1
|
Lin F, Shen J, Li H, Liu L. β-carboline compound-10830733 suppresses the progression of non-small cell lung cancer by inhibiting the PI3K/Akt/GSK 3β signaling pathway. Eur J Pharmacol 2025; 986:177131. [PMID: 39566811 DOI: 10.1016/j.ejphar.2024.177131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Lung cancer is one of the most commonly diagnosed cancers worldwide, with non-small cell lung cancer (NSCLC) accounting for 80-85% of cases. To clarify the mechanisms underlying its onset and development, and to identify small molecule compounds that target related pathways effectively inhibiting tumor development and transformation. Small molecular compounds with a β-carboline nucleus exhibit a range of biological activities, with significant anti-tumor effects. A series of small molecule β-carboline compounds were synthesized and the dominant structure 1- (3-chlorophenyl) - 9H -pyridino - [3,4-b] indole - 3 -carboxylic acid methyl ester (10830733) was initially screened out. However, the effect of 10830733 on NSCLC is unclear. In this study, we investigated the anti-NSCLC activity of 10830733 and explored its potential mechanisms of action. First, we found that 10830733 decreased proliferation and invasion and promoted apoptosis, as well as S and G2 phase cell cycle arrest in NSCLC cells. Furthermore, network pharmacological analysis and Western blot confirmed that 10830733 inhibits the PI3K/Akt/GSK 3β pathway, and that the PI3K inhibitor LY294002 enhances the effects of 10830733 on proliferation, invasion, apoptosis, S and G2 phase arrest, and the expression of PI3K/Akt/GSK 3β related proteins. In conclusion, our data demonstrate that 10830733 reduces proliferation and invasion, promotes S and G2 phase arrest and apoptotic cell death in NSCLC cells by suppressing the PI3K/Akt/GSK 3β signaling pathway, suggesting that 10830733 could be a promising new candidate for NSCLC therapy.
Collapse
Affiliation(s)
- Fangrui Lin
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Junmin Shen
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Hangyu Li
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China
| | - Li Liu
- Department of Basic Medicine, Hebei University, Baoding, 071000, Heibei, China.
| |
Collapse
|
2
|
Sun Z, Ding C, Wang Y, Zhou H, Song W. Plasma-activated medium suppresses proliferation and migration of human lung cancer cells by regulating PI3K/AKT-Wnt signaling pathway. J Biosci Bioeng 2025; 139:60-69. [PMID: 39516082 DOI: 10.1016/j.jbiosc.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The main causes of high mortality in lung cancer patients are the malignant growth and migration of cancer cells. This study aims to investigate the underlying mechanisms of low-temperature plasma-activated medium (PAM) treating human lung cancer (HLC). Changes in the levels of reactive oxygen and nitrogen species both inside and outside the cells were evaluated. Our results showed that prolonged PAM exposure decreased cell viability, raised intracellular reactive oxygen species levels, and hindered cell migration while reducing mitochondrial membrane potential. Protein analysis revealed PAM increased GSK-3β and p-β-catenin expression but decreased PI3K, AKT, p-AKT, p-GSK-3β, Wnt, and β-catenin levels, thereby inhibiting the epithelial-mesenchymal transition. These findings suggest PAM suppresses HLC cells proliferation and migration by blocking the PI3K/AKT-Wnt pathway. The study will provide a valuable theoretical basis for future low-temperature plasma treatment, thereby improving the survival rates and prognosis of lung cancer.
Collapse
Affiliation(s)
- Zhidan Sun
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chenglong Ding
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuhan Wang
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Wanjiang Emerging Industry Technology Development Center, Tongling 244000, China; Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
4
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
5
|
Patro AK, Panigrahi GK, Majumder S, Das R, Sahoo A. Nonsense-mediated mRNA decay: Physiological significance, mechanistic insights and future implications. Pathol Res Pract 2024; 264:155677. [PMID: 39486251 DOI: 10.1016/j.prp.2024.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. NMD involves multiple proteins and any alteration or mutation within these proteins results in various pathophysiological consequences. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. In this review, we have shed light on the core and associated proteins of NMD, further summarized the mechanism of the NMD pathway and also described the implications of mutations in NMD factors resulting in severe pathological conditions including neurodevelopmental disorder, effects on male sterility and cancer. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases. This review summarizes the current understanding of NMD and its role in controlling various cellular processes in both development and disease.
