1
|
Anastasio C, Donisi I, Colloca A, D’Onofrio N, Balestrieri ML. MiR-148a-3p/SIRT7 Axis Relieves Inflammatory-Induced Endothelial Dysfunction. Int J Mol Sci 2024; 25:5087. [PMID: 38791128 PMCID: PMC11121049 DOI: 10.3390/ijms25105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3' untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.
Collapse
Affiliation(s)
| | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (C.A.); (I.D.); (A.C.); (M.L.B.)
| | | |
Collapse
|
2
|
Liu Y, Chen F, Zeng Z, Lei C, Chen D, Zhang X. Neopterin in patients with COPD, asthma, and ACO: association with endothelial and lung functions. Respir Res 2024; 25:171. [PMID: 38637774 PMCID: PMC11027266 DOI: 10.1186/s12931-024-02784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Endothelial dysfunction has been widely recognized in chronic airway diseases, including chronic obstructive pulmonary disease (COPD) and asthma; however, it remains unclear in asthma-COPD overlap (ACO). Neopterin (NP), a metabolite of guanosine triphosphate, is a novel biomarker for identifying the increased risk of adverse cardiovascular events. This study aims to investigate the association of NP with endothelial dysfunction and impaired lung function in COPD, asthma, and ACO patients. METHODS A total of 77 subjects were prospectively recruited. All the participants underwent lung function test, endothelial function evaluation, including pulse wave velocity (PWV) and flow-mediated dilation (FMD), and blood sample detection. Moreover, the effect of NP on endothelial cells (ECs) in anoxic environments was assessed in vitro. RESULTS Endothelial function was significantly decreased in the COPD and ACO patients compared with that in the healthy controls (P < 0.05). Forced expiratory volume in 1 s (FEV1) was negatively correlated with PWV and positively correlated with FMD (P < 0.05). NP was significantly increased in patients with chronic respiratory diseases compared with that in the control group, with COPD being the highest, followed by asthma, and ACO as the last (P < 0.05). The plasma level of NP exhibited negative correlations with FEV1 and positive correlations with PWV (P < 0.05). In vitro, a high level of NP increased the reactive oxygen species (ROS) and decreased the mitochondrial membrane potential (ΔΨm) of ECs dose-dependently in a hypoxic environment (P < 0.05). CONCLUSION NP was related to disease severity of chronic airway diseases and involved in the pathogenesis of endothelial dysfunction. A high NP level may contribute to endothelial dysfunction by increasing the oxidative stress of ECs dose-dependently in a hypoxic environment. Our findings may provide a novel evaluation and therapeutic target for endothelial dysfunction related to chronic airway diseases.
Collapse
Affiliation(s)
- Yangli Liu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Province Guangdong, Guangzhou, 510080, PR China
| | - Fengjia Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Province Guangdong, Guangzhou, 510080, PR China
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Province Guangdong, Guangzhou, 510080, PR China
| | - Chengcheng Lei
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Province Guangdong, Guangzhou, 510080, PR China
| | - Dubo Chen
- Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Province Guangdong, 510080, PR China.
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-sen University, Province Guangdong, Guangzhou, 510080, PR China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, PR China.
- Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, 510080, PR China.
