST) remain indistinct. This study intended to delve into the job of TAM-derived chemokines in promoting metastasis in GIST microenvironment. METHODS Expression levels of M2-TAM markers and CXCL2 in primary and metastatic tissues of GIST were analyzed by bioinformatics methods, and we analyzed the correlation between CXCL2 and M2-TAM markers. Immunofluorescence was applied to assay CXCL2 and M2-TAM marker protein (CD68 and CD206) expression in tumor tissues. Serum CXCL2 concentration in metastatic and non-metastatic patients was assayed by ELISA. The differentiation of THP-1 cells was tested by flow cytometry. Cell function test was utilized to analyze the viability, invasion and migration of GIST cells. Western blot was used to examine the expression of epithelial-mesenchymal transition (EMT)-related proteins. The mouse liver metastasis model was established, and the effects of CXCL2 and EMT-related genes on metastasis were confirmed by hematoxylin-eosin staining and immunohistochemistry experiments. RESULTS Bioinformatics analysis ascertained that M2-TAM marker proteins and chemokine CXCL2 were highly expressed in GIST metastatic tissues, and CXCL2 and TAM were co-located in tumor tissues. Results of in vitro cell function experiments displayed that CXCL2 secreted by M2-TAM promoted the invasion, migration and EMT of GIST tumor cells, and the anti-CXCL2 antibody could block the metastasis promoting effect of CXCL2. Additionally, the silencing of CXCR2 in GIST cells inhibited the metastasis promoting effect of CXCL2. Animal studies further confirmed that CXCL2 promoted liver metastasis of GIST in vivo. CONCLUSION This study preliminarily revealed the mechanism of M2-TAM promoting tumor metastasis by secreting CXCL2 in GIST tumor microenvironment, and proffered theoretical reference for the development of immunotherapy strategies targeting M2-TAM.
Collapse
Affiliation(s)
- Hongke Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xi Chen
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Weiping Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
19
|
Xiong X, Xie X, Wang Z, Zhang Y, Wang L. Tumor-associated macrophages in lymphoma: From mechanisms to therapy. Int Immunopharmacol 2022; 112:109235. [DOI: 10.1016/j.intimp.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022]
|
20
|
Xiao Z, Yeung CLS, Yam JWP, Mao X. An update on the role of complement in hepatocellular carcinoma. Front Immunol 2022; 13:1007382. [PMID: 36341431 PMCID: PMC9629811 DOI: 10.3389/fimmu.2022.1007382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As a main producer of complement, the environment in the liver is greatly affected by the complement system. Although the complement system is considered to have the ability of nonself discrimination, remarkable studies have revealed the tight association between improper complement activation in tumour initiation and progression. As complement activation predominantly occurs within the liver, the protumourigenic role of the complement system may contribute to the development of hepatocellular carcinoma (HCC). Improvement in the understanding of the molecular targets involved in complement-mediated tumour development, metastasis, and tumour-promoting inflammation in HCC would certainly aid in the development of better treatments. This minireview is focused on recent findings of the protumourigenic role of the complement system in HCC.
Collapse
Affiliation(s)
- Zhijie Xiao
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Charlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaowen Mao
- Department of Pathology, School of Clinical Medicine, Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Xiaowen Mao,
| |
Collapse
|
21
|
Chang H, Jin L, Xie P, Zhang B, Yu M, Li H, Liu S, Yan J, Zhou B, Li X, Xu Y, Xiao Y, Ye Q, Guo L. Complement C5 is a novel biomarker for liver metastasis of colorectal cancer. J Gastrointest Oncol 2022; 13:2351-2365. [PMID: 36388659 PMCID: PMC9660033 DOI: 10.21037/jgo-22-829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prominent malignant diseases, with a high incidence and a dismal prognosis. Metastasis to the liver is the leading cause of death in CRC patients. This study aimed to identify accurate metastatic biomarkers of CRC and investigate the potential molecular mechanisms of liver metastasis of colorectal cancer (LMCRC). METHODS Three independent datasets were screened and downloaded from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to identify differentially expressed genes (DEGs) in CRC tissues and liver metastases. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Furthermore, the protein-protein interactions (PPIs) of the DEGs were analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, Cytoscape, and Molecular Complex Detection (MCODE). Next, the expression levels and Kaplan-Meier survival analysis of the target gene between normal colon and CRC tissues were performed by UALCAN. The expression of the target gene in tissues and cell lines was verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry (IHC) assay. The impact of the target gene on the proliferation, invasion, and migration ability of COAD cells was explored in vitro. RESULTS A total of 92 common DEGs were found in the three independent datasets. GO/KEGG enrichment analysis showed that the DEGs were mainly involved in 14 different pathways. The protein-protein interaction (PPI) network revealed that complement 5 (C5), the upstream gene of C8A in the complement system, was associated with C8 and other key hub genes. Meanwhile, the online UALCAN resource showed that C5 was up-regulated and facilitated malignant progression in COAD samples. Next, we confirmed that C5 remarkably increased and promoted cell proliferation, migration, and invasion in CRC cell lines, SW620 and SW480. The IHC assay showed C5 was also highly expressed in a majority of LMCRC tissues compared with paired CRC tissues. CONCLUSIONS The findings of our integrated bioinformatics study suggest that complement C5 might serve as a potential therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Lei Jin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China;,Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China
| | - Shuang Liu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binghai Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qinghai Ye