Collapse
Affiliation(s)
- Asish Kumar Patro
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| | - Sanjoy Majumder
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| |
Collapse
|
6
|
Sun M, Han Z, Luo Z, Ge L, Zhang X, Feng K, Zhang G, Xu F, Zhou H, Han H, Jiang W. PTPN11 is a potential biomarker for type 2 diabetes mellitus complicated with colorectal cancer. Sci Rep 2024; 14:25155. [PMID: 39448762 PMCID: PMC11502912 DOI: 10.1038/s41598-024-75889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Epidemiological surveys have shown that the incidence of type 2 diabetes mellitus (T2DM) and malignancies is rapidly increasing worldwide and has become a major disease that threatens human life. In this study, we quantitatively analyzed the proteome of tumor tissues and adjacent normal tissues from six patients withT2DM combined with colorectal cancer (CRC) and eight non-diabetic CRC, focusing on the effect of T2DM on tumor tissues. We analyzed the functional enrichment of differentially expressed proteins (DEPs) using clusterProfiler in R and the expression level of protein tyrosine phosphatase non-receptor type 11 (PTPN11) and other key proteins in the TIMER and GEPIA2 databases. The HPA database was used to validate PTPN11 protein expression. The correlation between PTPN11 expression and clinicopathological features was analyzed by UALCAN database. The impact of PTPN11 on clinical prognosis was evaluated utilizing Kaplan-Meier Plotter. The correlation between PTPN11 expression and tumor-infiltrated immune cells was investigated via TIMER and TISIDB databases. Gene set enrichment analysis (GSEA) was performed to examined the pathway of PTPN11 enrichment in CRC using data from The Cancer Genome Atlas (TCGA) database. Furthermore, small interfering (si) RNA was used to knock down PTPN11 in CRC cell line SW480. Western blot analysis was used to detect PTPN11 expression in tissue samples or cells and the effect of PTPN11 knockdown on key proteins related to PI3K/AKT and cell cycle pathway in SW480 cells. Cell proliferation and wound healing assays were used to detect the effects of cell proliferation and migration after knockdown of PTPN11 or treatment with high glucose. We found that metabolic pathways such as oxidative phosphorylation, glycolysis/gluconeogenesis, and insulin secretion were significantly enriched in tumor tissues from diabetic patients compared to non-diabetic patients. In addition, PTPN11, a marker gene associated with T2DM and CRC, were mined in diabetic tumor tissues. PTPN11 showed high expression in diabetic tumor tissues compared to normal tissues. High PTPN11 expression predicted poor prognosis in CRC. PTPN11 expression was strongly associated with immune infiltrating cells in CRC. GSEA analysis revealed that PTPN11 was enriched in cancer-related pathways. Western blotting analysis indicated that PTPN11 knockdown reduced the protein levels of p-PI3K, p-AKT, CDK1 and CYCLIN D, without altering PI3K and AKT protein levels. Cell proliferation and wound healing data showed that PTPN11 and high glucose could increase the proliferation and migration ability. These findings showed that PTPN11 may be a potential key biomarker for CRC in patients with diabetes, which will provide new potential targets for future intervention of T2DM complicated with CRC.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Zhe Han
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Zhimin Luo
- Department of Pharmacy, Dermatological Hospital of Shouguang City, Shouguang, Shandong, China
| | - Lijuan Ge
- Department of Medical Affairs, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Xiaolin Zhang
- Department of Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Keshu Feng
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Guoshan Zhang
- Department of Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Fuyi Xu
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China
| | - Hongpan Zhou
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Hailin Han
- Department of Clinical Pharmacy, People's Hospital of Shouguang City, Shouguang, Shandong, China
| | - Wenguo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong, China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, Shandong, China.