| |
Collapse
|
3
|
Tan ACR, Ma Y, Appukuttan B, Lower K, Lumsden AL, Michael MZ, Smith JR, Ashander LM. Brief research report: ETS-1 blockade increases ICAM-1 expression in activated human retinal endothelial cells. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1384428. [PMID: 38984117 PMCID: PMC11182200 DOI: 10.3389/fopht.2024.1384428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 07/11/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a central cell adhesion molecule for retinal transendothelial migration of the leukocytes in non-infectious posterior uveitis. Inhibiting ICAM1 gene transcription reduces induction of ICAM-1 in inflamed retinal endothelium. Based on published literature implicating transcription factor ETS-1 as an activator of ICAM1 gene transcription, we investigated the effect of ETS-1 blockade on ICAM-1 levels in cytokine-stimulated human retinal endothelial cells. We first examined ICAM1 and ETS1 transcript expression in human retinal endothelial cells exposed to tumor necrosis factor-alpha (TNF-α) or interleukin-1beta (IL-1β). ICAM1 and ETS1 transcripts were increased in parallel in primary human retinal endothelial cell isolates (n = 5) after a 4-hour stimulation with TNF-α or IL-1β (p ≤ 0.012 and ≤ 0.032, respectively). We then assessed the effect of ETS-1 blockade by small interfering (si)RNA on cellular ICAM1 transcript and membrane-bound ICAM-1 protein. ETS1 transcript was reduced by greater than 90% in cytokine-stimulated and non-stimulated human retinal endothelial cell monolayers following a 48-hour treatment with two ETS-1-targeted siRNA, in comparison to negative control non-targeted siRNA (p ≤ 0.0002). The ETS-1 blockade did not reduce ICAM1 transcript expression nor levels of membrane-bound ICAM-1 protein, rather it increased both for a majority of siRNA-treatment and cytokine-stimulation conditions (p ≤ 0.018 and ≤ 0.004, respectively). These unexpected findings indicate that ETS-1 blockade increases ICAM-1 transcript and protein levels in human retinal endothelial cells. Thus ETS-1-targeting would be expected to promote rather than inhibit retinal transendothelial migration of leukocytes in non-infectious posterior uveitis.
Collapse
Affiliation(s)
- Alwin Chun Rong Tan
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Yuefang Ma
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Binoy Appukuttan
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Karen Lower
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Amanda L Lumsden
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Michael Z Michael
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Liam M Ashander
- Flinders University College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
5
|
Wang W, Ye J, Xu L, Mo DG, Chen C, Li T, Yao HC. The effects of IGF-1 and IGFBP-2 treatments on the atherosclerosis in the aorta and the coronary arteries of the high cholesterol diet-fed rabbits. Int Immunopharmacol 2024; 127:111409. [PMID: 38118312 DOI: 10.1016/j.intimp.2023.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Several studies have demonstrated suppression of aortic atherosclerosis by insulin like growth factor-1 (IGF-1) in hypercholesterolemic rabbits. Though a recent study has reported that IGF-1 exerts anti-atherogenic effects in coronary arteries, the mechanisms of IGF-1 in coronary arteries need to be further verified. Studies about insulin like growth factor binding protein-2 (IGFBP-2) in atherosclerosis are rarely. The objective of this study is to examine the effects of IGF-1 and IGFBP-2 on the atherosclerosis development in the aorta and coronary arteries of the high-cholesterol diet (HCD)-fed rabbits. New Zealand white rabbits were fed either normal chow (n = 5) or a diet containing 1.0 % cholesterol (n = 18) for 12 weeks. Cholesterol-fed rabbits were given IGF-1 or IGFBP-2 or saline intravenously (each n = 6) for 10 weeks. The results revealed that IGF-1 decreased total cholesterol (TC) and low-density lipoprotein (LDL) levels (p < 0.05), whereas IGFBP-2 did not. IGF-1 significantly attenuated atherosclerotic lesions and reduced accumulated macrophages within the coronary artery plaques, whereas IGFBP-2 deteriorated these changes. Moreover, IGF-1 reduced serum platelet-activating factor acetylhydrolase levels, C reactive protein (CRP), and inhibited the protein expression levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). IGFBP-2 elevated serum 8-hydroxy-2'-deoxyguanosine levels, CRP, and promoted the protein expression levels of TNF-α and IL-6. In conclusion, IGF-1 can substantially suppress plaque formation in coronary arteries with a marked inhibition of macrophage accumulation likely via its anti-inflammatory properties, whereas IGFBP-2 plays an opposite effect on atherosclerosis. The present study highlighted a theoretical basis for pharmacological treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong 252000, China