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
22
|
Yuan M, Liu L, Wang C, Zhang Y, Zhang J. The Complement System: A Potential Therapeutic Target in Liver Cancer. Life (Basel) 2022; 12:life12101532. [PMID: 36294966 PMCID: PMC9604633 DOI: 10.3390/life12101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is the sixth most common cancer and the fourth most fatal cancer in the world. Immunotherapy has already achieved modest results in the treatment of liver cancer. Meanwhile, the novel and optimal combinatorial strategies need further research. The complement system, which consists of mediators, receptors, cofactors and regulators, acts as the connection between innate and adaptive immunity. Recent studies demonstrate that complement system can influence tumor progression by regulating the tumor microenvironment, tumor cells, and cancer stem cells in liver cancer. Our review concentrates on the potential role of the complement system in cancer treatment, which is a promising strategy for killing tumor cells by the activation of complement components. Conclusions: Our review demonstrates that complement components and regulators might function as biomarkers and therapeutic targets for liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Li Liu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Jiandong Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
23
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
24
|
Balogh M, Zhang J, Gaffney CM, Kalakuntla N, Nguyen NT, Trinh RT, Aguilar C, Pham HV, Milutinovic B, Nichols JM, Mahalingam R, Shepherd AJ. Sensory neuron dysfunction in orthotopic mouse models of colon cancer. J Neuroinflammation 2022; 19:204. [PMID: 35962398 PMCID: PMC9375288 DOI: 10.1186/s12974-022-02566-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Reports of neurological sequelae related to colon cancer are largely restricted to rare instances of paraneoplastic syndromes, due to autoimmune reactions. Systemic inflammation associated with tumor development influences sensory neuron function in other disease models, though the extent to which this occurs in colorectal cancer is unknown. We induced orthotopic colorectal cancer via orthotopic injection of two colorectal cancer cell lines (MC38 and CT26) in two different mouse strains (C57BL/6 and Balb/c, respectively). Behavioral tests of pain sensitivity and activity did not detect significant alterations in sensory sensitivity or diminished well-being throughout tumor development. However, immunohistochemistry revealed widespread reductions in intraepidermal nerve fiber density in the skin of tumor-bearing mice. Though loss of nerve fiber density was not associated with increased expression of cell injury markers in dorsal root ganglia, lumbar dorsal root ganglia neurons of tumor-bearing animals showed deficits in mitochondrial function. These neurons also had reduced cytosolic calcium levels in live-cell imaging and reduced spontaneous activity in multi-electrode array analysis. Bulk RNA sequencing of DRGs from tumor-bearing mice detected activation of gene expression pathways associated with elevated cytokine and chemokine signaling, including CXCL10. This is consistent with the detection of CXCL10 (and numerous other cytokines, chemokines and growth factors) in MC38 and CT26 cell-conditioned media, and the serum of tumor-bearing mice. Our study demonstrates in a pre-clinical setting that colon cancer is associated with latent sensory neuron dysfunction and implicates cytokine/chemokine signaling in this process. These findings may have implications for determining risk factors and treatment responsiveness related to neuropathy in colorectal cancer.
Collapse
Affiliation(s)
- Mihály Balogh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands
| | - Jixiang Zhang
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlyn M Gaffney
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha Kalakuntla
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas T Nguyen
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ronnie T Trinh
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clarissa Aguilar
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bojana Milutinovic
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Neurosurgery, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Huang R, Zhu G, Fu X, Liu W, Tao C, Gao J, Qu W, Fang Y, Jiang X, Ding Z, Zhou J, Shi Y, Fan J, Tang Z. Comprehensive analysis of complement-associated molecular features in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1694-1707. [PMID: 35929594 PMCID: PMC9828444 DOI: 10.3724/abbs.2022097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The complement cascade plays a "complementing" role in human immunity. However, the potential roles of complement system in impacting molecular and clinical features of hepatocellular carcinoma (HCC) remain unclear. In this study, eleven public datasets are analyzed to compare the complement status between normal and cancerous samples based on 18 classical complement-associated genes. The complement scores are constructed to quantify complement signatures of individual tumors. HCC patients in the The Cancer Genome Atlas (TCGA) cohort are focused to perform systematical analyses between complement status and immune infiltration, miRNA expression, DNA methylation, clinicopathological features, and drug response. The results show that the complement scores in normal tissues are dramatically higher than those of tumor tissues. Tumor samples in the TCGA cohort are classified into complement score-low and score-high groups. Pathway analysis reveals that tumor-promoting pathways are typically inhibited in complement score-high group. This study also shows that tumor-killing immune cells, such as CD8 + T cells and natural killer cells are abundant and tumor-suppressing miRNAs are upregulated in complement score-high samples. In addition, we identify that complement scores are negatively correlated with certain clinical features, including pathological grade, clinical-stage, and portal vein invasion. Moreover, various molecular features together with complement scores are found to be correlated with response to anti-cancer drugs. This study provides a comprehensive and multidimensional analysis conducive to understanding the role of complement in cancer.
