1
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Peng Q, Deng Y, Li G, Li J, Zheng P, Xiong Q, Li J, Chen Y, Ge F. Quantitative Proteomics Reveal the Mechanism of MiR-138-5p Suppressing Cervical Cancer via Targeting ZNF385A. J Proteome Res 2024; 23:3659-3673. [PMID: 39022804 DOI: 10.1021/acs.jproteome.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
MicroRNAs are short, noncoding RNA molecules that exert pivotal roles in cancer development and progression by modulating various target genes. There is growing evidence that miR-138-5p is significantly involved in cervical cancer (CC). However, its precise molecular mechanism has yet to be fully understood. In the current investigation, a quantitative proteomics approach was utilized to detect possible miR-138-5p targets in HeLa cells systematically. In total, 364 proteins were downregulated, and 150 were upregulated after miR-138-5p overexpression. Bioinformatic analysis of these differentially expressed proteins (DEPs) revealed significant enrichment in several cancer-related pathways. Zinc finger protein 385A (ZNF385A) was determined as a novel direct target of miR-138-5p and discovered to facilitate the proliferation, migration, and cell cycle progression of HeLa cells. SFN and Fas cell surface death receptor(FAS) were then identified as functional downstream effectors of ZNF385A and miR-138-5p. Moreover, a tumor xenograft experiment was conducted to validate the association of miR-138-5p-ZNF385A-SFN/FAS axis with the development of CC in vivo. Our findings have collectively established a catalog of proteins mediated by miR-138-5p and have provided an in-depth comprehension of the molecular mechanisms responsible for the inhibitory effect of miR-138-5p on CC. The miR-138-5p-ZNF385A-SFN/FAS axis could also be beneficial to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Qihang Peng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yiting Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Guopan Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Peng Zheng
- College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qian Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Singh AK, Walavalkar K, Tavernari D, Ciriello G, Notani D, Sabarinathan R. Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers. Mol Oncol 2024; 18:1189-1208. [PMID: 38013620 PMCID: PMC11076994 DOI: 10.1002/1878-0261.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Human papillomavirus (HPV) infections are the primary drivers of cervical cancers, and often HPV DNA gets integrated into the host genome. Although the oncogenic impact of HPV encoded genes is relatively well known, the cis-regulatory effect of integrated HPV DNA on host chromatin structure and gene regulation remains less understood. We investigated genome-wide patterns of HPV integrations and associated host gene expression changes in the context of host chromatin states and topologically associating domains (TADs). HPV integrations were significantly enriched in active chromatin regions and depleted in inactive ones. Interestingly, regardless of chromatin state, genomic regions flanking HPV integrations showed transcriptional upregulation. Nevertheless, upregulation (both local and long-range) was mostly confined to TADs with integration, but not affecting adjacent TADs. Few TADs showed recurrent integrations associated with overexpression of oncogenes within them (e.g. MYC, PVT1, TP63 and ERBB2) regardless of proximity. Hi-C and 4C-seq analyses in cervical cancer cell line (HeLa) demonstrated chromatin looping interactions between integrated HPV and MYC/PVT1 regions (~ 500 kb apart), leading to allele-specific overexpression. Based on these, we propose HPV integrations can trigger multimodal oncogenic activation to promote cancer progression.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Kaivalya Walavalkar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | - Daniele Tavernari
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute for Experimental Cancer Research (ISREC), EPFLLausanneSwitzerland
| | - Giovanni Ciriello
- Department of Computational BiologyUniversity of Lausanne (UNIL)Switzerland
- Swiss Cancer Center LemanLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Dimple Notani
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBengaluruIndia
| | | |
Collapse
|
4
|
Lee B, Park Y, Lee Y, Kwon S, Shim J. Triptolide, a Cancer Cell Proliferation Inhibitor, Causes Zebrafish Muscle Defects by Regulating Notch and STAT3 Signaling Pathways. Int J Mol Sci 2024; 25:4675. [PMID: 38731894 PMCID: PMC11083231 DOI: 10.3390/ijms25094675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.
Collapse
Affiliation(s)
- Byongsun Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yongjin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Younggwang Lee
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Seyoung Kwon
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| | - Jaekyung Shim
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Republic of Korea; (B.L.); (Y.P.); (Y.L.); (S.K.)
| |
Collapse
|
5
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
6
|
Kim EY, Verdejo-Torres O, Diaz-Rodriguez K, Hasanain F, Caromile L, Padilla-Benavides T. Single nucleotide polymorphisms and Zn transport by ZIP11 shape functional phenotypes of HeLa cells. Metallomics 2024; 16:mfae006. [PMID: 38285610 DOI: 10.1093/mtomcs/mfae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
Zinc (Zn) is a vital micronutrient with essential roles in biological processes like enzyme function, gene expression, and cell signaling. Disruptions in the cellular regulation of Zn2+ ions often lead to pathological states. Mammalian Zn transporters, such as ZIP11, play a key role in homeostasis of this ion. ZIP11 resides predominately in the nucleus and Golgi apparatus. Our laboratory reported a function of ZIP11 in maintaining nuclear Zn levels in HeLa cervical cancer cells. Analyses of cervical and ovarian cancer patients' datasets identified four coding, single nucleotide polymorphisms (SNPs) in SLC39A11, the gene that encodes ZIP11, correlating with disease severity. We hypothesized that these SNPs might translate to functional changes in the ZIP11 protein by modifying access to substrate availability. We also proposed that a metal-binding site (MBS) in ZIP11 is crucial for transmembrane Zn2+ transport and required for maintenance of various pathogenic phenotypes observed in HeLa cells. Here, we investigated these claims by re-introducing single the SLC39A11 gene encoding for mutant residues associated with the SNPs, as well as MBS mutations into HeLa cells knocked down for the transporter. Some SNPs-encoding ZIP11 variants rescued Zn levels, proliferation, migration, and invasiveness of knockdown (KD) cells. Conversely, single MBS mutations mimicked the traits of KD cells, confirming the transporter's role in establishing and maintaining proliferative, migratory, and invasive traits. Overall, the intricate role of Zn in cellular dynamics and cancer progression underscores the significance of Zn transporters like ZIP11 in potential therapeutic interventions.