| |
Collapse
|
7
|
Li Y, Yang J, Wang X, Luoreng Z. Transcriptome analysis reveals the regulation of miR-19b on inflammation in bovine mammary epithelial cells. Microb Pathog 2024; 197:107082. [PMID: 39461446 DOI: 10.1016/j.micpath.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are involved in various biological processes where they regulate the expression of mRNAs. Bovine mammary epithelial cells (bMECs) are functional cells that mediate mammary inflammatory immunity. Although numerous miRNAs regulate the function of bMECs, the role of miR-19b in bMECs has not been reported. In this study, the transcriptome of miR-19b overexpressed bMECs was analyzed by RNA-seq. Additionally, the differentially expressed genes (DEGs) were analyzed to establish the role of miR-19b in bMECs. The results revealed 269 DEGs between the miR-19b overexpression group and the negative control, including 199 up-regulated and 70 down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEGs regulated immune and inflammatory responses through Staphylococcus aureus (S. aureus) infection and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In addition, the expression of miR-19b was significantly upregulated in lipophosphoric acid (LTA)-induced bMECs, and overexpression of miR-19b negatively regulated the expression of inflammatory cytokines IL-1β and IL-6, thereby alleviating the inflammatory response of LTA-induced bMECs. Based on the above results, we speculate that miR-19b may inhibit in dairy cow mammary inflammation caused by S. aureus, and this process may be mediated through the regulation of relevant gene expression and signaling pathways. The findings from this study provide a new reference for analyzing the molecular regulation of miR-19b in bMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
8
|
Lukoseviciute M, Need E, Holzhauser S, Dalianis T, Kostopoulou ON. Combined targeted therapy with PI3K and CDK4/6, or FGFR inhibitors show synergistic effects in a neuroblastoma spheroid culture model. Biomed Pharmacother 2024; 177:116993. [PMID: 38889643 DOI: 10.1016/j.biopha.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024] Open
Abstract
AIM Neuroblastoma (NB) is, in spite of current intensive therapy with severe side effects, still not cured so new therapies are needed. Recently, we showed combining phosphoinositide 3-kinase (PI3K) (BYL719), fibroblast growth factor receptor (FGFR) (JNJ-42756493) and cyclin-dependent kinase 4/6 (CDK4/6) (PD-0332991) inhibitors, in vitro in NB cell lines grown as monolayers had synergistic effects. However, there were variations depending on the combinations used and the targeted NB cell lines. To obtain further information and to mimic more natural circumstances, we investigated the effects of single and combined administrations of the above inhibitors in spheroid NB-cultures. MATERIAL AND METHODS Spheroid cultures of NB cell lines SK-N-AS, SK-N-BE(2)-C, SK-N-FI and SK-N-SH were established and treated with single and combined administrations of BYL719, JNJ-42756493, and PD-0332991 and followed for growth, viability, proliferation, cytotoxicity and migration. KEY FINDINGS Single inhibitor administrations gave dose dependent responses with regard to growth and viability and their combinations were efficient and resulted in a range of additive and synergistic effects. The responses to individual drugs and their various combinations were predominantly alike regardless of whether the cells were cultivated in monolayer or D spheroid NB models. However, in general, slightly higher drug concentrations were necessary in spheroidcultures. SIGNIFICANCE This study provides pre-clinical evidence that single PI3K, FGFR, and CDK4/6, inhibitors exhibit promising anti-NB activity and when combined lower doses of the drugs could be also used in spheroid NB-cultures, supporting the pursuit of further in vitro and in vivo studies in preparation for future potential clinical use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
9
|