Collapse
Affiliation(s)
- Run Huang
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Guiqi Zhu
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Xiutao Fu
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Weiren Liu
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Chenyang Tao
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Jun Gao
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Weifeng Qu
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Yuan Fang
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Xifei Jiang
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Zhenbin Ding
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Jian Zhou
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.
| | - Yinghong Shi
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.,Correspondence address. Tel: +86-21-64041990-3233; E-mail: (Y.S.) / Tel: +86-21-64041990; E-mail: (J.F.) / Tel: +86-21-64041990-8612; E-mail: (Z.T.). @
| | - Jia Fan
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.,Correspondence address. Tel: +86-21-64041990-3233; E-mail: (Y.S.) / Tel: +86-21-64041990; E-mail: (J.F.) / Tel: +86-21-64041990-8612; E-mail: (Z.T.). @
| | - Zheng Tang
- Department of Liver Surgery and TransplantationLiver Cancer InstituteZhongshan HospitalFudan Universityand Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghai200032China,Research Unit of Liver cancer Recurrence and MetastasisChinese Academy of Medical SciencesShanghai200032China.,Correspondence address. Tel: +86-21-64041990-3233; E-mail: (Y.S.) / Tel: +86-21-64041990; E-mail: (J.F.) / Tel: +86-21-64041990-8612; E-mail: (Z.T.). @
| |
Collapse
|
26
|
Llorián-Salvador M, Byrne EM, Szczepan M, Little K, Chen M, Xu H. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation 2022; 19:182. [PMID: 35831910 PMCID: PMC9447479 DOI: 10.1186/s12974-022-02546-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported higher plasma levels of complement fragments C3a and C5a in neovascular Age-related Macular Degeneration (nAMD) patients with macular fibrosis. This study aimed to understand whether complement activation contributes to the development of macular fibrosis and the underlying mechanisms involved. Methods Complement activation was blocked using a C5 neutralizing antibody (BB5.1) in C57BL/6J mice after induction of subretinal fibrosis using the two-stage laser protocol. Fibrotic lesions were examined 10 days after the 2nd laser through fundus examination and immunohistochemistry. The expression of C5aR in fibrotic lesions and retinal pigment epithelial (RPE) cultures were examined by confocal microscopy. Primary murine RPE cells were treated with C3a or C5a (10–100 ng/mL) or TGF-β2 (10 ng/mL). Epithelial-to-mesenchymal transition (EMT) was assessed through various readouts. The expression of E-cadherin, vimentin, fibronectin, α-SMA, Slug, ERK/AKT and pSMAD2/3 were determined by Western blot and immunocytochemistry. Collagen contraction and wound-healing assays were used as functional readouts of EMT. The production of IL-6, TGF-β1, TGF-β2 and VEGF by RPE cells were determined by ELISA. PMX53 was used to block C5aR in RPE cultures and in vivo in mice with subretinal fibrosis. Results Extensive C5b-9 deposition was detected at the site of subretinal fibrosis. BB5.1 treatment completely abrogated complement activation and significantly reduced subretinal fibrosis. C5aR was detected in RPE and infiltrating MHC-II+ cells in subretinal fibrosis. In vitro, RPE cells constitutively express C5/C5a and C5aR, and their expression was increased by TGF-β2 treatment. C5a but not C3a increased fibronectin, α-SMA, vimentin and Slug expression, and decreased E-cadherin expression in RPE cells. C5a treatment also increased the contractility and migration of RPE cells and enhanced the production of VEGF and TGF-β1/2. C5a treatment induced pSmad2/3 and pERK1/2 expression in RPE cells and this was blocked by PMX53. PMX53 treatment significantly reduced sodium fluorescein leakage in the subretinal fibrosis model, while collagen-I+ lesions only mildly reduced. Conclusions Complement activation is critically involved in the development of subretinal fibrosis, partially through C5a–C5aR-mediated EMT in RPE cells. Targeting complement activation rather than C5a may be a novel approach for the management of macular fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02546-3.
Collapse
Affiliation(s)
- María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.,Vall d´Hebron Research Institute (VHIR), Universitat Autonòma de Barcelona, 08035, Barcelona, Spain
| | - Eimear M Byrne
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Karis Little
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
27
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
28
|
Zhu X, Xu Y, Deng Z. miR-320 Overexpression Affects Lung Cancer Macrophage M2 Polarization Through Targeting Vascular Endothelial Growth Factor A (VEGFA). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-320 overexpression’s effect on macrophages polarization in lung cancer was assessed to seek the related therapeutic target for providing theoretical foundation on drug development. THP-1 and A549 cell was induced into macrophage M2 type and then divided into no-polarization
group (MΦ) and M2 type of macrophage’s polarization group (M2). Cells were transfected with miR-320mimic and assigned into BC group, NC group and miR-320mimic group followed by analysis of TGF-β level by ELISA, TNF-α, IL-1β, CCL22, CCL17
and VEGFA level by real-time PCR, VEGFA, CCL22 and IL-1β protein level by western blot, as well as CD206 level by flow cytometry. The proportion of CD206+ cell was significantly increased after induction with the elevated CCL22 and CCL17 mRNA level. There was no significance
of TNF-α, IL-1β RNA level between two groups (P > 0.05). TGF-β level was significantly increased in macrophage of M2 type. CCL2 and VEGFA level was lower and IL-1β was higher in miR-320 overexpression group than other two groups (P
< 0.05). In conclusion, macrophage polarization in lung cancer influenced by VEGFA could be regulated by miR-320 overexpression.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Oncology, Huanggang Central Hospital, Huanggang, Hubei, 438000, China
| | - Yi Xu
- Department of Thoracic Surgery, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Zhongbiao Deng
- Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| |
Collapse
|
29
|
Gao J, Zhang LX, Ao YQ, Jin C, Zhang PF, Wang HK, Wang S, Lin M, Jiang JH, Ding JY. Elevated circASCC3 limits antitumor immunity by sponging miR-432–5p to upregulate C5a in non-small cell lung cancer. Cancer Lett 2022; 543:215774. [DOI: 10.1016/j.canlet.2022.215774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