Collapse
Affiliation(s)
- Elizabeth Y Kim
- Department of Molecular Biology & Biochemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, USA
| | - Odette Verdejo-Torres
- Department of Molecular Biology & Biochemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, USA
| | - Karla Diaz-Rodriguez
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St., Worcester, MA 01605, USA
| | - Farah Hasanain
- Department of Molecular Biology & Biochemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, USA
| | - Leslie Caromile
- Departmentof Cell Biology, Center for Vascular Biology, UCONN Health-Center, Farmington, CT 06030, USA
| | - Teresita Padilla-Benavides
- Department of Molecular Biology & Biochemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, USA
| |
Collapse
|
7
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Pandey P, Khan F, Singh M, Verma A, Kumar H, Mazumder A, Rakhra G. Study Deciphering the Crucial Involvement of Notch Signaling Pathway in Human Cancers. Endocr Metab Immune Disord Drug Targets 2024; 24:1241-1253. [PMID: 37997805 DOI: 10.2174/0118715303261691231107113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
In recent years, dysregulation of the notch pathway has been associated with the development and progression of various cancers. Notch signaling is involved in several cellular processes, such as proliferation, differentiation, apoptosis, and angiogenesis, and its abnormal activation can lead to uncontrolled cell growth and tumorigenesis. In various human cancers, the Notch pathway has been shown to have both tumor-promoting and tumor-suppressive effects, depending on the context and stage of cancer development. Notch signaling has been implicated in tumor initiation, cancer cell proliferation, cell migration and maintenance of cancer stem cells in several human cancers, including leukemia, breast, pancreatic and lung cancer. Understanding the role of the Notch pathway in cancer development and progression may provide new opportunities for the development of potent targeted therapies for cancer treatment. Several drugs targeting the Notch pathway are currently in preclinical or clinical development and may hold promise for anticancer therapy in the future.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Megha Singh
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Aditi Verma
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Hariom Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, 201306, India
| | - Gurmeen Rakhra
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
9
|
Jiang L, Xie T, Xia Y, Li F, Zhong T, Lai M. ZIP14 Affects the Proliferation, Apoptosis, and Migration of Cervical Cancer Cells by Regulating the P38 MAPK Pathway. Curr Cancer Drug Targets 2024; 24:779-790. [PMID: 37990424 DOI: 10.2174/0115680096250711231024063841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Cervical cancer (CC) remains a major public health concern and is a leading cause of female mortality worldwide. Understanding the molecular basis of its pathogenesis is essential for the development of novel therapeutic strategies. In this study, we aimed to dissect the role of a specific molecule, ZIP14, in the initiation and progression of CC. METHODS We used Gene Expression Omnibus for target gene identification, while KEGG was used to delineate CC-related pathways. Proliferation, migration, and apoptosis levels in CC cells were assessed using CCK8, Transwell, and flow cytometry, respectively. The effect of the target genes on the in vivo tumorigenesis of CC cells was evaluated using the subcutaneous tumorigenesis assay. RESULTS ZIP14 (SLC39A14) was found to be underexpressed in CC samples. Our KEGG pathway analysis revealed the potential involvement of the P38 mitogen-activated protein kinase (MAPK) pathway in CC pathogenesis. Overexpression of ZIP14 in HeLa and Caski cells increased p38 phosphorylation, inhibited cell growth and migration, and enhanced apoptosis. Conversely, ZIP14 knockdown produced the opposite effects. Importantly, the bioeffects induced by ZIP14 overexpression could be counteracted by the p38 MAPK pathway inhibitor SB203580. In vivo experiments further confirmed the influence of ZIP14 on CC cell migration. CONCLUSION Our study is the first to elucidate the pivotal role of ZIP14 in the pathogenesis of CC, revealing its inhibitory effects through the activation of the p38 MAPK signaling pathway. The discovery not only provides a deeper understanding of CC's molecular underpinnings, but also highlights ZIP14 as a promising therapeutic target. As ZIP14 holds significant potential for therapeutic interventions, our findings lay a robust foundation for further studies and pave the way for the exploration of novel treatment modalities for cervical cancer.
