1
|
Batorsky R, Ceasrine AM, Shook LL, Kislal S, Bordt EA, Devlin BA, Perlis RH, Slonim DK, Bilbo SD, Edlow AG. Hofbauer cells and fetal brain microglia share transcriptional profiles and responses to maternal diet-induced obesity. Cell Rep 2024; 43:114326. [PMID: 38848212 DOI: 10.1016/j.celrep.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Maternal immune activation is associated with adverse offspring neurodevelopmental outcomes, many mediated by in utero microglial programming. As microglia remain inaccessible throughout development, identification of noninvasive biomarkers reflecting fetal brain microglial programming could permit screening and intervention. We used lineage tracing to demonstrate the shared ontogeny between fetal brain macrophages (microglia) and fetal placental macrophages (Hofbauer cells) in a mouse model of maternal diet-induced obesity, and single-cell RNA-seq to demonstrate shared transcriptional programs. Comparison with human datasets demonstrated conservation of placental resident macrophage signatures between mice and humans. Single-cell RNA-seq identified common alterations in fetal microglial and Hofbauer cell gene expression induced by maternal obesity, as well as sex differences in these alterations. We propose that Hofbauer cells, which are easily accessible at birth, provide insights into fetal brain microglial programs and may facilitate the early identification of offspring vulnerable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Evan A Bordt
- Department of Pediatrics, Lurie Center for Autism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Roy H Perlis
- Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Lurie Center for Autism, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Kelly A, Chan J, Powell TL, Cox LA, Jansson T, Rosario FJ. Maternal obesity alters the placental transcriptome in a fetal sex-dependent manner. Front Cell Dev Biol 2023; 11:1178533. [PMID: 37397247 PMCID: PMC10309565 DOI: 10.3389/fcell.2023.1178533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Infants born to obese mothers have an increased risk of developing obesity and metabolic diseases in childhood and adulthood. Although the molecular mechanisms linking maternal obesity during pregnancy to the development of metabolic diseases in offspring are poorly understood, evidence suggests that changes in the placental function may play a role. Using a mouse model of diet-induced obesity with fetal overgrowth, we performed RNA-seq analysis at embryonic day 18.5 to identify genes differentially expressed in the placentas of obese and normal-weight dams (controls). In male placentas, 511 genes were upregulated and 791 genes were downregulated in response to maternal obesity. In female placentas, 722 genes were downregulated and 474 genes were upregulated in response to maternal obesity. The top canonical pathway downregulated in maternal obesity in male placentas was oxidative phosphorylation. In contrast, sirtuin signaling, NF-kB signaling, phosphatidylinositol, and fatty acid degradation were upregulated. In female placentas, the top canonical pathways downregulated in maternal obesity were triacylglycerol biosynthesis, glycerophospholipid metabolism, and endocytosis. In contrast, bone morphogenetic protein, TNF, and MAPK signaling were upregulated in the female placentas of the obese group. In agreement with RNA-seq data, the expression of proteins associated with oxidative phosphorylation was downregulated in male but not female placentas of obese mice. Similarly, sex-specific changes in the protein expression of mitochondrial complexes were found in placentas collected from obese women delivering large-for-gestational-age (LGA) babies. In conclusion, maternal obesity with fetal overgrowth differentially regulates the placental transcriptome in male and female placentas, including genes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Amy Kelly
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
4
|
Rodents on a high-fat diet born to mothers with gestational diabetes exhibit sex-specific lipidomic changes in reproductive organs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:736-747. [PMID: 35643955 PMCID: PMC9828243 DOI: 10.3724/abbs.2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Maternal gestatonal diabetes mellitus (GDM) and offspring high-fat diet (HFD) have been shown to have sex-specific detrimental effects on the health of the offspring. Maternal GDM combined with an offspring HFD alters the lipidomic profiles of offspring reproductive organs with sex hormones and increases insulin signaling, resulting in offspring obesity and diabetes. The pre-pregnancy maternal GDM mice model is established by feeding maternal C57BL/6 mice and their offspring are fed with either a HFD or a low-fat diet (LFD). Testis, ovary and liver are collected from offspring at 20 weeks of age. The lipidomic profiles of the testis and ovary are characterized using gas chromatography-mass spectrometry. Male offspring following a HFD have elevated body weight. In reproductive organs and hormones, male offspring from GDM mothers have decreased testes weights and testosterone levels, while female offspring from GDM mothers show increased ovary weights and estrogen levels. Maternal GDM aggravates the effects of an offspring HFD in male offspring on the AKT pathway, while increasing the risk of developing inflammation when expose to a HFD in female offspring liver. Testes are prone to the effect of maternal GDM, whereas ovarian metabolite profiles are upregulated in maternal GDM and downregulated in offspring following an HFD. Maternal GDM and an offspring HFD have different metabolic effects on offspring reproductive organs, and PUFAs may protect against detrimental outcomes in the offspring, such as obesity and diabetes.