30
|
Zhang J, Liu Z, Cao P, Wang H, Liu H, Hua L, Xue H, Fu R. Tumor-associated macrophages regulate the function of cytotoxic T lymphocyte through PD-1/PD-L1 pathway in multiple myeloma. Cancer Med 2022; 11:4838-4848. [PMID: 35593325 PMCID: PMC9761071 DOI: 10.1002/cam4.4814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are originated from circulating mononuclear cells in peripheral blood. They result from the recruitment of tumor cells and are a vital constituent of the tumor microenvironment. TAMs may be involved in the immunological escape of vicious clonal plasma cells (PC) in the bone marrow (BM) of sufferers with myeloma. METHODS From March 2020 to January 2021, 28 healthy controls (HC) and 86 multiple myeloma (MM) (53 newly diagnosed MM [NDMM] and 33 remissions) patients were enrolled as objects of the study. The expression of TAMs in the BM, CSF1 on CD138 + cells, and CSF1R on macrophages were detected by the method of flow cytometry, and the expression of PD-1 on CD8 + T cells and PD-L1 on TAMs were also done. Bone marrow mononuclear cells (BMMNCs) were extracted and cultured into TAMs, CD8 + T cells were sorted by magnetic beads and cultured, a coculture system was established and different inhibitors were added. The expression of the perforin and granzyme B was detected by flow cytometry. RESULTS The percentage of TAMs in NDMM group (61.49 ± 2.176%) increased when compared with remission (23.08 ± 1.699%, p < 0.001) and HC group (17.95 ± 1.865%, p < 0.001), and TAMs decreased after adding CSF1R inhibitor. Moreover, the expression of CSF1 on CD138 + cells increased significantly in NDMM group (17.090 ± 0.9156%) than remission (8.214 ± 0.5911% p < 0.001), and HC group (5.257 ± 0.6231%, p < 0.001), and CSF1R on macrophages increased significantly in NDMM group (58.78 ± 2.286%) than remission (20.74 ± 1.376%, p < 0.001) and HC group (17.42 ± 1.081%, p < 0.001). The expression of PD-1 on CD8 + T cells in NDMM group (32.64 ± 2.982%) increased than remission (20.35 ± 2.335% p < 0.01) and HC group (17.53 ± 1.349%, p < 0.001), and PD-L1 on TAMs also increased in NDMM group (50.92 ± 2.554%) than remission (20.02 ± 1.893%, p < 0.001) and HC group (13.08 ± 1.289%, p < 0.001). When CD8 + T cells were cocultured with TAMs, the perforin and granzyme B levels decreased significantly. However, the perforin and granzyme B levels were partly restored after adding CSF1R inhibitor and anti-PD-L1 antibody. CONCLUSION Our study shows that TAMs were increased in MM patients which can inhibit the function of cytotoxic T lymphocyte (CTL) through the PD-1/ PD-L1 signaling pathway and participate in the occurrence of immune escape of myeloma cells.
Collapse
Affiliation(s)
- Jiangbo Zhang
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China,Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Panpan Cao
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Hao Wang
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Hui Liu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Luoming Hua
- Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Hua Xue
- Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| |
Collapse
|
31
|
Yang D, Yang L, Cai J, Li H, Xing Z, Hou Y. Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization. Mol Cell Biochem 2022; 477:2469-2480. [PMID: 35590082 DOI: 10.1007/s11010-022-04461-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) are a type of functionally plastic immune cell population in tumor microenvironment (TME) and mainly polarized into two phenotypes: M2 and M1-like TAMs. The M2-like TAMs could stimulate tumor growth and metastasis, tissue remodeling and immune-suppression, whereas M1-like TAMs could initiate immune response to dampen tumor progression. TAMs with different polarization phenotypes can produce various kinds of cytokines, chemokines and growth factors to regulate immunity and inflammatory responses. It is an effective method to treat cancer through ameliorating TME and modulating TAMs by converting M2 into M1-like phenotype. However, intracellular signaling mechanisms underlying TAMs polarization are largely undefined. Phosphoinositide 3-kinase (PI3K)/Akt is an important signaling pathway participating in M2-like TAMs polarization, survival, growth, proliferation, differentiation, apoptosis and cytoskeleton rearrangement. In the present review, we analyzed the mechanism of TAMs polarization focusing on PI3K/Akt and its downstream mitogen‑activated protein kinase (MAPK) as well as nuclear factor kappa B (NF-κB) signaling pathways, thus provides the first evidence of intracellular targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Depeng Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Lijun Yang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Jialing Cai
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Huaxin Li
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
32
|
Complement activation in cancer: Effects on tumor-associated myeloid cells and immunosuppression. Semin Immunol 2022; 60:101642. [PMID: 35842274 DOI: 10.1016/j.smim.2022.101642] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/15/2023]
Abstract
Cancer-related inflammation plays a central role in the establishment of tumor-promoting mechanisms. Tumor-associated myeloid cells, which engage in complex interactions with cancer cells, as well as stromal and tumor immune infiltrating cells, promote cancer cell proliferation and survival, angiogenesis, and the generation of an immunosuppressive microenvironment. The complement system is one of the inflammatory mechanisms activated in the tumor microenvironment. Beside exerting anti-tumor mechanisms such as complement-dependent cytotoxicity and phagocytosis induced by therapeutic monoclonal antibodies, the complement system may promote immunosuppression and tumor growth and invasiveness, in particular, through the anaphylatoxins which target both leukocytes and cancer cells. In this review, we will discuss complement-mediated mechanisms acting on leukocytes, in particular on cells of the myelomonocytic cell lineage (macrophages, neutrophils, myeloid derived suppressor cells), which promote myeloid cell recruitment and functional skewing, leading to immunosuppression and resistance to tumor-specific immunity. Pre-clinical studies, which have elucidated the role of complement in activating pro-tumor mechanisms in myeloid cells, showing the relevance of these mechanisms in human, and therapeutic approaches based on complement targeting support the hypothesis that complement directly and indirectly interferes with many of the effector pathways associated with the cancer-immunity cycle, suggesting the relevance of complement targeting to improve responses to immunotherapeutic approaches.