Collapse
Affiliation(s)
- Lixia Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Ting Xie
- Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yu Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Feng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Mi Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
10
|
Bravo V, Serrano M, Duque A, Ferragud J, Coronado PJ. Glycyrrhizinic Acid as an Antiviral and Anticancer Agent in the Treatment of Human Papillomavirus. J Pers Med 2023; 13:1639. [PMID: 38138866 PMCID: PMC10744776 DOI: 10.3390/jpm13121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Human papillomavirus (HPV), like any other virus, needs to penetrate the host cell and make use of its machinery to replicate. From there, HPV infection can be asymptomatic or lead to benign and premalignant lesions or even different types of cancer. HPV oncogenesis is due to the ability of the viral oncoproteins E6 and E7 to alter the control mechanisms for the growth and proliferation of host cell. Therefore, the use of agents with the ability to control these processes is essential in the search for effective treatments against HPV infections. Glycyrrhizinic acid (Gly), the active ingredient in liquorice, has been shown in numerous preclinical studies to have an antiviral and anticancer activity, reducing the expression of E6 and E7 and inducing apoptosis in cervical cancer cells. In addition, it also has antioxidant, anti-inflammatory, immunomodulatory or re-epithelializing properties that can be useful in HPV infections. This review includes the different antiviral and anticancer mechanisms described for Gly, as well as the clinical studies carried out that position it as a potential therapeutic strategy against HPV both through its topical application and by oral administration.
Collapse
Affiliation(s)
- Victoria Bravo
- Gynecology and Obstetrics Service, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - María Serrano
- Gynecology and Obstetrics Service, Hospital la Paz, 28046 Madrid, Spain
| | - Alfonso Duque
- Gynecology and Obstetrics Service, Hospital Ruber Internacional, 28034 Madrid, Spain
| | - Juan Ferragud
- Medical Department, Atika Pharma, 35002 Las Palmas de Gran Canaria, Spain
| | - Pluvio J. Coronado
- Women’s Health Institute, San Carlos Clinical Hospital, dISSC, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
11
|
Liu X, Zhang W, Wan J, Xiao D, Wei M. Landscape and Construction of a Novel N6-methyladenosine-related LncRNAs in Cervical Cancer. Reprod Sci 2023; 30:903-913. [PMID: 36074248 DOI: 10.1007/s43032-022-01074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Cervical cancer is a crucial clinical problem with high mortality. Despite much research in therapy, the prognosis of patients with cervical cancer is still not ideal. The data on cervical cancer were downloaded from The Cancer Genome Atlas (TCGA) portal. R language was used to screen out the N6-methyladenosine (m6A)-related lncRNAs (long non-coding RNA). A consensus clustering algorithm was performed to identify m6A-related lncRNAs in cervical cancer; 10 m6A-related lncRNAs showing a significant association with survival were filtrated through a gradually univariate Cox regression model, least absolute shrinkage and selection operator (LASSO) algorithm, and multivariate Cox regression preliminarily. Furthermore, we conducted Kaplan-Meier curves, receiver operating curve (ROC) analyses, and proportional hazards model to quantify the underlying character of the m6A-related model in the prevision of cervical cancer patients. Gene set enrichment analysis (GSEA) was used to explore several pathways significantly. Finally, cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was applied to estimate the immune cell infiltration in the profiling. In the present study, 10 m6A-related lncRNAs make up our prediction model. This prediction model can do duty for an independent predictive biomolecular element. Subsequently, we then found that the model was still valid in further validation of the training group and the test group. Our signature was correlated with immune cell infiltration and partial signaling pathway. These lncRNAs played a no negligible biomolecular role in contributing to the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Xin Liu
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Weijie Zhang
- Department of Pharmacy Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jun Wan
- Department of General Practice Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Diming Xiao
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Ming Wei
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
12
|
Poniewierza P, Panek G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare (Basel) 2022; 10:healthcare10071325. [PMID: 35885852 PMCID: PMC9319342 DOI: 10.3390/healthcare10071325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Each year 604,127 new cases of cervical cancer (CC) are diagnosed, and 341,831 individuals die from the disease. It is the fourth most common cancer among women and the fourth most common cause of death from female cancers worldwide. The pathogenesis of CC is associated with human papillomavirus (HPV) infections and consists of several steps involving cell proliferation outside the human body’s control mechanisms. Strategies to prevent CC are based on screening and vaccination. Scope of the Review: The aim of this paper was to collect and analyze the available literature on the issue of CC prevention and the impact of the COVID-19 pandemic on its implementation. For this purpose, PubMed and Google Scholar databases were searched using keywords, such as “cervical cancer”; “HPV”; “prevention”; “prophylaxis”; “vaccination”; “screening” and “COVID-19” in different variations. Only articles published since 2018 were included in the study. Conclusions: Selected European countries have different CC prevention programs funded by national budgets. This translates into observed differences in the risk of death from CC (age-standardized rate Malta = 1.1, Poland = 5.9). COVID-19 pandemic due to disruption of CC screening may exacerbate these differences in the future. To improve the situation, new screening methods, such as p16/Ki67, HPV self-testing, and the use of artificial intelligence in colposcopic assessment, should be disseminated, as well as free HPV vaccination programs implemented in all countries. The search for new solutions is not without significance and entails ultra-sensitive screening tests for risk groups (mRNA E6/E7, SOX1/SOX14), HPV vaccines with shorter dosing schedules, and new therapeutic pathways using nanotheranostics.