| | - Jing Ye
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Li Xu
- Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - De-Gang Mo
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong 252000, China
| | - Chen Chen
- Department of Urology, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Tai Li
- Department of Nursing, Liaocheng Vocational & Technical College, Liaocheng 252000, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong 252000, China; Department of Cardiology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
7
|
Qiang F, Xu H, Sheng J. Relationship between plasma fibrinogen degradation products(FDP) and D-dimer levels and disease activity in rheumatoid arthritis: A STROBE compliant article. Medicine (Baltimore) 2022; 101:e30455. [PMID: 36086781 PMCID: PMC10980452 DOI: 10.1097/md.0000000000030455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, we aimed to investigate whether fibrinogen degradation products(FDP)and D-dimer could be used as serological indicators of rheumatoid arthritis(RA) activity, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and platelets (PLT). A total of 112 consecutive patients with RA between July 2018 and July 2020 were divided into moderate and high disease activity groups (disease activity score 28(DAS28) > 3.2, n = 60) and low disease activity and remission groups (DAS28≤3.2, n = 52). A total of 50 healthy volunteers were included in the control group, and FDP and D-dimer levels were compared across the three groups. The correlations of FDP and D-dimer levels with ESR, CRP, PLT, and DAS28 were analyzed. Analyses of the receiver operating characteristic(ROC) curves and area under the ROC curve (AUC) of FDP, D-dimer, ESR, CRP, and PLT levels were performed. FDP and D-dimer levels were significantly higher in the high-activity compared to the low-activity and remission (P < .001), and the control (P < .001). No significant differences in FDP and D-dimer were observed between the low-activity and remission and the control (P > .05). FDP and D-dimer levels were positively correlated with ESR, CRP, PLT, and DAS28 (all P < .001). The ROC curves showed that the FDP and D-dimer levels could be used to evaluate the RA activity (all P < .001). The AUC of FDP was significantly larger than that of PLT (P = .047). FDP and D-dimer can be used as supplementary serological indicators to assess RA activity, in addition to ESR, CRP, and PLT.
Collapse
Affiliation(s)
- FuYong Qiang
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Hui Xu
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Jun Sheng
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wannan Medical College, Anhui, China
| |
Collapse
|
8
|
Zhang X, He D, Xiang Y, Wang C, Liang B, Li B, Qi D, Deng Q, Yu H, Lu Z, Zheng F. DYSF promotes monocyte activation in atherosclerotic cardiovascular disease as a DNA methylation-driven gene. Transl Res 2022; 247:19-38. [PMID: 35460889 DOI: 10.1016/j.trsl.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Dysferlin (DYSF) has drawn much attention due to its involvement in dysferlinopathy and was reported to affect monocyte functions in recent studies. However, the role of DYSF in the pathogenesis of atherosclerotic cardiovascular diseases (ASCVD) and the regulation mechanism of DYSF expression have not been fully studied. In this study, Gene Expression Omnibus (GEO) database and epigenome-wide association study (EWAS) literatures were searched to find the DNA methylation-driven genes (including DYSF) of ASCVD. The hub genes related to DYSF were also identified through weighted correlation network analysis (WGCNA). Regulation of DYSF expression through its promoter methylation status was verified using peripheral blood leucocytes (PBLs) from ASCVD patients and normal controls, and experiments on THP1 cells and Apoe-/- mice. Similarly, the expressions of DYSF related hub genes, mainly contained SELL, STAT3 and TMX1, were also validated. DYSF functions were then evaluated by phagocytosis, transwell and adhesion assays in DYSF knock-down and overexpressed THP1 cells. The results showed that DYSF promoter hypermethylation up-regulated its expression in clinical samples, THP1 cells and Apoe-/- mice, confirming DYSF as a DNA methylation-driven gene. The combination of DYSF expression and methylation status in PBLs had a considerable prediction value for ASCVD. Besides, DYSF could enhance the phagocytosis, migration and adhesion ability of THP1 cells. Among DYSF related hub genes, SELL was proven to be the downstream target of DYSF by wet experiments. In conclusion, DYSF promoter hypermethylation upregulated its expression and promoted monocytes activation, which further participated in the pathogenesis of ASCVD.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Dingdong He