Collapse
|
33
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
34
|
Abstract
Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis. Many recent studies have provided evidence that cancer is able to hijack the immunoregulatory components of the complement system which fundamentally are tasked with protecting the body against abnormal cells and pathogens. Indeed, recent evidence shows that many types of cancer use C1q receptors (C1qRs) to promote tumor growth and progression. More importantly, most cancer cells express both C1q and its major receptors (gC1qR and cC1qR) on their surface which are essential for cell proliferation and survival. In this review, we discuss the ability of cancer to control and manipulate the complement system in the tumor microenvironment and identify possible therapeutic targets, including C1q and gC1qR.
Collapse
Affiliation(s)
- Danyaal Ain
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Talha Shaikh
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Samantha Manimala
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, 100 Nicholls Road, Stony Brook, NY 11794-8161, USA
| |
Collapse
|
35
|
Lawal B, Tseng SH, Olugbodi JO, Iamsaard S, Ilesanmi OB, Mahmoud MH, Ahmed SH, Batiha GES, Wu ATH. Pan-Cancer Analysis of Immune Complement Signature C3/C5/C3AR1/C5AR1 in Association with Tumor Immune Evasion and Therapy Resistance. Cancers (Basel) 2021; 13:4124. [PMID: 34439277 PMCID: PMC8394789 DOI: 10.3390/cancers13164124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the advances in our understanding of the genetic and immunological basis of cancer, cancer remains a major public health burden with an ever-increasing incidence rate globally. Nevertheless, increasing evidence suggests that the components of the complement system could regulate the tumor microenvironment (TME) to promote cancer progression, recurrence, and metastasis. In the present study, we used an integrative multi-omics analysis of clinical data to explore the relationships between the expression levels of and genetic and epigenetic alterations in C3, C5, C3AR1, and C5AR1 and tumor immune evasion, therapy response, and patient prognosis in various cancer types. We found that the complements C3, C5, C3AR1, and C5AR1 have deregulated expression in human malignancies and are associated with activation of immune-related oncogenic processes and poor prognosis of cancer patients. Furthermore, we found that the increased expression levels of C3, C5, C3AR1, and C5AR1 were primarily predicted by copy number variation and gene methylation and were associated with dysfunctional T-cell phenotypes. Single nucleotide variation in the gene signature co-occurred with multiple oncogenic mutations and is associated with the progression of onco-immune-related diseases. Further correlation analysis revealed that C3, C5, C3AR1, and C5AR1 were associated with tumor immune evasion via dysfunctional T-cell phenotypes with a lesser contribution of T-cell exclusion. Lastly, we also demonstrated that the expression levels of C3, C5, C3AR1, and C5AR1 were associated with context-dependent chemotherapy, lymphocyte-mediated tumor killing, and immunotherapy outcomes in different cancer types. In conclusion, the complement components C3, C5, C3AR1, and C5AR1 serve as attractive targets for strategizing cancer immunotherapy and response follow-up.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan;
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine and Research Institute for Human High Performance and Health Promotion (HHP&HP), Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Ogbia 23401, Bayelsa State, Nigeria;
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sahar H. Ahmed
- Medical Laboratory Technology Department, Faculty of Applied Medical Science, Misr University For Science &Technology, Cairo 3245310, Egypt;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Alexander T. H. Wu
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Taipei Heart Institute (THI), Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
36
|
Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021; 12:685978. [PMID: 34326840 PMCID: PMC8313969 DOI: 10.3389/fimmu.2021.685978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor immune microenvironment plays a vital role in the metastasis of colorectal cancer. As one of the most important immune cells, macrophages act as phagocytes, patrol the surroundings of tissues, and remove invading pathogens and cell debris to maintain tissue homeostasis. Significantly, macrophages have a characteristic of high plasticity and can be classified into different subtypes according to the different functions, which can undergo reciprocal phenotypic switching induced by different types of molecules and signaling pathways. Macrophages regulate the development and metastatic potential of colorectal cancer by changing the tumor immune microenvironment. In tumor tissues, the tumor-associated macrophages usually play a tumor-promoting role in the tumor immune microenvironment, and they are also associated with poor prognosis. This paper reviews the mechanisms and stimulating factors of macrophages in the process of colorectal cancer metastasis and intends to indicate that targeting macrophages may be a promising strategy in colorectal cancer treatment.