Collapse
Affiliation(s)
- Patryk Poniewierza
- Medicover SP ZOO Company, Aleje Jerozolimskie 96, 00-807 Warsaw, Poland
- Correspondence:
| | - Grzegorz Panek
- Department of Oncologic Gynecology and Obstetrics, The Center of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| |
Collapse
|
13
|
Wei W, Xie LZ, Xia Q, Fu Y, Liu FY, Ding DN, Han FJ. The role of vaginal microecology in the cervical cancer. J Obstet Gynaecol Res 2022; 48:2237-2254. [PMID: 35815344 DOI: 10.1111/jog.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
AIM To explore the role of vaginal microecology in cervical cancer, so as to increase the understanding of cervical cancer and lay a foundation for future large-sample clinical trials. METHODS We reviewed and summarized the literature comprehensively, and discussed the relationship between vaginal microecology and HPV infection, CIN progression and cervical cancer, as well as the potential molecular mechanism and the prospects of probiotics and prebiotics in future cancer treatments. RESULTS With the popularization of high-throughput sequencing technology and the development of bioinformatics analysis technology, many evidences show that the increase in the diversity of the bacterial community in the vaginal microecological environment and the decrease in the number of Lactobacilli are associated with the continuous infection of HPV and the further development of CIN, cervical cancer-related. CONCLUSIONS Vaginal microecological imbalance has an important impact on the occurrence and development of cervical cancer. However, the pathogenesis is not completely clear, and more high-level basic research and longitudinal clinical studies are needed to verify.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liang-Zhen Xie
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Xia
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang-Yuan Liu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan-Ni Ding
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
15
|
Buddham R, Chauhan S, Narad P, Mathur P. Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach. J Microbiol Biotechnol 2022; 32:365-377. [PMID: 35001007 PMCID: PMC9628786 DOI: 10.4014/jmb.2108.08007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.
Collapse
Affiliation(s)
- Richa Buddham
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Sweety Chauhan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Priyanka Narad
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India
| | - Puniti Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida-201313, India,Corresponding author Phone: +91-120-4392204 E-mail:
| |
Collapse
|
16
|
Hou J, Ye X, Feng W, Zhang Q, Han Y, Liu Y, Li Y, Wei Y. Distance correlation application to gene co-expression network analysis. BMC Bioinformatics 2022; 23:81. [PMID: 35193539 PMCID: PMC8862277 DOI: 10.1186/s12859-022-04609-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To construct gene co-expression networks, it is necessary to evaluate the correlation between different gene expression profiles. However, commonly used correlation metrics, including both linear (such as Pearson's correlation) and monotonic (such as Spearman's correlation) dependence metrics, are not enough to observe the nature of real biological systems. Hence, introducing a more informative correlation metric when constructing gene co-expression networks is still an interesting topic. RESULTS In this paper, we test distance correlation, a correlation metric integrating both linear and non-linear dependence, with other three typical metrics (Pearson's correlation, Spearman's correlation, and maximal information coefficient) on four different arrays (macrophage and liver) and RNA-seq (cervical cancer and pancreatic cancer) datasets. Among all the metrics, distance correlation is distribution free and can provide better performance on complex relationships and anti-outlier. Furthermore, distance correlation is applied to Weighted Gene Co-expression Network Analysis (WGCNA) for constructing a gene co-expression network analysis method which we named Distance Correlation-based Weighted Gene Co-expression Network Analysis (DC-WGCNA). Compared with traditional WGCNA, DC-WGCNA can enhance the result of enrichment analysis and improve the module stability. CONCLUSIONS Distance correlation is better at revealing complex biological relationships between gene profiles compared with other correlation metrics, which contribute to more meaningful modules when analyzing gene co-expression networks. However, due to the high time complexity of distance correlation, the implementation requires more computer memory.
Collapse
Affiliation(s)
- Jie Hou
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin, China.,College of Science, Heilongjiang Bayi Agricultural University, Xinfeng Road, Daqing, China
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin, China.
| | - Weixing Feng
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin, China
| | - Qiaosheng Zhang
- School of Computer Engineering, Jiangsu Ocean University, Cangwu Road, Lianyungang, China
| | - Yatong Han
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin, China
| | - Yusong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Nantong Street, Harbin, China
| | - Yu Li
- College of Science, Northeast Forestry University, Hexing Road, Harbin, China
| | - Yufen Wei
- College of Science, Heilongjiang Bayi Agricultural University, Xinfeng Road, Daqing, China
| |
Collapse
|
17
|
Chintala S, Quist KM, Gonzalez-DeWhitt PA, Katzenellenbogen RA. High expression of NFX1-123 in HPV positive head and neck squamous cell carcinomas. Head Neck 2022; 44:177-188. [PMID: 34693597 PMCID: PMC8688290 DOI: 10.1002/hed.26906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR HPV) cause nearly all cervical cancers and, in the United States, the majority of head and neck cancers (HNSCCs). NFX1-123 is overexpressed in cervical cancers, and NFX1-123 partners with the HR HPV type 16 E6 oncoprotein to affect multiple growth, differentiation, and immune response genes. However, neither the expression of NFX1-123 nor the levels of these genes have been investigated in HPV positive (HPV+) or negative (HPV-) HNSCCs. METHODS The Cancer Genome Atlas Splicing Variants Database and HNSCC cell lines were used to quantify expression of NFX1-123 and cellular genes increased in cervical cancers. RESULTS NFX1-123 was increased in HPV+ HNSCCs compared to HPV- HNSCCs. LCE1B, KRT16, SPRR2G, and FBN2 were highly expressed in HNSCCs compared to normal tissues. Notch1 and CCNB1IP1 had greater expression in HPV+ HNSCCs compared to HPV- HNSCCs. CONCLUSION NFX1-123 and a subset of its known targets were increased in HPV+ HNSCCs.
