1
|
Mohamed AH, Shafie A, Abdulmonem WA, Alzahrani HS, Ashour AA, Hjazi A, Jamal A, Aldreiwish AD, Kamal MA, Ahmad F, Khan N. Mesenchymal stem cells and their potential therapeutic benefits and challenges in the treatment and pathogenesis of gastric cancer. Pathol Res Pract 2024; 260:155422. [PMID: 38981347 DOI: 10.1016/j.prp.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counselling healthy marriage, maternity and children hospital, Jeddah second cluster, Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry. Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
2
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Erdem Koc G, Gokcimen A, Sahin F. The Effect of Boric Acid and Sodium Pentaborate Pentahydrate-Treated Foreskin Derived Mesenchymal Stem Cells on Liver Fibrosis. Biol Trace Elem Res 2023; 201:4834-4849. [PMID: 36735212 DOI: 10.1007/s12011-023-03565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Liver fibrosis is a worldwide public health problem due to its life-threatening complications, including portal hypertension, liver failure, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis is the net result of a complex excessive accumulation of extracellular matrix (ECM). Activation of hepatic stellate cells (HSCs) are the cause of deposition of ECM and are commonly recognized as a key step in liver fibrosis. The aim of this study was to investigate the effect of foreskin-derived mesenchymal stem cells treated with boron compounds on liver fibrosis. Rats were injected intraperitoneally with thioacetamide (TAA) at a dose of 150 mg/kg except sham and control groups' rats. Thioacetamide (TAA), foreskin-derived mesenchymal stem cells (TAA + FSDMSC), FSDMSC treated with boric acid (TAA + FSDMSC + BA), FSDMSC treated with sodium pentaborate pentahydrate (TAA + FSDMSC + NaB), control and sham groups were studied. Boron compound treated foreskin-derived mesenchymal stem cells were injected into the tail vein, and evaluations were conducted after 4 weeks and liver tissues were obtained for structural, immunohistochemical, and western blot studies and blood samples were taken for biochemical analysis. FSDMSC (BA) alleviates TAA-induced rats liver fibrosis, and BA showed a positive effect on foreskin-derived mesenchymal stem cells viability. After using BA-treated mesenchymal stem cells, we observed that there was regression in the fibrotic areas at TAA-induced liver fibrosis. The result demonstrates that the contribution of TAA + FSDMSC and TAA + FSDMSC (NaB) at the level of structure is not effective in regression of fibrosis in TAA-generated liver fibrosis. We concluded that FSDMSC treated with BA may be a factor in the regression of fibrosis.
Collapse
Affiliation(s)
- Guluna Erdem Koc
- Department of Histology and Embryology, School of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Alpaslan Gokcimen
- Department of Histology and Embryology, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Jantalika T, Manochantr S, Kheolamai P, Tantikanlayaporn D, Saijuntha W, Pinlaor S, Chairoungdua A, Paraoan L, Tantrawatpan C. Human chorion-derived mesenchymal stem cells suppress JAK2/STAT3 signaling and induce apoptosis of cholangiocarcinoma cell lines. Sci Rep 2022; 12:11341. [PMID: 35790790 PMCID: PMC9256624 DOI: 10.1038/s41598-022-15298-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the damaged epithelial cells of the biliary tract. Previous studies have reported that the multi-potent mesenchymal stem cells (MSCs) activate a series of tumor signaling pathways by releasing several cytokines to influence tumor cell development. However, the roles and mechanisms of human chorion-derived MSCs (CH-MSCs) in cholangiocarcinoma progression have not been fully addressed. This present study aims to examine the effects of conditioned media derived from CH-MSCs (CH-CM) on CCA cell lines and investigate the respective underlying mechanism of action. For this purpose, MSCs were isolated from chorion tissue, and three cholangiocarcinoma cell lines, namely KKU100, KKU213A, and KKU213B, were used. MTT assay, annexin V/PI analysis, and JC-1 staining were used to assess the effects of CH-CM on proliferation and apoptosis of CCA cells, respectively. Moreover, the effect of CH-CM on caspase-dependent apoptotic pathways was also evaluated. The western blotting assay was also used for measuring the expression of JAK2/STAT3 signaling pathway-associated proteins. The results showed that CH-CM suppressed proliferation and promoted apoptosis of CCA cell lines. CH-CM treatment-induced loss of mitochondrial membrane potential (∆Ψm) in CCA cell lines. The factors presented in the CH-CM also inhibited JAK2/STAT3 signaling, reduced the expression of BCL-2, and increased BAX expression in CCA cells. In conclusion, our study suggests that the CH-CM has a potent anti-cancer effect on cholangiocarcinoma cells and thus provides opportunities for use in alternative cell therapy or in combination with a conventional chemotherapeutic drug to increase the efficiency of CCA treatment.