Collapse
Affiliation(s)
- Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Nash WT, Okusa MD. Chess Not Checkers: Complexities Within the Myeloid Response to the Acute Kidney Injury Syndrome. Front Med (Lausanne) 2021; 8:676688. [PMID: 34124107 PMCID: PMC8187556 DOI: 10.3389/fmed.2021.676688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Immune dysregulation in acute kidney injury (AKI) is an area of intense interest which promises to enhance our understanding of the disease and how to manage it. Macrophages are a heterogeneous and dynamic population of immune cells that carry out multiple functions in tissue, ranging from maintenance to inflammation. As key sentinels of their environment and the major immune population in the uninjured kidney, macrophages are poised to play an important role in the establishment and pathogenesis of AKI. These cells have a profound capacity to orchestrate downstream immune responses and likely participate in skewing the kidney environment toward either pathogenic inflammation or injury resolution. A clear understanding of macrophage and myeloid cell dynamics in the development of AKI will provide valuable insight into disease pathogenesis and options for intervention. This review considers evidence in the literature that speaks to the role and regulation of macrophages and myeloid cells in AKI. We also highlight barriers or knowledge gaps that need to be addressed as the field advances.
Collapse
Affiliation(s)
- William T Nash
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mark D Okusa
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
Dander E, Palmi C, D’Amico G, Cazzaniga G. The Bone Marrow Niche in B-Cell Acute Lymphoblastic Leukemia: The Role of Microenvironment from Pre-Leukemia to Overt Leukemia. Int J Mol Sci 2021; 22:ijms22094426. [PMID: 33922612 PMCID: PMC8122951 DOI: 10.3390/ijms22094426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic lesions predisposing to pediatric B-cell acute lymphoblastic leukemia (B-ALL) arise in utero, generating a clinically silent pre-leukemic phase. We here reviewed the role of the surrounding bone marrow (BM) microenvironment in the persistence and transformation of pre-leukemic clones into fully leukemic cells. In this context, inflammation has been highlighted as a crucial microenvironmental stimulus able to promote genetic instability, leading to the disease manifestation. Moreover, we focused on the cross-talk between the bulk of leukemic cells with the surrounding microenvironment, which creates a “corrupted” BM malignant niche, unfavorable for healthy hematopoietic precursors. In detail, several cell subsets, including stromal, endothelial cells, osteoblasts and immune cells, composing the peculiar leukemic niche, can actively interact with B-ALL blasts. Through deregulated molecular pathways they are able to influence leukemia development, survival, chemoresistance, migratory and invasive properties. The concept that the pre-leukemic and leukemic cell survival and evolution are strictly dependent both on genetic lesions and on the external signals coming from the microenvironment paves the way to a new idea of dual targeting therapeutic strategy.
Collapse
Affiliation(s)
- Erica Dander
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | - Chiara Palmi
- Correspondence: (E.D.); (C.P.); Tel.: +39-(0)-39-2332229 (E.D. & C.P.); Fax: +39-(0)39-2332167 (E.D. & C.P.)
| | | | | |
Collapse
|
39
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Dander E, Fallati A, Gulić T, Pagni F, Gaspari S, Silvestri D, Cricrì G, Bedini G, Portale F, Buracchi C, Starace R, Pasqualini F, D'Angiò M, Brizzolara L, Maglia O, Mantovani A, Garlanda C, Valsecchi MG, Locatelli F, Biondi A, Bottazzi B, Allavena P, D'Amico G. Monocyte-macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 193:1157-1171. [PMID: 33713428 DOI: 10.1111/bjh.17330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
B-cell acute lymphoblastic leukaemia (B-ALL) reprograms the surrounding bone marrow (BM) stroma to create a leukaemia-supportive niche. To elucidate the contribution of immune cells to the leukaemic microenvironment, we investigated the involvement of monocyte/macrophage compartments, as well as several recruitment pathways in B-ALL development. Immunohistochemistry analyses showed that CD68-expressing macrophages were increased in leukaemic BM biopsies, compared to controls and predominantly expressed the M2-like markers CD163 and CD206. Furthermore, the "non-classical" CD14+ CD16++ monocyte subset, expressing high CX3CR1 levels, was significantly increased in B-ALL patients' peripheral blood. CX3CL1 was shown to be significantly upregulated in leukaemic BM plasma, thus providing an altered migratory pathway possibly guiding NC monocyte recruitment into the BM. Additionally, the monocyte/macrophage chemoattractant chemokine ligand 2 (CCL2) strongly increased in leukaemic BM plasma, possibly because of the interaction of leukaemic cells with mesenchymal stromal cells and vascular cells and due to a stimulatory effect of leukaemia-related inflammatory mediators. C5a, a macrophage chemoattractant and M2-polarizing factor, further appeared to be upregulated in the leukaemic BM, possibly as an effect of PTX3 decrease, that could unleash complement cascade activation. Overall, deregulated monocyte/macrophage compartments are part of the extensive BM microenvironment remodelling at B-ALL diagnosis and could represent valuable targets for novel treatments to be coupled with classical chemotherapy.