Collapse
Affiliation(s)
| | | | | | - Rachel A. Katzenellenbogen
- Correspondence: Rachel A. Katzenellenbogen, Indiana University School of Medicine, Herman B. Wells Center for Pediatric Research, 1044 W. Walnut Street, R4 366, Indianapolis, IN 46202, 317-278-0107,
| |
Collapse
|
18
|
Wu J, Zhang Q, Li G. Identification of cancer-related module in protein-protein interaction network based on gene prioritization. J Bioinform Comput Biol 2021; 20:2150031. [PMID: 34860145 DOI: 10.1142/s0219720021500311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the rapid development of deep sequencing technologies, a large amount of high-throughput data has been available for studying the carcinogenic mechanism at the molecular level. It has been widely accepted that the development and progression of cancer are regulated by modules/pathways rather than individual genes. The investigation of identifying cancer-related active modules has received an extensive attention. In this paper, we put forward an identification method ModFinder by integrating both biological networks and gene expression profiles. More concretely, a gene scoring function is devised by using the regression model with [Formula: see text]-step random walk kernel, and the genes are ranked according to both of their active scores and degrees in the PPI network. Then a greedy algorithm NSEA is introduced to find an active module with high score and strong connectivity. Experiments were performed on both simulated data and real biological one, i.e. breast cancer and cervical cancer. Compared with the previous methods SigMod, LEAN and RegMod, ModFinder shows competitive performance. It can successfully identify a well-connected module that contains a large proportion of cancer-related genes, including some well-known oncogenes or tumor suppressors enriched in cancer-related pathways.
Collapse
Affiliation(s)
- Jingli Wu
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, P. R. China.,Yimeng Executive Leadership Academy, Linyi 276000, P. R. China
| | - Qi Zhang
- College of Computer Science and Information Engineering, Guangxi Normal University, Guilin 541004, P. R. China
| | - Gaoshi Li
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
19
|
Ayton SG, Pavlicova M, Robles-Espinoza CD, Tamez Peña JG, Treviño V. Multiomics subtyping for clinically prognostic cancer subtypes and personalized therapy: A systematic review and meta-analysis. Genet Med 2021; 24:15-25. [PMID: 34906494 DOI: 10.1016/j.gim.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/20/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Multiomics cancer subtyping is becoming increasingly popular for directing state-of-the-art therapeutics. However, these methods have never been systematically assessed for their ability to capture cancer prognosis for identified subtypes, which is essential to effectively treat patients. METHODS We systematically searched PubMed, The Cancer Genome Atlas, and Pan-Cancer Atlas for multiomics cancer subtyping studies from 2010 through 2019. Studies comprising at least 50 patients and examining survival were included. Pooled Cox and logistic mixed-effects models were used to compare the ability of multiomics subtyping methods to identify clinically prognostic subtypes, and a structural equation model was used to examine causal paths underlying subtyping method and mortality. RESULTS A total of 31 studies comprising 10,848 unique patients across 32 cancers were analyzed. Latent-variable subtyping was significantly associated with overall survival (adjusted hazard ratio, 2.81; 95% CI, 1.16-6.83; P = .023) and vital status (1 year adjusted odds ratio, 4.71; 95% CI, 1.34-16.49; P = .015; 5 year adjusted odds ratio, 7.69; 95% CI, 1.83-32.29; P = .005); latent-variable-identified subtypes had greater associations with mortality across models (adjusted hazard ratio, 1.19; 95% CI, 1.01-1.42; P = .050). Our structural equation model confirmed the path from subtyping method through multiomics subtype (βˆ = 0.66; P = .048) on survival (βˆ = 0.37; P = .008). CONCLUSION Multiomics methods have different abilities to define clinically prognostic cancer subtypes, which should be considered before administration of personalized therapy; preliminary evidence suggests that latent-variable methods better identify clinically prognostic biomarkers and subtypes.
Collapse
Affiliation(s)
- Sarah G Ayton
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - José G Tamez Peña
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Víctor Treviño
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico.
| |
Collapse
|
20
|
D S P, Chaturvedi PK, Shimokawa T, Kim KH, Park WY. Silencing of Fused Toes Homolog (FTS) Increases Radiosensitivity to Carbon-Ion Through Downregulation of Notch Signaling in Cervical Cancer Cells. Front Oncol 2021; 11:730607. [PMID: 34765546 PMCID: PMC8576531 DOI: 10.3389/fonc.2021.730607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of Carbon ion radiation (C-ion) alone or in combination with fused toes homolog (FTS) silencing on Notch signaling were investigated in uterine cervical cancer cell lines (ME180 and CaSki). In both cell lines, upon irradiation with C-ion, the expression of Notch signaling molecules (Notch1, 2, 3 and cleaved Notch1), γ-secretase complex molecules and FTS was upregulated dose-dependently (1, 2 and 4 Gy) except Notch1 in ME180 cells where the change in expression was not significant. However, overexpression of these molecules was attenuated upon silencing of FTS. The spheroid formation, expression of stem cell markers (OCT4A, Sox2 and Nanog) and clonogenic cell survival were reduced by the combination as compared to FTS silencing or C-ion irradiation alone. Additionally, immunoprecipitation and immunofluorescence assay revealed interaction and co-localization of FTS with Notch signaling molecules. In conclusion, FTS silencing enhances the radio-sensitivity of the cervical cancer cells to C-ion by downregulating Notch signaling molecules and decreasing the survival of cancer stem cells.