Collapse
Affiliation(s)
- Tanachapa Jantalika
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand
| | - Weerachai Saijuntha
- Biodiversity and Conservation Research Unit, Walai Rukhavej Botanical Research Institute (WRBRI), Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK.
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand. .,Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
5
|
崔 舒, 汤 帅, 丁 晓, 丁 刚. [Research Progress of Mesenchymal Stem Cells and Their Exosomes on Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:351-357. [PMID: 35599010 PMCID: PMC9127752 DOI: 10.3779/j.issn.1009-3419.2022.101.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
In China, malignant tumor is the main cause of death in both urban and rural areas. Mesenchymal stem cells (MSCs) have multidirectional differentiation potential, self-renewal ability and good immunomodulatory properties. Exosomes, as important paracrine substances of MSCs, mediate information exchange and transmission between cells in tumor microenvironment and influence the occurrence and development of tumors. Recently, conflicting findings have been reported on the effects of MSCs and their exosomes on tumors. On the one hand, MSCs and their exosomes are tumorigenic and can target specific sites to inhibit tumor growth; On the other hand, there is also evidence that MSCs could affect tumor growth and migration as part of the tumor microenvironment. In this paper, we will review the relationship between MSCs and exosomes and tumorgenesis and development, as well as how MSCs and exosomes play different roles in tumorgenesis and development, in order to provide beneficial help for tumor diagnosis, prognosis and precise treatment.
.
Collapse
Affiliation(s)
- 舒悦 崔
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 帅 汤
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 晓玲 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| | - 刚 丁
- />261053 潍坊,潍坊医学院口腔医学院School of Stomatology, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
6
|
Delinassios JG, Hoffman RM. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts. Biochim Biophys Acta Rev Cancer 2021; 1877:188673. [PMID: 34953931 DOI: 10.1016/j.bbcan.2021.188673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Initiation, local progression, and metastasis of cancer are associated with specific morphological, molecular, and functional changes in the extracellular matrix and the fibroblasts within the tumor microenvironment (TME). In the early stages of tumor development, fibroblasts are an obstacle that cancer cells must surpass or nullify to progress. Thus, in early tumor progression, specific signaling from cancer cells activates bio-pathways, which abolish the innate anticancer properties of fibroblasts and convert a high proportion of them to tumor-promoting cancer-associated fibroblasts (CAFs). Following this initial event, a wide spectrum of gene expression changes gradually leads to the development of a stromal fibroblast population with complex heterogeneity, creating fibroblast subtypes with characteristic profiles, which may alternate between being tumor-promotive and tumor-suppressive, topologically and chronologically in the TME. These fibroblast subtypes form the tumor's histological landscape including areas of cancer growth, inflammation, angiogenesis, invasion fronts, proliferating and non-proliferating fibroblasts, cancer-cell apoptosis, fibroblast apoptosis, and necrosis. These features reflect general deregulation of tissue homeostasis within the TME. This review discusses fundamental and current knowledge that has established the existence of anticancer fibroblasts within the various interacting elements of the TME. It is proposed that the maintenance of fibroblast proliferation is an essential parameter for the activation of their anticancer capacity, similar to that by which normal fibroblasts would be activated in wound repair, thus maintaining tissue homeostasis. Encouragement of research in this direction may render new means of cancer therapy and a greater understanding of tumor progression.