- Department of Clinical Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yang Xiang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Wang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Abdelgawad IY, Agostinucci K, Ismail SG, Grant MKO, Zordoky BN. EA.hy926 Cells and HUVECs Share Similar Senescence Phenotypes but Respond Differently to the Senolytic Drug ABT-263. Cells 2022; 11:1992. [PMID: 35805077 PMCID: PMC9266052 DOI: 10.3390/cells11131992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) induces endothelial cell (EC) senescence, which contributes to endothelial dysfunction and cardiovascular complications. Senolytic drugs selectively eliminate senescent cells to ameliorate senescence-mediated pathologies. Previous studies have demonstrated differences between immortalized and primary EC models in some characteristics. However, the response of DOX-induced senescent ECs to senolytics has not been determined across these two models. In the present work, we first established a comparative characterization of DOX-induced senescence phenotypes in immortalized EA.hy926 endothelial-derived cells and primary human umbilical vein EC (HUVECs). Thereafter, we evaluated the senolytic activity of four senolytics across both ECs. Following the DOX treatment, both EA.hy926 and HUVECs shared similar senescence phenotypes characterized by upregulated senescence markers, increased SA-β-gal activity, cell cycle arrest, and elevated expression of the senescence-associated secretory phenotype (SASP). The potentially senolytic drugs dasatinib, quercetin, and fisetin demonstrated a lack of selectivity against DOX-induced senescent EA.hy926 cells and HUVECs. However, ABT-263 (Navitoclax) selectively induced the apoptosis of DOX-induced senescent HUVECs but not EA.hy926 cells. Mechanistically, DOX-treated EA.hy926 cells and HUVECs demonstrated differential expression levels of the BCL-2 family proteins. In conclusion, both EA.hy926 cells and HUVECs demonstrate similar DOX-induced senescence phenotypes but they respond differently to ABT-263, presumably due to the different expression levels of BCL-2 family proteins.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (I.Y.A.); (K.A.); (S.G.I.); (M.K.O.G.)
| |
Collapse
|
10
|
Yang S, Cheng R, Xu X, Zhang R, Zhao Y, Shi X, Gao J, Yu F, Ren X. Periodontitis exacerbates endothelial dysfunctions partly via endothelial-mesenchymal transition in streptozotocin-induced diabetes rats. J Periodontal Res 2022; 57:660-669. [PMID: 35435999 DOI: 10.1111/jre.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Periodontal infections are related to the expansion of diabetes cardiovascular problems. However, the pathological process and probable mechanism remain unexplained. This study investigated the impact of periodontitis on streptozotocin (STZ)-induced diabetes rats' carotid artery. METHODS We randomized 24 Sprague-Dawley (SD) rats into four groups: control, chronic periodontitis (CP), diabetes mellitus (DM), and DM +CP groups. Fasting blood glucose (FBG) and hemoglobin A1c (HBA1c ) were measured to verify the establishment of the DM model. After euthanasia, the maxillary was collected for further studies like hematoxylin-eosin (HE), Masson staining, and micro-computed tomography (micro-CT) analysis. Immunofluorescence (IF) staining was used to detect endothelial-mesenchymal transition (EndMT)-related markers in carotid artery wall. We further used ELISA and quantitative real-time PCR to investigate the effect of high glucose (HG) and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) on human umbilical vein endothelial cells (HUVECs). RESULTS Compared with DM and CP groups, bone resorption and pathological changes of the vascular wall were the most serious in the DM+CP group. The vascular wall of the DM+CP group had a higher level of interleukin (IL)-6 and vascular cell adhesion molecule 1 (VCAM-1). The carotid artery vascular wall of the DM+CP group contained more cells that expressed both mesenchymal and endothelial cell markers, along with elevated transcription factor levels. Furthermore, P.g-LPS and HG upregulated the inflammatory cytokines expression and caused phenotypic changes of HUVECs in vitro. CONCLUSION Periodontitis exacerbates endothelial dysfunctions partly via endothelial-mesenchymal transition in STZ-induced diabetes rats.