Chen B, Zhang Y, Song G, Wei X. RNF135 Promotes Human Osteosarcoma Cell Growth and Inhibits Apoptosis by Upregulating the PI3K/AKT Pathway. Cancer Rep (Hoboken) 2024; 7:e2159. [PMID: 39118262 PMCID: PMC11310095 DOI: 10.1002/cnr2.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Ring finger protein 135 (RNF135) is an E3 ubiquitin ligase that has been implicated in the tumorigenesis of multiple human malignancies. However, whether RNF135 plays a role in the development of human osteosarcoma (OS) remains unknown. METHODS RNF135 expression in 20 human OS and 20 human osteochondroma specimens were evaluated by means of immunohistochemistry staining. The effects of shRNA-mediated RNF135 knockdown on human OS cell growth and apoptosis were evaluated through a panel of in vitro studies on cell proliferation, colony formation, exposure of phosphatidylserine on the cell surface, and caspase 3/7 activation. The protein levels of PI3K, AKT, and p-AKT were determined by western blot analysis. RESULTS We detected significantly higher RNF135 levels in human OS tissues than human osteochondroma tissues. In in vitro studies, shRNA-mediated RNF135 knockdown in human OS cells inhibited proliferation and induced apoptosis. In addition, RNF135 knockdown reduced PI3K and p-AKT protein levels and activated caspase 3 and 7. CONCLUSIONS These results supported that RNF135 contributes to human OS development through PI3K/AKT-dependent mechanisms. Targeting RNF135 may provide a new therapeutic approach for treating this human malignancy.
Collapse
Affiliation(s)
- Bingyao Chen
- Second Department of OrthopedicsBeijing Daxing District People's HospitalBeijingChina
- Department of OrthopedicsAerospace Central HospitalBeijingChina
- Senior Department of OrthopedicsThe Fourth Medical Center of PLA General HospitalBeijingChina
| | - Yinglong Zhang
- Senior Department of OrthopedicsThe Fourth Medical Center of PLA General HospitalBeijingChina
| | - Guangze Song
- Department of OrthopedicsAerospace Central HospitalBeijingChina
- Senior Department of OrthopedicsThe Fourth Medical Center of PLA General HospitalBeijingChina
| | - Xing Wei
- Department of OrthopedicsAerospace Central HospitalBeijingChina
- Senior Department of OrthopedicsThe Fourth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
10
|
Tang Y, Xian Z, Wu F, Cao H, Wang L, Tang Q, Du Y, Zheng X. Traditional Chinese medicine combined with chemotherapy in the treatment of advanced non-small cell lung cancer: key drug screening and mechanism analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03310-5. [PMID: 39073415 DOI: 10.1007/s00210-024-03310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
In the course of clinical treatment for anti-tumor, the combination of traditional Chinese medicine (TCM) and other treatment schemes can reduce toxicity and increase efficiency. The purpose of this paper is to find out the key TCM and effective components for the treatment of non-small cell lung cancer (NSCLC) and analyze its therapeutic mechanism by analyzing the prescription of TCM combined with chemotherapy for NSCLC. Firstly, the prescriptions of TCM in the randomized controlled trials combined with chemotherapy for NSCLC were collected, and the core TCM was screened by frequency statistics, association rule analysis, and cluster analysis. Then, the intersection targets of the potential effects of NSCLC and core Chinese medicine were collected, and PPI analysis and enrichment analysis were performed on the intersection targets to screen the core targets, components, and pathways. The core components were verified by molecular docking and cell experiments. In this study, 269 prescriptions were collected, among which the frequency of medication for Astragalus membranaceus (HQ, in Chinese), Wolfiporia cocos (FL, in Chinese), and Atractylodes macrocephala (BZ, in Chinese) was over 100. Association rule analysis showed that they were highly correlated and clustered into the same category in cluster analysis. Their core components were quercetin, kaempferol, and isorhamnetin. The molecular docking results of the core components with the core targets AKT1 and EGFR obtained by PPI network analysis showed that they could bind stably. KEGG analysis screened 110 pathways including PI3K-Akt; the results of CCK-8 showed that quercetin, kaempferol, and isorhamnetin could effectively inhibit the proliferation of A549 cells, and isorhamnetin had the best inhibitory effect. Isorhamnetin can inhibit the migration and invasion of A549 cells, induce apoptosis and G1 phase arrest, and decrease the expression of P-PI3K and P-AKT in A549 cells. In a word, the key TCM for the treatment of NSCLC includes HQ, FL, and BZ. and its key components quercetin, kaempferol, and isorhamnetin have potential therapeutic effects on NSCLC according to the research results.