Collapse
Affiliation(s)
- John G Delinassios
- International Institute of Anticancer Research, 1(st) km Kapandritiou-Kalamou Rd., Kapandriti, 19014 Attica, Greece.
| | - Robert M Hoffman
- Department of Surgery, University of California, 9300 Campus Point Drive, La Jolla, CA 92037, USA; AntiCancer Inc., 7917 Ostrow St, San Diego, CA 92111, USA.
| |
Collapse
|
7
|
Wang Q, Li T, Wu W, Ding G. Interplay between mesenchymal stem cell and tumor and potential application. Hum Cell 2020; 33:444-458. [PMID: 32378164 DOI: 10.1007/s13577-020-00369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) possess the capabilities of self-renewal and multipotent differentiation. Firstly isolated from bone marrow, MSCs are subsequently identified from various post-natal tissue types. Based the differentiation into tissue-specific cells, MSCs were capable of replacing damaged and diseased tissues. In addition, MSCs have been demonstrated to possess important immunomodulatory properties. Increasing data showed that MSCs exhibited tropism for sites of the tumor microenvironment and interacted with tumor cells closely through paracrine signaling. Therefore, better understanding of crosstalk between MSCs and tumor cells will be able to develop potential strategies in the treatment of tumors in the future. Herein, we summarize the research progress of the influence of MSCs on tumor cells and the prospect of their application in tumor therapy in this review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Ti Li
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Wei Wu
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong, People's Republic of China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, Linglongshan South Road No. 4138, Qingzhou, 262500, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Najar M, Crompot E, van Grunsven LA, Dollé L, Lagneaux L. Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: isolation and gene profiling. BMC Cell Biol 2018; 19:4. [PMID: 29625551 PMCID: PMC5889569 DOI: 10.1186/s12860-018-0157-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) become an attractive research topic because of their crucial roles in tissue repair and regenerative medicine. Foreskin is considered as a valuable tissue source containing immunotherapeutic MSCs (FSK-MSCs). Results In this work, we used aldehyde dehydrogenase activity (ALDH) assay (ALDEFLUOR™) to isolate and therefore characterize subsets of FSK-MSCs. According to their ALDH activity, we were able to distinguish and sort by fluorescence activated cell sorting (FACS) two subsets of FSK-MSCs (referred as ALDH+ and ALDH−). Consequently, these subsets were characterized by profiling the gene expression related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis and immunomodulation). We thus demonstrated by Real Time PCR several relevant differences in gene expression based on their ALDH activity. Conclusion Taken together, this preliminary study suggests that distinct subsets of FSK-MSCs with differential gene expression profiles depending of ALDH activity could be identified. These populations could differ in terms of biological functionalities involving the selection by ALDH activity as useful tool for potent therapeutic applications. However, functional studies should be conducted to confirm their therapeutic relevance. Electronic supplementary material The online version of this article (10.1186/s12860-018-0157-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium.
