1
|
Roberts MD, Mobley CB, Toedebush RG, Heese AJ, Zhu C, Krieger AE, Cruthirds CL, Lockwood CM, Hofheins JC, Wiedmeyer CE, Leidy HJ, Booth FW, Rector RS. Western diet-induced hepatic steatosis and alterations in the liver transcriptome in adult Brown-Norway rats. BMC Gastroenterol 2015; 15:151. [PMID: 26519296 PMCID: PMC4628330 DOI: 10.1186/s12876-015-0382-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023] Open
Abstract
Background The purpose of this study was to investigate the effects of sub-chronic high fat, high sucrose diet (also termed ‘Westernized diet’ or WD) feeding on the liver transcriptome during early nonalcoholic fatty liver disease (NAFLD) development. Methods Brown Norway male rats (9 months of age) were randomly assigned to receive ad libitum access to a control (CTL; 14 % kcal fat, 1.2 % sucrose by weight) diet or WD (42 % kcal from fat, 34 % sucrose by weight) for 6 weeks. Results Six weeks of WD feeding caused hepatic steatosis development as evidenced by the 2.25-fold increase in liver triacylglycerol content, but did not induce advanced liver disease (i.e., no overt inflammation or fibrosis) in adult Brown Norway rats. RNA deep sequencing (RNA-seq) revealed that 94 transcripts were altered in liver by WD feeding (46 up-, 48 down-regulated, FDR < 0.05). Specifically, the top differentially regulated gene network by WD feeding was ‘Lipid metabolism, small molecular biochemistry, vitamin and mineral metabolism’ (Ingenuity Pathway Analysis (IPA) score 61). The top-regulated canonical signaling pathway in WD-fed rats was the ‘Superpathway of cholesterol biosynthesis’ (10/29 genes regulated, p = 1.68E-17), which coincides with a tendency for serum cholesterol levels to increase in WD-fed rats (p = 0.09). Remarkably, liver stearoyl-CoA desaturase (Scd) mRNA expression was by far the most highly-induced transcript in WD-fed rats (approximately 30-fold, FDR = 0.01) which supports previous literature underscoring this gene as a crucial target during NAFLD development. Conclusions In summary, sub-chronic WD feeding appears to increase hepatic steatosis development over a 6-week period but only induces select inflammation-related liver transcripts, mostly acute phase response genes. These findings continue to outline the early stages of NAFLD development prior to overt liver inflammation and advanced liver disease.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.,Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, USA
| | | | - Ryan G Toedebush
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Alexander J Heese
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Conan Zhu
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Anna E Krieger
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Clayton L Cruthirds
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | - John C Hofheins
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Charles E Wiedmeyer
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Heather J Leidy
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, MO, USA. .,Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO, USA.
| |
Collapse
|
2
|
Hennig EE, Mikula M, Goryca K, Paziewska A, Ledwon J, Nesteruk M, Woszczynski M, Walewska-Zielecka B, Pysniak K, Ostrowski J. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice. J Cell Mol Med 2014; 18:1762-72. [PMID: 24913135 PMCID: PMC4196652 DOI: 10.1111/jcmm.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022] Open
Abstract
One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland; Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Nesteruk M, Hennig EE, Mikula M, Karczmarski J, Dzwonek A, Goryca K, Rubel T, Paziewska A, Woszczynski M, Ledwon J, Dabrowska M, Dadlez M, Ostrowski J. Mitochondrial-related proteomic changes during obesity and fasting in mice are greater in the liver than skeletal muscles. Funct Integr Genomics 2014; 14:245-59. [PMID: 24178926 PMCID: PMC3968515 DOI: 10.1007/s10142-013-0342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
Although mitochondrial dysfunction is implicated in the pathogenesis of obesity, the molecular mechanisms underlying obesity-related metabolic abnormalities are not well established. We performed mitochondrial quantitative proteomic and whole transcriptome analysis followed by functional annotations within liver and skeletal muscles, using fasted and non-fasted 16- and 48-week-old high-fat diet (HFD)-fed and normal diet-fed (control group) wild-type C56BL/6J mice, and hyperphagic ob/ob and db/db obese mice. Our study identified 1,675 and 704 mitochondria-associated proteins with at least two peptides in liver and muscle, respectively. Of these, 221 liver and 44 muscle proteins were differentially expressed (adjusted p values ≤ 0.05) between control and all obese mice, while overnight fasting altered expression of 107 liver and 35 muscle proteins. In the liver, we distinguished a network of 27 proteins exhibiting opposite direction of expression changes in HFD-fed and hyperphagic mice when compared to control. The network centered on cytochromes P450 3a11 (Cyp3a11) and 4a14 (Cyp4a14), and fructose-bisphosphate aldolase B (Aldob) proteins which bridged proteins cluster involved in Metabolism of xenobiotics with proteins engaged in Fatty acid metabolism and PPAR signaling pathways. Functional annotations revealed that most of the hepatic molecular alterations, which characterized both obesity and fasting, related to different aspects of energy metabolism (such as Fatty acid metabolism, Peroxisome, and PPAR signaling); however, only a limited number of functional annotations could be selected from skeletal muscle data sets. Thus, our comprehensive molecular overview revealed that both obesity and fasting states induce more pronounced mitochondrial proteome changes in the liver than in the muscles.