Collapse
Affiliation(s)
- Yu Tang
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Zhengping Xian
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Fengjiao Wu
- College of Life and Health, Dalian University, Dalian, 116622, China
| | - Hongyu Cao
- College of Life and Health, Dalian University, Dalian, 116622, China
- Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622, China
| | - Lihao Wang
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
- Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622, China
| | - Qian Tang
- College of Life and Health, Dalian University, Dalian, 116622, China.
- Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622, China.
| | - Yanan Du
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Xuefang Zheng
- Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian, 116622, China.
| |
Collapse
|
11
|
Ding Y, Li H, Cao S, Yu Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2024; 490:117036. [PMID: 39009138 DOI: 10.1016/j.taap.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Saisai Cao
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
12
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
13
|
Ebrahimnezhad M, Valizadeh A, Majidinia M, Tabnak P, Yousefi B. Unveiling the potential of FOXO3 in lung cancer: From molecular insights to therapeutic prospects. Biomed Pharmacother 2024; 176:116833. [PMID: 38843589 DOI: 10.1016/j.biopha.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Lung cancer poses a significant challenge regarding molecular heterogeneity, as it encompasses a wide range of molecular alterations and cancer-related pathways. Recent discoveries made it feasible to thoroughly investigate the molecular mechanisms underlying lung cancer, giving rise to the possibility of novel therapeutic strategies relying on molecularly targeted drugs. In this context, forkhead box O3 (FOXO3), a member of forkhead transcription factors, has emerged as a crucial protein commonly dysregulated in cancer cells. The regulation of the FOXO3 in reacting to external stimuli plays a key role in maintaining cellular homeostasis as a component of the molecular machinery that determines whether cells will survive or dies. Indeed, various extrinsic cues regulate FOXO3, affecting its subcellular location and transcriptional activity. These regulations are mediated by diverse signaling pathways, non-coding RNAs (ncRNAs), and protein interactions that eventually drive post-transcriptional modification of FOXO3. Nevertheless, while it is no doubt that FOXO3 is implicated in numerous aspects of lung cancer, it is unclear whether they act as tumor suppressors, promotors, or both based on the situation. However, FOXO3 serves as an intriguing possible target in lung cancer therapeutics while widely used anti-cancer chemo drugs can regulate it. In this review, we describe a summary of recent findings on molecular mechanisms of FOXO3 to clarify that targeting its activity might hold promise in lung cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Valizadeh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Ma Y, Hou B, Zong J, Liu S. Potential molecular mechanisms and clinical implications of piRNAs in preeclampsia: a review. Reprod Biol Endocrinol 2024; 22:73. [PMID: 38915084 PMCID: PMC11194991 DOI: 10.1186/s12958-024-01247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Preeclampsia is a multisystem progressive condition and is one of the most serious complications of pregnancy. Owing to its unclear pathogenesis, there are no precise and effective therapeutic targets for preeclampsia, and the only available treatment strategy is to terminate the pregnancy and eliminate the clinical symptoms. In recent years, non-coding RNAs have become a hotspot in preeclampsia research and have shown promise as effective biomarkers for the early diagnosis of preeclampsia over conventional biochemical markers. PIWI-interacting RNAs, novel small non-coding RNA that interact with PIWI proteins, are involved in the pathogenesis of various diseases at the transcriptional or post-transcriptional level. However, the mechanisms underlying the role of PIWI-interacting RNAs in the pathogenesis of preeclampsia remain unclear. In this review, we discuss the findings of existing studies on PIWI-interacting RNA biogenesis, functions, and their possible roles in preeclampsia, providing novel insights into the potential application of PIWI-interacting RNAs in the early diagnosis and clinical treatment of preeclampsia.