Collapse
Affiliation(s)
- Erica Dander
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Tamara Gulić
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Fabio Pagni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, Rome, Italy
| | - Daniela Silvestri
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Giulia Cricrì
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Gloria Bedini
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Federica Portale
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Chiara Buracchi
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Rita Starace
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Pasqualini
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Mariella D'Angiò
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Lisa Brizzolara
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Oscar Maglia
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alberto Mantovani
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy
| | - Maria Grazia Valsecchi
- Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, Rome, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Barbara Bottazzi
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Paola Allavena
- IRCCS, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Giovanna D'Amico
- Centro Ricerca Tettamanti, Pediatric Dep, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| |
Collapse
|
41
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
42
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
43
|
Bao D, Zhang C, Li L, Wang H, Li Q, Ni L, Lin Y, Huang R, Yang Z, Zhang Y, Hu Y. Integrative Analysis of Complement System to Prognosis and Immune Infiltrating in Colon Cancer and Gastric Cancer. Front Oncol 2021; 10:553297. [PMID: 33614473 PMCID: PMC7886994 DOI: 10.3389/fonc.2020.553297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background The complement system acts as an integral part of the innate immune response, which acts primarily to remove pathogens and injured cells. Emerging evidence has shown the activation of the immune regulatory function of complements in the tumor microenvironment (TME). We revealed the expression levels of various complements in human cancers and their role in tumor prognosis and immune infiltration. Methods The differential expression of complements was explored via the Tumor Immune Estimation Resource (TIMER) site and the Oncomine database. To investigate whether these differentially expressed complements have correlation with the prognosis of gastric cancer (GC) and colon cancer, their impact on survival was assessed using the PrognoScan database and Kaplan-Meier plotter. The correlations between complements and tumor immune-infiltrating levels and immune gene markers were statistically explored in TIMER based on Spearman's correlation coefficients and p-values. Results In two colon cancer cohorts, an increased expression level of DAF (CD55) has statistically significant correlation with poor disease-free survival (DFS). High C3, CR4, and C5aR1 expression levels were significantly related with poor prognosis in GC patients. In addition, C3, CR4, and C5aR1 expression was positively related to the tumor purity and infiltration levels of multiple immune cells in stomach adenocarcinoma (STAD). Moreover, the expression levels of C3, CR4, and C5aR1 were also strongly correlated with various immune marker sets, such as those of tumor-associated macrophages (TAMs), M1 and M2 macrophages, T cell exhaustion, Tregs, and DCs, in STAD. Additionally, CD55 has positive correlation with few immune cell infiltration levels in colon adenocarcinoma (COAD), but its correlation with immune marker sets was not statistically significant. Conclusion These findings confirm the relationship between various complements and tumor prognosis and immune infiltration in colon cancer and GC. CD55 may serve as an indicator on the survival prognosis of patients with colon cancer. Furthermore, as biomarkers for poor prognosis in GC, complements C3, CR4, and C5aR1 may provide potential biological targets for GC immunotherapy.
Collapse
Affiliation(s)
- Dandan Bao
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Chenghao Zhang
- Emergency department, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Longlong Li
- Department of Gastrointestinal Surgery, People's Hospital of Deyang City, Sichuan, China
| | - Haihong Wang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Qiuyan Li
- Department of Oncology, Wenzhou Medical University, Wenzhou, China
| | - Leilei Ni
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yinfeng Lin
- Department of Oncology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Rong Huang
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Zhangwei Yang
- Department of General Surgery, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yan Zhang
- Department of Gastroenterology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yiren Hu
- Department of General Surgery, Medical College of Soochow University, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
44
|
The Activation of Prothrombin Seems to Play an Earlier Role than the Complement System in the Progression of Colorectal Cancer: A Mass Spectrometry Evaluation. Diagnostics (Basel) 2020; 10:diagnostics10121077. [PMID: 33322644 PMCID: PMC7763171 DOI: 10.3390/diagnostics10121077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of death in men and the third in women. This work deals with the study of the low molecular weight protein fraction of sera from patients who underwent surgery for CRC and who were followed for several years thereafter. MALDI-TOF MS was used to identify serum peptidome profiles of healthy controls, non-metastatic CRC patients and metastatic CRC patients. A multiple regression model was applied to signals preliminarily selected by SAM analysis to take into account the age and gender differences between the groups. We found that, while a signal m/z 2021.08, corresponding to the C3f fragment of the complement system, appears significantly increased only in serum from metastatic CRC patients, a m/z 1561.72 signal, identified as a prothrombin fragment, has a significantly increased abundance in serum from non-metastatic patients as well. The findings were also validated by a bootstrap resampling procedure. The present results provide the basis for further studies on large cohorts of patients in order to confirm C3f and prothrombin as potential serum biomarkers. Thus, new and non-invasive tests might be developed to improve the classification of colorectal cancer.
Collapse
|
45
|
Thurman JM, Laskowski J, Nemenoff RA. Complement and Cancer-A Dysfunctional Relationship? Antibodies (Basel) 2020; 9:antib9040061. [PMID: 33167384 PMCID: PMC7709115 DOI: 10.3390/antib9040061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Although it was long believed that the complement system helps the body to identify and remove transformed cells, it is now clear that complement activation contributes to carcinogenesis and can also help tumors to escape immune-elimination. Complement is activated by several different mechanisms in various types of cancer, and complement activation fragments have multiple different downstream effects on cancer cells and throughout the tumor microenvironment. Thus, the role of complement activation in tumor biology may vary among different types of cancer and over time within a single tumor. In multiple different pre-clinical models, however, complement activation has been shown to recruit immunosuppressive myeloid cells into the tumor microenvironment. These cells, in turn, suppress anti-tumor T cell immunity, enabling the tumor to grow. Based on extensive pre-clinical work, therapeutic complement inhibitors hold great promise as a new class of immunotherapy. A greater understanding of the role of complement in tumor biology will improve our ability to identify those patients most likely to benefit from this treatment and to rationally combine complement inhibitors with other cancer therapies.