Collapse
Affiliation(s)
- Shurong Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Rui Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaojiang Xu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yong Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xuexue Shi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jinhua Gao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Feiyan Yu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| |
Collapse
|
11
|
Xu H, Ni YQ, Liu YS. Mechanisms of Action of MiRNAs and LncRNAs in Extracellular Vesicle in Atherosclerosis. Front Cardiovasc Med 2021; 8:733985. [PMID: 34692785 PMCID: PMC8531438 DOI: 10.3389/fcvm.2021.733985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, China
| |
Collapse
|
12
|
Kihara T, Toriuchi K, Aoki H, Kakita H, Yamada Y, Aoyama M. Interleukin-1β enhances cell adhesion in human endothelial cells via microRNA-1914-5p suppression. Biochem Biophys Rep 2021; 27:101046. [PMID: 34179516 PMCID: PMC8214032 DOI: 10.1016/j.bbrep.2021.101046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and the underlying cause of most cardiovascular diseases. Interleukin (IL)-1β facilitates early atherogenic lesion formation by increasing monocyte adhesion to endothelial cells via upregulation of adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1). MicroRNAs (miRNAs) have been shown to be associated with inflammatory conditions in the vascular system. The expression of circulating miR-1914-5p is reportedly downregulated in patients with cardiovascular diseases. However, the role of miR-1914-5p downregulation in IL-1β-induced endothelial cell dysfunction and the effect of miR-1914-5p on lesion formation remain unclear. Therefore, we investigated whether miR-1914-5p is associated with monocyte adhesion in human endothelial cells. IL-1β decreased miR-1914-5p expression in EA.hy926 cells. In addition, miR-1914-5p depletion enhanced ICAM-1 expression and monocyte adhesion in EA.hy926 cells. Moreover, miR-1914-5p mimic suppressed monocyte adhesion and ICAM-1 expression induced by IL-1β in endothelial cells. These results suggest that suppression of miR-1914-5p expression by IL-1β may be an important regulator in mediating monocyte adhesion in endothelial cells. Further investigation of miR-1914-5p may lead to the development of novel therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Toshie Kihara
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizoho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizoho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizoho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizoho-ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-dori, Mizoho-ku, Nagoya, Aichi, 467-8603, Japan
| |
Collapse
|
13
|
Qiu X, Wang J, Shi Z, Ji X, Huang Y, Dai H. Predictive value of miRNA-126 on in-stent restenosis in patients with coronary heart disease: A protocol for meta-analysis and bioinformatics analysis. Medicine (Baltimore) 2021; 100:e25887. [PMID: 34087832 PMCID: PMC8183766 DOI: 10.1097/md.0000000000025887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In-stent restenosis (ISR) is one of the most important complications and impacts the long-term effects after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD). Related studies have revealed that microRNA (miRNA) can predict ISR in CHD patients. MiRNA-126 may be a potential biomarker for the diagnosis of ISR. However, the accuracy of miRNA-126 in the diagnosis of ISR is still controversial. Therefore, this study carried out meta-analysis to further evaluate the accuracy of miRNA-126 in the diagnosis of ISR. At the same time, bioinformatics is used to predict the target genes and miRNA-126 may be involved in regulation, so as to provide theoretical support for the precise treatment of CHD. METHODS The literatures on the miRNA-126 diagnosis of ISR in CHD patients were collected by searching on computer through China National Knowledge Infrastructure, Wanfang, China Biology Medicine disc, PubMed, EMBASE, Cochrane Library and Web of Science. The retrieval time is set to build the database until April 2021. The meta-analysis of the literatures that meet the quality standards was conducted by Stata 16.0 software. TargetScan database, PicTar database, miRanda database, and miRDB database were used to predict miRNA-126 intersection target genes. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis of miRNA-126 target genes were performed by using DAVID database. STRING database was applied to analyze the protein-protein interaction (PPI) network of miRNA-126 target genes. The "Networkanalyzer" function of Cytoscape3.7.2 software is adopted to analyze the network topology attributes, so as to find out the core genes of PPI network. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION In this study, meta-analysis and bioinformatics analysis were adopted to further evaluate the accuracy of miRNA-126 in the diagnosis of ISR in CHD patients, and to explore the mechanism of the action of miRNA-126 and understand related pathways. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/9FMR5.
Collapse
Affiliation(s)
| | - Jun Wang
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Zhongping Shi
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaojun Ji
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Yiwei Huang
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| | - Haiyue Dai
- Department of Cardiology, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China
| |
Collapse
|