Collapse
Affiliation(s)
- Yuanxuan Ma
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Bo Hou
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China
| | - Jinbao Zong
- Department of Laboratory, Qingdao Hiser Hospital Affliated of Qingdao University (Oingdao Traditional Chinese Medicine Hospital), 4 Renmin Road, Qingdao, 266033, China.
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, Shandong, China.
- Department of Medical Genetics, the Affiliated Hospital of Qingdao University, Qingdao , Shandong, 266003, China.
- Medical Genetic Department, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
15
|
Ming GX, Liu JY, Wu YH, Li LY, Ma XY, Liu P, Pan YP, He XN, Li YH. Strictosamide promotes wound healing through activation of the PI3K/AKT pathway. Heliyon 2024; 10:e30169. [PMID: 38699022 PMCID: PMC11064450 DOI: 10.1016/j.heliyon.2024.e30169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Nauclea officinalis, as a Chinese medicine in Hainan province, had the effect of treating lower limb ulcers, burn infections. In this paper, we studied the effect of Strictosamide (STR), the main bioactive compound in Nauclea officinals, on wound healing and explored its internal mechanism. Firstly, the wound healing potential of STR was evaluated in a rat model, demonstrating its ability to expedite wound healing, mitigate inflammatory infiltration, and enhance collagen deposition. Additionally, immunofluorescence analysis revealed that STR up-regulated the expression of CD31 and PCNA. Subsequently, target prediction, protein-protein interaction (PPI), gene ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of STR for the potential treatment of wound healing. Furthermore, molecular docking was conducted to predict the binding affinity between STR and its associated targets. Additionally, in vivo and in vitro experiments confirmed that STR could increase the expression of P-PI3K, P-AKT and P-mTOR by activating the PI3K/AKT signaling pathway. In summary, this study provided a new explanation for the mechanism by which STR promotes wound healing through network pharmacology, suggesting that STR may be a new candidate for treating wound.
Collapse
Affiliation(s)
- Gu-xu Ming
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Jun-yan Liu
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yu-huang Wu
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Li-yan Li
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xin-yue Ma
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Pei Liu
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yi-peng Pan
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiao-ning He
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yong-hui Li
- Hainan Provincial Key Laboratory R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
- The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Liao Y, Wei F, He Z, He J, Ai Y, Guo C, Zhou L, Luo D, Li C, Wen Y, Zeng J, Ma X. Animal-derived natural products for hepatocellular carcinoma therapy: current evidence and future perspectives. Front Pharmacol 2024; 15:1399882. [PMID: 38803433 PMCID: PMC11129636 DOI: 10.3389/fphar.2024.1399882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high morbidity and mortality rate, and the survival rate of HCC patients remains low. Animal medicines have been used as potential therapeutic tools throughout the long history due to their different structures of biologically active substances with high affinity to the human body. Here, we focus on the effects and the mechanism of action of animal-derived natural products against HCC, which were searched in databases encompassing Web of Science, PubMed, Embase, Science Direct, Springer Link, and EBSCO. A total of 24 natural products from 12 animals were summarized. Our study found that these natural products have potent anti-hepatocellular carcinoma effects. The mechanism of action involving apoptosis induction, autophagy induction, anti-proliferation, anti-migration, and anti-drug resistance via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Ras/extracellular signal regulated kinases (ERK)/mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Huachansu injection and sodium cantharidate have been used in clinical applications with good efficacy. We review the potential of animal-derived natural products and their derivatives in the treatment of HCC to date and summarize their application prospect and toxic side effects, hoping to provide a reference for drug development for HCC.