| | - Leo A van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
9
|
Najar M, Lagneaux L. Foreskin as a source of immunotherapeutic mesenchymal stromal cells. Immunotherapy 2017; 9:207-217. [PMID: 28128711 DOI: 10.2217/imt-2016-0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have well-characterized properties and thus represent an attractive cell population for use in several therapeutic applications. Due to the limitations and inconveniences associated with classical sources of MSCs, the identification and characterization of alternative sources are required for safe and efficient cell therapy. The skin tissue is currently referred to as a reservoir of cells with therapeutically relevant functions. Historically considered biological waste, foreskin (FSK) is increasingly used to provide immunotherapeutic MSCs for medicinal products. This review discusses for the first time the nature and profile of MSCs within the foreskin tissue and, in particular, their immunobiology. A better immunological characterization and understanding of foreskin-derived cells will be critical for improving MSC-based cellular strategies for immunotherapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| |
Collapse
|
10
|
Mesenchymal stromal cells from the foreskin: Tissue isolation, cell characterization and immunobiological properties. Cytotherapy 2016; 18:320-35. [PMID: 26857227 DOI: 10.1016/j.jcyt.2015.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Because of their self-renewal capacity, multilineage potential and immunomodulatory properties, MSCs are an attractive tool for cell-based immunotherapy strategies. Foreskin, considered as a biological waste material, has been shown to be a reservoir of therapeutic cells. METHODS MSCs were isolated from different foreskin samples, maintained under in vitro culture and defined according to the International Society for Cellular Therapy (ISCT) criteria. We subsequently determined their main cell characteristics as well as their immunobiological properties. The following parameters were determined: (i) morphology and phenotype, (ii) proliferative and clonogenic potentials, (iii) tri-lineage differentiation ability, (iv) immunological profile, (v) immunomodulatory properties and (vi) protein and messenger RNA expression/secretion profile of immunoregulatory cytokines/factors as well as the pattern of toll-like receptors (TLRs). By using a pro-inflammatory cytokine cocktail, we also evaluated the influence of an inflammatory environment on their biology. RESULTS With a typical fibroblast-like morphology and an ISCT-compliant phenotype, foreskin-MSCs (FSK-MSCs) were highly proliferative and had a great clonogenic potential. They displayed multilineage capacities and interesting immunomodulatory properties. Of importance, FSK-MSCs were not immunogenetic and were further able to inhibit T-cell proliferation. We showed that several immunoregulatory cytokines and factors might be potentially involved in FSK-MSC immunomodulation with particular attention to hepatocyte growth factor and interleukin-11. Moreover, FSK-MSCs expressed several TLRs and were sensitive to the inflammatory environment by properly adjusting their profile and fate. CONCLUSIONS Foreskin represents a new alternative source for MSCs that is compliant with ISCT criteria. Their unique immunobiological properties allow consideration of FSK-MSCs as a valuable tolerogenic product for cell-based immunotherapy.
Collapse
|
11
|
Li M, Zhang F, Chen K, Wang C, Su Y, Liu Y, Zhou J, Wang W. Nanoparticles and mesenchymal stem cells: a win-win alliance for anticancer drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra00398b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Schematic illustration of the combination of NPs and MSCs drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kerong Chen
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Wang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yujie Su
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yuan Liu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wei Wang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
12
|
Librizzi M, Tobiasch E, Luparello C. The conditioned medium from osteo-differentiating human mesenchymal stem cells affects the viability of triple negative MDA-MB231 breast cancer cells. Cell Biochem Funct 2015; 34:7-15. [PMID: 26628086 DOI: 10.1002/cbf.3157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the effect of conditioned media (CM) from osteo-differentiating and adipo-differentiating human mesenchymal stem cells (MSCs) isolated from lipoaspirates of healthy female donors on the viability of triple-negative breast cancer cells MDA-MB231. The CM of undifferentiated and differentiating MSCs were collected after 7, 14, 21 and 28 days of culture. The effects of MSC CM on cell proliferation were assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 24 h. The effects of osteo-differentiating cell CM on apoptotic promotion, cell cycle impairment, mitochondrial transmembrane potential dissipation, production of reactive oxygen species and autophagosome accumulation were analysed by flow cytometry and Western blot. MTT assay showed that only CM collected from osteo-induced cells at day 28 (d28O-CM) reduced tumour cell viability. Treatment with d28O-CM restrained cell cycle progression through G2 phase, elicited a caspase-8-driven apoptotic effect already after 5 h of culture, and down-regulated autophagosome accumulation and beclin-1 expression. The finding that factor(s) secreted by osteo-differentiating MSCs shows properties of an apoptotic inducer and autophagy inhibitor on triple-negative breast cancer cells may have an important applicative potential that deserves further investigation.