Collapse
Affiliation(s)
- Monika Nesteruk
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Artur Dzwonek
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Tymon Rubel
- Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Marek Woszczynski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Roentgena 5, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| |
Collapse
|
4
|
Fatima A, Waters S, O’Boyle P, Seoighe C, Morris DG. Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle. BMC Genomics 2014; 15:28. [PMID: 24428929 PMCID: PMC3902422 DOI: 10.1186/1471-2164-15-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Negative energy balance (NEB), an altered metabolic state, occurs in early postpartum dairy cattle when energy demands to support lactation exceed energy intake. During NEB the liver undergoes oxidative stress and increased breakdown of fatty acids accompanied by changes in gene expression. It is now known that micro RNAs (miRNA) can have a role in mediating such alterations in gene expression through repression or degradation of target mRNAs. miRNA expression is known to be altered by metabolism and environmental factors and miRNAs are implicated in expression modulation of metabolism related genes. RESULTS miRNA expression was profiled in the liver of moderate yielding dairy cattle under severe NEB (SNEB) and mild NEB (MNEB) using the Affymetrix Gene Chip miRNA_2.0 array with 679 probe sets for Bos-taurus miRNAs. Ten miRNAs were found to be differentially expressed using the 'samr' statistical package (delta = 0.6) at a q-value FDR of < 12%. Five miRNAs including miR-17-5p, miR-31, miR-140, miR-1281 and miR-2885 were validated using RT-qPCR, to be up-regulated under SNEB. Liver diseases associated with these miRNAs include non-alcoholic fatty liver (NAFLD) and hepatocellular carcinoma (HCC). miR-140 and miR-17-5p are known to show differential expression under oxidative stress. A total of 32 down-regulated putative target genes were also identified among 418 differentially expressed hepatic genes previously reported for the same animal model. Among these, GPR37 (G protein-coupled receptor 37), HEYL (hairy/enhancer-of-split related with YRPW motif-like), DNJA1, CD14 (Cluster of differentiation 14) and GNS (glucosamine (N-acetyl)-6-sulfatase) are known to be associated with hepatic metabolic disorders. In addition miR-140 and miR-2885 have binding sites on the most down-regulated of these genes, FADS2 (Fatty acid desaturase 2) which encodes an enzyme critical in lipid biosynthesis. Furthermore, HNF3-gamma (Hepatocyte nuclear factor 3-gamma), a hepatic transcription factor (TF) that is involved in IGF-1 expression regulation and maintenance of glucose homeostasis is a putative target of miR-31. CONCLUSIONS This study shows that SNEB affects liver miRNA expression and these miRNAs have putative targets in hepatic genes down-regulated under this condition. This study highlights the potential role of miRNAs in transcription regulation of hepatic gene expression during SNEB in dairy cattle.