Collapse
|
5
|
Tarmizi NAKA, Kushairi N, Phan CW, Sabaratnam V, Naidu M, David P. β-Glucan-Rich Extract of Gray Oyster Mushroom, Pleurotus pulmonarius, Improves Object Recognition Memory and Hippocampus Morphology in Mice Fed a High-Fat Diet. J Med Food 2022; 25:230-238. [PMID: 35085010 DOI: 10.1089/jmf.2021.k.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity may cause behavioral alterations, while maternal obesity can contribute to metabolic disorders in subsequent generations. The effect of β-glucan-rich Pleurotus pulmonarius (βgPp) was investigated on mouse neurobehavior and hippocampus and its offspring's hippocampus development. Female ICR mice were fed with normal diet (ND), ND with βgPp, high-fat diet (HFD), or HFD with βgPp for 3 months followed by behavioral test and mating. Immunohistochemistry for the expression of neuronal nuclear protein (NeuN) and ionized calcium binding adaptor molecule-1 (Iba-1) in the hippocampus was carried out. βgPp significantly enhanced short-term object recognition memory in HFD-fed mice. βgPp also ameliorated the histological alterations and neuronal loss and increased Iba-1-positive microglia in the hippocampus regions of HFD-fed mice and their male offspring. These findings demonstrated that βgPp supplementation attenuated the effects of HFD on object recognition memory and the alterations on the hippocampal regions of maternal mice and their male offspring.
Collapse
Affiliation(s)
- Nor Athirah Kamaliah Ahmad Tarmizi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naufal Kushairi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Murali Naidu
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pamela David
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
7
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
8
|
Yuan QC, Gong H, Du M, Mao XY. Supplementation of milk polar lipids to obese dams improves neurodevelopment and cognitive function in male offspring. FASEB J 2021; 35:e21454. [PMID: 33749945 DOI: 10.1096/fj.202001974rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Milk contains about 4% fat globules with its surface covered by polar lipids. Despite the abundant consumption of dairy products, the biological effects of dietary milk polar lipids on metabolic health have only been sparsely examined. Maternal obesity results in neurodevelopmental disorders and cognitive impairment in offspring. Considering the importance of maternal nutrition, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to dams during pregnancy and lactation on neurodevelopment and its long-term programming effects on offspring cognition were examined. Female Sprague-Dawley rats consumed 8-week control diet (CON) or high-fat diet (HFD) to induce obesity before mating. Then, female rats were fed CON or HFD with or without the supplementation of 400 mg/kg body weight MFGM-PL during pregnancy and lactation. The offspring were fed 11-week HFD after weaning. MFGM-PL supplementation to obese dams suppressed body weight gain and hyperinsulinemia in both dams and offspring. Offspring born to obese dams displayed delayed neurological reflexes development, impaired neurogenesis before weaning, and cognitive impairment in adulthood, which were recovered by maternal MFGM-PL supplementation. Insulin resistance and aberrant brain-derived neurotrophic factor signaling were induced in the hippocampus of neonatal and adult offspring due to maternal and progeny HFD, but recovered by maternal MFGM-PL administration. This study demonstrates that maternal MFGM-PL supplementation can promote neurodevelopment and exert long-term effects against HFD-induced cognitive impairment in offspring via alleviating hippocampal insulin resistance. Hence, MFGM-PL is a promising ingredient for exerting beneficial programming effects on the brain health of offspring.