Collapse
Affiliation(s)
| | - Edda Tobiasch
- Department of Natural Sciences, University of Applied Sciences, Bonn-Rhein-Sieg (D), Rheinbach, Germany
| | | |
Collapse
|
13
|
SCHERZED A, HACKENBERG S, FROELICH K, RAK K, SCHENDZIELORZ P, GEHRKE T, HAGEN R, KLEINSASSER N. The differentiation of hMSCs counteracts their migration capability and pro-angiogenic effects in vitro. Oncol Rep 2015; 35:219-26. [DOI: 10.3892/or.2015.4383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/10/2015] [Indexed: 11/06/2022] Open
|
14
|
Abstract
Mesenchymal stem cells (MSCs) have the capacity of multipotent differentiation and the property of immunomodulation. MSCs have been widely used in digestive system disease research because of their advantageous characteristics such as homing to areas of inflammation or tumour tissue, anti-inflammation, high plasticity, absence of immunologic rejection, being easy to be isolated, and being convenient for the expression of exogenous genes. In this article, we will review the application of mesenchymal stem cells in digestive system diseases including caustic esophagus injury, reflux esophagitis, gastric ulcer, radioactive intestinal injury, severe acute pancreatitis, inflammatory bowel disease, nonalcoholic steatohepatitis, acute liver failure, hepatic fibrosis, autoimmune liver diseases, liver cirrhosis, esophageal cancer, gastric cancer, colon cancer, liver cancer, and pancreatic cancer.
Collapse
|
15
|
Wang X, Zou F, Deng H, Fu Z, Li Y, Wu L, Wang Z, Liu L. Characterization of sphere‑forming cells with stem‑like properties from the gastric cancer cell lines MKN45 and SGC7901. Mol Med Rep 2014; 10:2937-41. [PMID: 25270642 DOI: 10.3892/mmr.2014.2601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/28/2014] [Indexed: 11/06/2022] Open
Abstract
Traditionally, it was presumed that gastric cancer was derived from tumor cells with stem‑like properties. In the present study, stem‑like cells from the gastric cancer cell lines MKN45 and SGC7901 were enriched by growing them as spheres in a defined serum‑free medium. Following enrichment for stem‑like cells, cluster of differentiation (CD)24 and CD44 were applied as candidate stem cell markers to examine the expression profile. It was revealed that the sphere‑derived cells contained a higher proportion of cells expressing the stem cell surface markers CD24 and CD44 when compared with the parental cells. It was also identified that the expression of cytokeratin 18 in sphere‑derived cells was decreased and the expression of vimentin and aldehyde dehydrogenase 1 (ALDH1) was increased compared with the parental cells. This finding supports the existence of a population of tumor sphere‑forming cells with stem cell properties in the MKN45 and SGC7901 cell lines. Furthermore, the stem cell population was enriched in cells expressing CD24, CD44, vimentin and ALDH1 cell surface markers. These results support the existence of gastric cancer stem cells and provide an alternative approach to the diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Feng Zou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Hao Deng
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lixia Wu
- Department of Pathology and Pathophysiology, School of Basic Medical Science of Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhaoyi Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
16
|
Xu W, Hu X, Chen Z, Zheng X, Zhang C, Wang G, Chen Y, Zhou X, Tang X, Luo L, Xu X, Pan W. Normal fibroblasts induce E-cadherin loss and increase lymph node metastasis in gastric cancer. PLoS One 2014; 9:e97306. [PMID: 24845259 PMCID: PMC4028202 DOI: 10.1371/journal.pone.0097306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/16/2014] [Indexed: 12/15/2022] Open
Abstract
Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis.
Collapse
Affiliation(s)
- Wen Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinlei Hu
- Department of Orthopedics, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongting Chen
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoping Zheng
- Department of Pathology, Qujiang People’s Hospital, Quzhou, China
| | - Chenjing Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Gang Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yu Chen
- Zhejiang Academy of Traditional Chinese Medicine, Experimental Animal Research Center, Hangzhou, China
| | - Xinglu Zhou
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoxiao Tang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Laisheng Luo
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiang Xu
- Department of Pharmacy, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wensheng Pan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital (Binjiang Branch) of Zhejiang University, School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
17
|
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45. [PMID: 23747841 PMCID: PMC3825748 DOI: 10.1016/j.biochi.2013.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 02/06/2023]
Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|