Collapse
Affiliation(s)
- Attia Fatima
- School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Galway, Ireland
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Sinead Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Padraig O’Boyle
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Galway, Ireland
| | - Dermot G Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co., Galway, Ireland
| |
Collapse
|
5
|
Li Y, Mouche S, Sajic T, Veyrat-Durebex C, Supale R, Pierroz D, Ferrari S, Negro F, Hasler U, Feraille E, Moll S, Meda P, Deffert C, Montet X, Krause KH, Szanto I. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes (Lond) 2012; 36:1503-13. [PMID: 22430302 DOI: 10.1038/ijo.2011.279] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE NADPH oxidase 4 (NOX4) is a reactive oxygen species (ROS) producing NADPH oxidase that regulates redox homeostasis in diverse insulin-sensitive cell types. In particular, NOX4-derived ROS is a key modulator of adipocyte differentiation and mediates insulin receptor signaling in mature adipocytes in vitro. Our study was aimed at investigating the role of NOX4 in adipose tissue differentiation, whole body metabolic homeostasis and insulin sensitivity in vivo. DESIGN Mice with genetic ablation of NOX4 (NOX4-deficient mice) were subjected to chow or high-fat-containing diet for 12 weeks. Body weight gain, adiposity, insulin sensitivity, and adipose tissue and liver gene and protein expression were analyzed and compared with similarly treated wild-type mice. RESULTS Here, we report that NOX4-deficient mice display latent adipose tissue accumulation and are susceptible to diet-induced obesity and early onset insulin resistance. Obesity results from accelerated adipocyte differentiation and hypertrophy, and an increase in whole body energy efficiency. Insulin resistance is associated with increased adipose tissue hypoxia, inflammation and adipocyte apoptosis. In the liver, more severe diet-induced steatosis was observed due to the lack of proper upregulation of mitochondrial fatty acid β-oxidation. CONCLUSION These findings identify NOX4 as a regulator of metabolic homeostasis. Moreover, they indicate an anti-adipogenic role for NOX4 in vivo and reveal its function as a protector against the development of diet-induced obesity, insulin resistance and hepatosteatosis.
Collapse
Affiliation(s)
- Y Li
- Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Correlation analysis between gene expression profile of rat liver tissues and high-fat emulsion-induced nonalcoholic fatty liver. Dig Dis Sci 2011; 56:2299-308. [PMID: 21327921 DOI: 10.1007/s10620-011-1599-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is caused by fat metabolism disorders and thereby abnormal or excessive accumulation of fat in hepatocytes, and characterized by steatosis, inflammation, fibrosis, apoptosis or necrosis. AIM This study was carried out to explore the correlation between gene expression profiles of rat livers and the occurrence and progression of NAFLD at the transcriptional level. METHODS A rat model of nonalcoholic steatohepatitis (NASH) was established by feeding male rats with high-fat emulsion via gavage, and Rat Genome 230 2.0 Array was used to detect gene expression profiles of liver tissues obtained from male rats following 0, 2, 4, and 6 weeks of high-fat emulsion feeding. Methods of bioinformatics and systems biology were applied to analyze the correlation between gene expression changes and physiological activities involved in NAFLD. RESULTS In total, 93 function-known genes, including 36 up-regulated and 57 down-regulated, differed significantly in expression compared to those of control rats, and 18 physiological activities were closely related to NAFLD. Especially, the activity of cell differentiation was decreased during the whole process of NAFLD, and the activities of inflammation response, stimulus response, cell migration and adhesion were attenuated in the second, fourth and sixth week, respectively. In the fourth and sixth weeks, lipid metabolism and cell apoptosis were augmented, and the former might be associated with the enhanced expression of plin, acsl6, scd2, elovl3, etc. CONCLUSION These data provide useful information on the global gene expression changes due to high-fat emulsion feeding and bring important insights into the mechanisms of NAFLD.