Collapse
Affiliation(s)
- Prabakaran D S
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Pankaj Kumar Chaturvedi
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Takashi Shimokawa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, Chiba, Japan
| | - Ki-Hwan Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, South Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
21
|
Rutin Mediated Apoptotic Cell Death in Caski Cervical Cancer Cells via Notch- 1 and Hes- 1 Downregulation. Life (Basel) 2021; 11:life11080761. [PMID: 34440505 PMCID: PMC8400226 DOI: 10.3390/life11080761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Natural dietary molecules such as flavonoids have been recognized for their immense potential in cancer therapeutics with several health benefits. Hes-1 and Notch-1 overexpression has been associated with the progression of cervical cancer. However, the apoptosis-inducing potential of one such potent flavanol against these two key components of the Notch signaling pathway in cervical cancer has not been elucidated to date. Therefore, in this study, we performed several in vitro assays to gain detailed insight about the apoptotic inducing effect of rutin as well as its modulatory effect on Notch-1 and Hes-1 in cervical cancer cells. The results indicated that rutin led to a dose-dependent antiproliferative effects on Caski cervical cancer cells. DAPI and Mitotracker red staining revealed that rutin induced significant apoptotic effects via caspase-3/9 activation, ROS generation, and alteration in Bax/Bcl2 mRNA expression. Cell cycle analysis resulted in the arrest of cell cycle progression in G0/G1 that was associated with a reduced expression of CDK4 and Cyclin D1. The gene expression analysis further revealed that rutin treatment decreases Notch-1 and Hes-1 mRNA expression. Altogether, these results showed that rutin showed potent anticancer effects in human cervical cancer Caski cells by triggering apoptosis, G0/G1 phase arrest, and downregulating the level of Notch-1 and Hes-1 of the Notch signaling pathway.
Collapse
|
22
|
Adeel MM, Jiang H, Arega Y, Cao K, Lin D, Cao C, Cao G, Wu P, Li G. Structural Variations of the 3D Genome Architecture in Cervical Cancer Development. Front Cell Dev Biol 2021; 9:706375. [PMID: 34368157 PMCID: PMC8344058 DOI: 10.3389/fcell.2021.706375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Muhammad Muzammal Adeel
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hao Jiang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yibeltal Arega
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Kai Cao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Li L, Gao H, Wang D, Jiang H, Wang H, Yu J, Jiang X, Huang C. Metabolism-Relevant Molecular Classification Identifies Tumor Immune Microenvironment Characterization and Immunotherapeutic Effect in Cervical Cancer. Front Mol Biosci 2021; 8:624951. [PMID: 34277697 PMCID: PMC8280349 DOI: 10.3389/fmolb.2021.624951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer (CESC) is a gynecologic malignant tumor associated with high incidence and mortality rates because of its distinctive management complexity. Herein, we characterized the molecular features of CESC based on the metabolic gene expression profile by establishing a novel classification system and a scoring system termed as METAscore. Integrative analysis was performed on human CESC samples from TCGA dataset. Unsupervised clustering of RNA sequencing data on 2,752 formerly described metabolic genes identified three METAclusters. These METAclusters for overall survival time, immune characteristics, metabolic features, transcriptome features, and immunotherapeutic effectiveness existed distinct differences. Then we analyzed 207 DEGs among the three METAclusters and as well identified three geneclusters. Correspondingly, these three geneclusters also differently expressed among the aforementioned features, supporting the reliability of the metabolism-relevant molecular classification. Finally METAscore was constructed which emerged as an independent prognostic biomarker, related to CESC transcriptome features, metabolic features, immune characteristics, and linked to the sensitivity of immunotherapy for individual patient. These findings depicted a new classification and a scoring system in CESC based on the metabolic pattern, thereby furthering the understanding of CESC genetic signatures and aiding in the prediction of the effectiveness to anticancer immunotherapies.
Collapse
Affiliation(s)
- Luyi Li
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China.,The 2 Afflicated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Gao
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Danhan Wang
- The 2 Afflicated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Jiang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Hongzhu Wang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Jiajian Yu
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| | - Xin Jiang
- Prenatal Diagnosis Center of NanFang Hospital, The Southern Medical University, Guangzhou, China
| | - Changjiang Huang
- Institude of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Yang X, Cao JL, Yang FN, Li XF, Tao LM, Wang F. Decreased expression of CLCA2 and the correlating with immune infiltrates in patients with cervical squamous cell carcinoma: A bioinformatics analysis. Taiwan J Obstet Gynecol 2021; 60:480-486. [PMID: 33966732 DOI: 10.1016/j.tjog.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE Calcium-activated chloride channel 2 (CLCA2) is closely related to the invasion, metastasis, and prognosis of some common malignant tumors. The present study aimed to evaluate the role of CLCA2 in cervical squamous cell carcinoma (CESC) using bioinformatics analysis. MATERIALS AND METHODS The mRNA sequencing data and the corresponding clinical data were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database respectively. Then univariate analysis of variance was used to analyze the differential mRNA expression of CLCA2 between normal, cervical Intraepithelial neoplasia (CIN), and CESC tissues and clinicopathological characteristics. The Gene Expression Profiling Interactive Analysis (GEPIA) was used to assess the association between CLCA2 and Disease-Free Survival (DFS), overall survival (OS). The Gene Set Enrichment Analysis (GSEA) was used to explore the associated signaling pathways. The Tumor Immune Estimation Resource (TIMER) was used to predict the potential biological roles of CLCA2 in tumor-immune of CESC. RESULTS CLCA2 expression was significantly decreased in CESC tissues compared with normal and CIN tissues (P < 0.05). Meanwhile, obese patients had lower levels of CLCA2 expression than normal-weight CESC patients (P < 0.05). However, there was no significant difference in the expression level of CLCA2 in patients with different T stage, lymph node status, metastasis, and FIGO stage in CC(P > 0.05). The survival analysis indicated that for DFS, CESC with high CLCA2 expression was associated with better prognoses compared with those with low expression levels (P < 0.05). But for the OS, there was no difference. GSEA revealed that 4 pathways exhibited significant differential enrichment in the CLCA2 high-expression phenotype, including the P53 signaling pathway, the ERBB signaling pathway, the NOTCH signaling pathway, and the ubiquitin-mediated proteolysis. The TIMER reveals the expression of CLCA2 showed a significant inverse association with the number of B cells, Macrophage cells, and Dendritic Cell infiltration. CONCLUSION The present study indicates that CLCA2 expression may be a potential prognostic marker for patients with CESC.