Collapse
Affiliation(s)
- Qi-Chen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xue-Ying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lynch KM, Alves JM, Chow T, Clark KA, Luo S, Toga AW, Xiang AH, Page KA. Selective morphological and volumetric alterations in the hippocampus of children exposed in utero to gestational diabetes mellitus. Hum Brain Mapp 2021; 42:2583-2592. [PMID: 33764653 PMCID: PMC8090774 DOI: 10.1002/hbm.25390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Prior epidemiological studies have found that in utero exposure to gestational diabetes mellitus (GDM) is associated with increased risk for neurodevelopmental disorders. However, brain alterations associated with GDM are not known. The hippocampus is pivotal for cognition and emotional regulation. Therefore, we assessed relationships between in utero exposure to GDM and hippocampal morphology and subfield structure during childhood. One hundred seventeen children aged 7–11 years (57% girls, 57% exposed to GDM), born at Kaiser Permanente Southern California, participated in the BrainChild Study. Maternal GDM status was determined from electronic medical records. Children underwent brain magnetic resonance imaging. Freesurfer 6.0 was used to measure hippocampal and individual hippocampal subfield gray matter volume (mm3). Morphological analyses on the hippocampal surface were carried out using shape analysis. GDM‐exposed children exhibited reduced radial thickness in a small, spatially‐restricted portion of the left inferior body of the hippocampus that corresponds to the CA1 subfield. There was a significant interaction between GDM‐exposure and sex on the right hippocampal CA1 subfield. GDM‐exposed boys had reduced right CA1 volume compared to unexposed boys, but this association was no longer significant after controlling for age. No significant group differences were observed in girls. Our results suggest that GDM‐exposure impacts shape of the left hippocampal CA1 subfield in both boys and girls and may reduce volume of right hippocampal CA1 only in boys. These in‐depth findings illuminate the unique properties of the hippocampus impacted by prenatal GDM‐exposure and could have important implications for hippocampal‐related functions.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Arthur W Toga
- Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Differential Effects of Post-Weaning Diet and Maternal Obesity on Mouse Liver and Brain Metabolomes. Nutrients 2020; 12:nu12061572. [PMID: 32481497 PMCID: PMC7352523 DOI: 10.3390/nu12061572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking. We recently reported both metabolic and behavioral negative outcomes in offspring born to obese or weight-loss mothers and fed a control of high-fat diet, suggesting long-term modeling of metabolic pathways needing to be further characterized. Using non-targeted LC–HRMS, we investigated the impact of maternal and post-weaning metabolic status on the adult male offspring’s metabolome in three tissues involved in energy homeostasis: liver, hypothalamus and olfactory bulb. We showed that post-weaning diet interfered with the abundance of several metabolites, including 1,5-anhydroglucitol, saccharopine and β-hydroxybutyrate, differential in the three tissues. Moreover, maternal diet had a unique impact on the abundance of two metabolites in the liver. Particularly, anserine abundance, lowered by maternal obesity, was normalized by a preconceptional weight loss, whatever the post-weaning diet. This study is the first to identify a programming long-term effect of maternal preconception obesity on the offspring metabolome.
Collapse
|
11
|
Blossom SJ, Melnyk SB, Simmen FA. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:583-594. [PMID: 31894794 PMCID: PMC7350281 DOI: 10.1039/c9em00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 μg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
12
|
Alves JM, Luo S, Chow T, Herting M, Xiang AH, Page KA. Sex differences in the association between prenatal exposure to maternal obesity and hippocampal volume in children. Brain Behav 2020; 10:e01522. [PMID: 31903710 PMCID: PMC7010582 DOI: 10.1002/brb3.1522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Animal studies have shown that male but not female offspring exposed to maternal obesity have abnormal hippocampal development. Similar sex differences were observed in animal models of developmental programming by prenatal stress or maternal diabetes. We aimed to translate this work into humans by examining sex-specific effects of exposure to maternal obesity on hippocampal volume in children. METHODS Eighty-eight children (37 boys and 51 girls) aged 7-11 years completed the study. Maternal prepregnancy body mass index (BMI) was obtained from electronic medical records. A high-resolution anatomical scan was performed using a 3-Tesla magnetic resonance imaging (MRI) scanner. Total hippocampal volume and hippocampal subfield volumes were analyzed using FreeSurfer 6.0. Linear regression was used to investigate sex differences in relationships between maternal prepregnancy BMI and child hippocampal volume. RESULTS Maternal prepregnancy BMI ranged from 19.0 to 50.4 kg/m2 . We observed a significant interaction between maternal prepregnancy BMI and sex on total hippocampal volume (p < .001) such that boys (r = -.39, p = .018) but not girls (r = .11, p = .45) had a significant negative relationship between maternal prepregnancy BMI and total hippocampal volume. This relationship in boys remained significant after adjusting for child and maternal covariates (β = -126.98, p = .012). The sex interactions with prepregnancy BMI were consistently observed in hippocampal subfields CA1 (p = .008), CA2/3 (p = .016), CA4 (p = .002), dentate gyrus (p < .001), and subiculum (p < .001). CONCLUSIONS Our results support findings in animal models and suggest that boys may be more vulnerable to the adverse effects of exposure to maternal obesity on hippocampal development than girls.
Collapse
Affiliation(s)
- Jasmin M. Alves
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Shan Luo
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Ting Chow
- Department of Research and EvaluationPasadenaCAUSA
| | - Megan Herting
- Department of Preventive MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Kathleen A. Page
- Division of EndocrinologyDepartment of MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Diabetes and Obesity Research InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|