Collapse
|
46
|
Ding P, Li L, Li L, Lv X, Zhou D, Wang Q, Chen J, Yang C, Xu E, Dai W, Zhang X, Wang N, Wang Q, Zhang W, Zhang L, Zhou Y, Gu H, Lei Q, Zhou X, Hu W. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation. Theranostics 2020; 10:8619-8632. [PMID: 32754267 PMCID: PMC7392014 DOI: 10.7150/thno.45058] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Numerous factors have been claimed to play important roles in colorectal cancer (CRC) tumorigenesis, including myeloid-derived suppressor cells (MDSCs) and other immune cells, cytokines, and chemokines; however, the precise mechanisms of colorectal tumorigenesis remain elusive, and there is a lack of effective preventive treatments. Here, we investigated the role of complement system, a key regulator of immune surveillance and homeostasis, in colorectal tumorigenesis. Methods: The prototypical CRC model was induced by combined administration of azoxymethane (AOM)/ dextran sulfate sodium (DSS) in Wild-type (WT), C3-, C5-, C5ar1-, and C5ar2-deficient mice. Using flow cytometry, immunohistochemical staining and multiplex bead assay, we profiled the immune cells, cytokines and chemokines. Bone marrow transplantation was employed to determine the contribution of immune cells in colorectal tumorigenesis. Further, we used C5aR1 antagonist PMX205 to investigate the protective role in colorectal tumorigenesis. Results: Complement was extensively activated in inflamed tissues of AOM/DSS-induced murine CRC model, leading to multifaceted consequences. The deficiency of complement C5 or especially C5ar1, but not C3 almost completely prevented CRC tumorigenesis. C5a/C5aR1 signaling recruited MDSCs into the inflamed colorectum to impair CD8+ T cells, and modulated the production of critical cytokines and chemokines, thus initiating CRC. Moreover, the C5aR1 antagonist PMX205 strongly impeded colorectal tumorigenesis. Bone marrow transplantation further revealed that C5aR1 expression by immune cells was critical for colorectal tumorigenesis. Conclusion: Our study identifies C5a/C5aR1 signaling as a vital immunomodulatory program in CRC tumorigenesis and suggests a feasible preventive strategy.
Collapse
|
47
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
48
|
Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol 2020; 71:143-156. [PMID: 32526354 DOI: 10.1016/j.semcancer.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Liver metastases from gastrointestinal and non-gastrointestinal malignancies remain a major cause of cancer-related mortality and a major clinical challenge. The liver has unique properties that facilitate metastatic expansion, including a complex immune system that evolved to dampen immunity to neoantigens entering the liver from the gut, through the portal circulation. In this review, we describe the unique microenvironment encountered by cancer cells in the liver, focusing on elements of the innate and adaptive immune response that can act as a double-edge sword, contributing to the elimination of cancer cells on the one hand and promoting their survival and growth, on the other. We discuss this microenvironment in a clinical context, particularly for colorectal carcinoma, and highlight how a better understanding of the role of the microenvironment has spurred an intense effort to develop novel and innovative strategies for targeting liver metastatic disease, some of which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Aaron T Ciner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Keaton Jones
- Oxford Institute for Radiation Oncology, Department of Surgery, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Pnina Brodt
- Departments of Surgery, Medicine and Oncology, McGill University, and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
49
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
50
|
Han ZP, Liu DB, Wu LQ, Li Q, Wang ZG, Zang XF. IL-1β secreted by macrophage M2 promotes metastasis of osteosarcoma via NF-κB/miR-181α-5p/RASSF1A/Wnt pathway. Transl Cancer Res 2020; 9:2721-2733. [PMID: 35117631 PMCID: PMC8798966 DOI: 10.21037/tcr.2020.02.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/11/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ras-associated domain family protein1 isoform A (RASSF1A) was significantly absent in clinical samples and many osteosarcoma (OS) cell lines. Overexpression of RASSF1A could suppress OS metastasis, which may be mediated by tumor-associated macrophages polarized M2 (M2-TAMs). However, the relationship between IL-1β secreted by M2-TAMs and RASSF1A remains unknown. METHODS The expression levels of M2-TAMs markers CD68 and CD204 were measured by flow cytometry, and arginase-1 (Arg-1) and interleukin-1β (IL-1β) secreted by M2-TAMs were examined by real-time quantitative PCR (RT-qPCR). MTT assay was employed to determine the proliferation of OS cells, while scratch wound healing assay and Transwell assay were used to evaluate their migration and invasion, respectively. The level of miR-181α-5p was measured by RT-qPCR, while the levels of RASSF1A, GSK-3β, p-GSK-3β, β-catenin, MMP-2 and MMP-9 were evaluated by Western blot. The direct binding of miR-181α-5p and RASSF1A was identified using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS The levels of CD68, CD204, Arg-1 and IL-1β were elevated in M2-TAMs compared with control group. Overexpression of RASSF1A and knockdown of miR-181α-5p could both suppress invasion and migration of OS cells through Wnt pathway. IL-1β secreted by M2-TAMs facilitated the OS metastasis via RASSF1A/Wnt pathway, which could be targeted by miR-181α-5p and affected by nuclear factor-kappa B (NF-κB). CONCLUSIONS IL-1β secreted by M2-TAMs contributed to OS metastasis, which could be suppressed by knockdown of miR-181α-5p or overexpression of RASSF1A through NF-κB/miR-181α-5p/RASSF1A/Wnt pathway. These findings can guide new target discovery for drug development in OS treatment.
Collapse
Affiliation(s)
- Zhi-Peng Han
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Dong-Biao Liu
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Liu-Qing Wu
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Qin Li
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zheng-Guang Wang
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiao-Fang Zang
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|