Collapse
Affiliation(s)
- Xin Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jin-Long Cao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Feng-Na Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Feng Li
- Lanzhou University Second Hospital, Lanzhou, China
| | - Li-Mei Tao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Wang
- Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
25
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
26
|
LncRNA DLEU2 promotes cervical cancer cell proliferation by regulating cell cycle and NOTCH pathway. Exp Cell Res 2021; 402:112551. [PMID: 33675808 DOI: 10.1016/j.yexcr.2021.112551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 12/28/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to play a crucial role in the onset and progression of cervical cancer (CC). Here, the results of RNA microarray and RNA-sequencing dataset analysis showed that lncRNA DLEU2 was significantly upregulated in CC tissues. Clinicopathologic analysis indicated that lncRNA DLEU2 was closely related to tumor topography. Functional experiments and bioinformatics analysis revealed that lncRNA DLEU2 promoted CC cell proliferation and accelerated the cell cycle. Mechanistically, lncRNA DLEU2 promoted the progression of the cell cycle and inhibited the activity of the Notch signaling pathway by inhibiting p53 expression. Additionally, lncRNA DLEU2 probably interacted with ZFP36 Ring Finger Protein (ZFP36) to inhibit the expression of p53. In conclusion, this study revealed the function of lncRNA DLEU2 in CC tumorigenesis, suggesting new therapeutic targets in CC.
Collapse
|
27
|
Bagheri-Mohammadi S. Adult neurogenesis and the molecular signalling pathways in brain: the role of stem cells in adult hippocampal neurogenesis. Int J Neurosci 2021; 132:1165-1177. [PMID: 33350876 DOI: 10.1080/00207454.2020.1865953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular signalling pathways are an evolutionarily conserved multifaceted pathway that can control diverse cellular processes. The role of signalling pathways in regulating development and tissue homeostasis as well as hippocampal neurogenesis is needed to study in detail. In the adult brain, the Notch signalling pathway, in collaboration with the Wnt/β-catenin, bone morphogenetic proteins (BMPs), and sonic hedgehog (Shh) molecular signalling pathways, are involved in stem cell regulation in the hippocampal formation, and they also control the plasticity of the neural stem cells (NSCs) or neural progenitor cells (NPCs) which involved in neurogenesis processes. Here we discuss the distinctive roles of molecular signalling pathways involved in the generation of new neurons from a pool of NSCs in the adult brain. Our approach will facilitate the understanding of the molecular signalling mechanism of hippocampal neurogenesis during NSCs development in the adult brain using molecular aspects coupled with cell biological and physiological analysis.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
28
|
Orzechowska M, Anusewicz D, Bednarek AK. Functional Gene Expression Differentiation of the Notch Signaling Pathway in Female Reproductive Tract Tissues-A Comprehensive Review With Analysis. Front Cell Dev Biol 2021; 8:592616. [PMID: 33384996 PMCID: PMC7770115 DOI: 10.3389/fcell.2020.592616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
The Notch pathway involves evolutionarily conserved signaling regulating the development of the female tract organs such as breast, ovary, cervix, and uterine endometrium. A great number of studies revealed Notch aberrancies in association with their carcinogenesis and disease progression, the management of which is still challenging. The present study is a comprehensive review of the available literature on Notch signaling during the normal development and carcinogenesis of the female tract organs. The review has been enriched with our analyses of the TCGA data including breast, cervical, ovarian, and endometrial carcinomas concerning the effects of Notch signaling at two levels: the core components and downstream effectors, hence filling the lack of global overview of Notch-driven carcinogenesis and disease progression. Phenotype heterogeneity regarding Notch signaling was projected in two uniform manifold approximation and projection algorithm dimensions, preceded by the principal component analysis step reducing the data burden. Additionally, overall and disease-free survival analyses were performed with the optimal cutpoint determination by Evaluate Cutpoints software to establish the character of particular Notch components in tumorigenesis. In addition to the review, we demonstrated separate models of the examined cancers of the Notch pathway and its targets, although expression profiles of all normal tissues were much more similar to each other than to its cancerous compartments. Such Notch-driven cancerous differentiation resulted in a case of opposite association with DFS and OS. As a consequence, target genes also show very distinct profiles including genes associated with cell proliferation and differentiation, energy metabolism, or the EMT. In conclusion, the observed Notch associations with the female tract malignancies resulted from differential expression of target genes. This may influence a future analysis to search for new therapeutic targets based on specific Notch pathway profiles.