Collapse
|
7
|
Gawrieh S, Baye TM, Carless M, Wallace J, Komorowski R, Kleiner DE, Andris D, Makladi B, Cole R, Charlton M, Curran J, Dyer TD, Charlesworth J, Wilke R, Blangero J, Kissebah AH, Olivier M. Hepatic gene networks in morbidly obese patients with nonalcoholic fatty liver disease. Obes Surg 2010; 20:1698-709. [PMID: 20473581 PMCID: PMC8375563 DOI: 10.1007/s11695-010-0171-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic factors alter the risk for nonalcoholic fatty liver disease (NAFLD). We sought to identify NAFLD-associated genes and elucidate gene networks and pathways involved in the pathogenesis of NAFLD. METHODS Quantitative global hepatic gene expression analysis was performed on 53 morbidly obese Caucasian subjects undergoing bariatric surgery (27 with NAFLD and 26 controls). After standardization of data, gene expression profiles were compared between patients with NAFLD and controls. The set of genes that significantly correlated with NAFLD was further analyzed by hierarchical clustering and ingenuity pathways analyses. RESULTS There were 25,643 quantitative transcripts, of which 108 were significantly associated with NAFLD (p < 0.001). Canonical pathway analysis in the NAFLD-associated gene clusters showed that the hepatic fibrosis signaling was the most significant pathway in the up-regulated NAFLD gene cluster containing three (COL1A1, IL10, IGFBP3) significantly altered genes, whereas the endoplasmic reticulum stress and protein ubiquitination pathways were the most significant pathways in the down-regulated NAFLD gene cluster, with the first pathway containing one (HSPA5) and the second containing two (HSPA5, USP25) significantly altered genes. The four primary gene networks associated with NAFLD were involved in cell death, immunological disease, cellular movement, and lipid metabolism with several significantly altered "hub" genes in these networks. CONCLUSIONS This study reveals the canonical pathways and gene networks associated with NAFLD in morbidly obese Caucasians. The application of gene network analysis highlights the transcriptional relationships among NAFLD-associated genes and allows identification of hub genes that may represent high-priority candidates for NAFLD.
Collapse
Affiliation(s)
- Samer Gawrieh
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI 53212, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kirpich IA, Gobejishvili LN, Bon Homme M, Waigel S, Cave M, Arteel G, Barve SS, McClain CJ, Deaciuc IV. Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. J Nutr Biochem 2010; 22:38-45. [PMID: 20303728 DOI: 10.1016/j.jnutbio.2009.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the US and refers to a wide spectrum of liver damage, including simple steatosis, steatohepatitis, fibrosis and cirrhosis. The goal of the present study was to achieve a more detailed understanding of the molecular changes in response to high fat-induced liver steatosis through the identification of a differentially expressed liver transcriptome and proteome. Male C57/BL6 mice fed a high-fat lard diet for 8 weeks developed visceral obesity and hepatic steatosis characterized by significantly increased liver and plasma free fatty acid and triglyceride levels and plasma alanine aminotransferase activities. Transcriptome analysis demonstrated that, compared to the control diet (CD), high-fat diet changed the expression of 309 genes (132 up- and 177 down-regulated; by a twofold change and more, P<.05). Multiple genes encoding proteins involved in lipogenesis were down-regulated, whereas genes involved in fatty acid oxidation were up-regulated. Proteomic analysis revealed 12 proteins which were differentially expressed. Of these, glutathione S-transferases mu1 and pi1 and selenium-binding protein 2 were decreased at both the gene and protein levels. This is the first study to perform a parallel transcriptomic and proteomic analysis of diet-induced hepatic steatosis. Several key pathways involving xenobiotic and lipid metabolism, the inflammatory response and cell-cycle control were identified. These pathways provide targets for future mechanistic and therapeutic studies as related to the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Irina A Kirpich
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morris DG, Waters SM, McCarthy SD, Patton J, Earley B, Fitzpatrick R, Murphy JJ, Diskin MG, Kenny DA, Brass A, Wathes DC. Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol Genomics 2009; 39:28-37. [PMID: 19567785 PMCID: PMC2747343 DOI: 10.1152/physiolgenomics.90394.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and β-hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum. SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN-γ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.
Collapse
Affiliation(s)
- D G Morris
- Teagasc, Mellows Campus, Athenry, County Galway, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wichadakul D, McDermott J, Samudrala R. Prediction and integration of regulatory and protein-protein interactions. Methods Mol Biol 2009; 541:101-43. [PMID: 19381527 DOI: 10.1007/978-1-59745-243-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and systems biology in any organism. While several results from genome-wide analysis of transcriptional regulatory networks are available, they are limited to model organisms such as yeast ( 1 ) and worm ( 2 ). Beyond these networks, experiments on TRIs study only individual genes and proteins of specific interest. In this chapter, we present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse ( 3 ). We describe how to compile and handle various formats and identifiers of data sets from different sources and how to predict TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein subcellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a large number of organisms. The integration of experimentally verified and predicted TRIs with other known protein-protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological dynamics of an integrated network with gene expression under different conditions, essential for exploring functional genomics and systems biology.
Collapse
|