Collapse
Affiliation(s)
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
29
|
Zhai Y, Wu W, Xi X, Yu R. Adipose-Derived Stem Cells Promote Proliferation and Invasion in Cervical Cancer by Targeting the HGF/c-MET Pathway. Cancer Manag Res 2020; 12:11823-11832. [PMID: 33244265 PMCID: PMC7685249 DOI: 10.2147/cmar.s277130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cervical cancer is a serious female malignancy affecting women's health worldwide. The HGF/c-MET signaling pathway is activated in cervical cancer. Adipose-derived stem cells (ADSCs) with multipotential differentiation can carry out paracrine secretion of hepatocyte growth factor (HGF). Here, we investigated the effect and underlying mechanism of ADSCs on the promotion and invasion of cervical cancer in vitro and in vivo. Materials and Methods ADSCs were isolated, identified, and co-cultured with cervical cancer cells. HGF was detected using ELISA, and the HGF and c-MET signaling pathway was assessed with Western blot. The proliferation and invasion of human cervical cancer cell lines (HeLa and CaSki cells) were measured using CCK-8 and transwell assays. A HeLa xenograft mouse model was established to determine the effect of ADSCs on tumor growth in vivo. Results ADSCs secreted a high level of HGF into the supernatant, while co-culture of ADSCs and cervical cancer cells increased the supernatant level of HGF. The HGF/c-MET pathway was activated in HeLa and CaSki cells co-cultured with ADSCs. Both co-culture with ADSCs and use of ADSC-derived conditioned medium (ADSCs-CM) significantly promoted the proliferation and invasion of cervical cancer cells in vitro, an effect that was reduced by inhibiting tumor cell c-MET expression. Furthermore, ADSCs-CM promoted HeLa cervical tumor growth in vivo, which could be suppressed by intratumoral c-MET siRNA injection. Conclusion ADSCs promote cervical cancer growth and invasion through paracrine secretion of HGF and involvement of the HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
- Yongning Zhai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China.,Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Wangfei Wu
- Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, People's Republic of China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, People's Republic of China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
30
|
Adiga D, Eswaran S, Pandey D, Sharan K, Kabekkodu SP. Molecular landscape of recurrent cervical cancer. Crit Rev Oncol Hematol 2020; 157:103178. [PMID: 33279812 DOI: 10.1016/j.critrevonc.2020.103178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) is a major gynecological problem in developing and underdeveloped countries. Despite the significant advancement in early detection and treatment modalities, several patients recur. Moreover, the molecular mechanisms responsible for CC recurrence remains obscure. The patients with CC recurrence often show poor prognosis and significantly high mortality rates. The clinical management of recurrent CC depends on treatment history, site, and extent of the recurrence. Owing to poor prognosis and limited treatment options, recurrent CC often presents a challenge to the clinicians. Several in vitro, in vivo, and patient studies have led to the identification of the critical molecular changes responsible for CC recurrence. Both aberrant genetic and epigenetic modifications leading to altered cell signaling pathways have been reported to impact CC recurrence. Researchers are currently trying to dissect the molecular pathways in CC and translate these findings for better management of disease. This article attempts to review the existing knowledge of disease relapse, accompanying challenges, and associated molecular players in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of OBGYN, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
31
|
Ou R, Lv M, Liu X, Lv J, Zhao J, Zhao Y, Li X, Li W, Zhao L, Li J, Ren Y, Xu Y. HPV16 E6 oncoprotein-induced upregulation of lncRNA GABPB1-AS1 facilitates cervical cancer progression by regulating miR-519e-5p/Notch2 axis. FASEB J 2020; 34:13211-13223. [PMID: 32844486 DOI: 10.1096/fj.202000762r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses 16 (HPV16) is the primary causative agent of cervical cancer (CC). E6 oncoprotein plays a crucial role in cervical carcinogenesis and commonly cause the dysregulation of the long noncoding RNAs (lncRNAs) expression. However, the biological function of lncRNAs in HPV16-related CC remains largely unexplored. In the present study HPV16 E6-induced differential expression of lncRNAs, miRNA, and mRNA were identified using microarray-based analysis and verified in tumor r cell lines and tumor tissues, and the function of lncRNA in CC was investigated in vitro and in vivo. We found that an lncRNA, named GABPB1-AS1, was significantly upregulated in HPV16-positive CC tissues and cell lines. GABPB1-AS1 expression in HPV16-positive CC tissues was positively associated with tumor size, lymph node metastasis, and FIGO stage. High expression of GABPB1-AS1 was correlated with a poor prognosis for HPV16-positive CC patients. Functionally, E6-induced GABPB1-AS1 overexpression facilitated CC cells proliferation and invasion in vitro and in vivo. Mechanistically, GABPB1-AS1 acted as a competing endogenous RNA (ceRNA) by sponging miR-519e-5p, resulting in the de-repression of its target gene Notch2 which is well known as an oncogene. Therefore, GABPB1-AS1 functioned as a tumor activator in CC pathogenesis by binding to miR-519e-5p and destroying its tumor suppressive function. Collectively, current results demonstrate that GABPB1-AS1 is associated with CC progression, and may be a promising biomarker or target for the clinical management of CC.
Collapse
Affiliation(s)
- Rongying Ou
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingfen Lv
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuan Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangmin Lv
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinduo Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyun Li
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|