Collapse
Affiliation(s)
- Yichao Liao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Endoscopy Center, Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jingxue He
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanlin Ai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengen Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Li D, Wang J, Tuo Z, Yoo KH, Yu Q, Miyamoto A, Zhang C, Ye X, Wei W, Wu R, Feng D. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155503. [PMID: 38490077 DOI: 10.1016/j.phymed.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Natural products have demonstrated significant potential in cancer drug discovery, particularly in renal cancer (RCa), urothelial carcinoma (UC), and testicular cancer (TC). PURPOSE This review aims to examine the effects of natural products on RCa, UC and TC. STUDY DESIGN systematic review METHODS: PubMed and Web of Science databases were retrieved to search studies about the effects of natural products and derivatives on these cancers. Relevant publications in the reference list of enrolled studies were also checked. RESULTS This review highlighted their diverse impacts on key aspects such as cell growth, apoptosis, metastasis, therapy response, and the immune microenvironment. Natural products not only hold promise for novel drug development but also enhance the efficacy of existing chemotherapy and immunotherapy. Importantly, we exert their effects through modulation of critical pathways and target genes, including the PI3K/AKT pathway, NF-κB pathway, STAT pathway and MAPK pathway, among others in RCa, UC, and TC. CONCLUSION These mechanistic insights provide valuable guidance for researchers, facilitating the selection of promising natural products for cancer management and offering potential avenues for further gene regulation studies in the context of cancer treatment.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
18
|
Xiong X, Yang C, Jin Y, Zhang R, Wang S, Gan L, Hou S, Bao Y, Zeng Z, Ye Y, Gao Z. ABHD6 suppresses colorectal cancer progression via AKT signaling pathway. Mol Carcinog 2024; 63:647-662. [PMID: 38197491 DOI: 10.1002/mc.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
Colorectal cancer (CRC) continues to be a prevalent malignancy, posing a significant risk to human health. The involvement of alpha/beta hydrolase domain 6 (ABHD6), a serine hydrolase family member, in CRC development was suggested by our analysis of clinical data. However, the role of ABHD6 in CRC remains unclear. This study seeks to elucidate the clinical relevance, biological function, and potential molecular mechanisms of ABHD6 in CRC. We investigated the role of ABHD6 in clinical settings, conducting proliferation, migration, and cell cycle assays. To determine the influence of ABHD6 expression levels on Oxaliplatin sensitivity, we also performed apoptosis assays. RNA sequencing and KEGG analysis were utilized to uncover the potential molecular mechanisms of ABHD6. Furthermore, we validated its expression levels using Western blot and reactive oxygen species (ROS) detection assays. Our results demonstrated that ABHD6 expression in CRC tissues was notably lower compared to adjacent normal tissues. This low expression correlated with a poorer prognosis for CRC patients. Moreover, ABHD6 overexpression impeded CRC cell proliferation and migration while inducing G0/G1 cell cycle arrest. In vivo experiments revealed that downregulation of ABHD6 resulted in an increase in tumor weight and volume. Mechanistically, ABHD6 overexpression inhibited the activation of the AKT signaling pathway and decreased ROS levels in CRC cells, suggesting the role of ABHD6 in CRC progression via the AKT signaling pathway. Our findings demonstrate that ABHD6 functions as a tumor suppressor, primarily by inhibiting the AKT signaling pathway. This role establishes ABHD6 as a promising prognostic biomarker and a potential therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Xiaoyu Xiong
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rui Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Lin Gan
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Sen Hou
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Yudi Bao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| |
Collapse
|
19
|
Xiong W, Li D, Ao F, Tu Z, Xiong J. The role and molecular mechanism of NOP16 in the pathogenesis of nasopharyngeal carcinoma. Cell Biochem Funct 2024; 42:e3939. [PMID: 38454810 DOI: 10.1002/cbf.3939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
We aimed to explore the effects of NOP16 on the pathogenesis of nasopharyngeal carcinoma (NPC) and the related mechanism. In this study, the expression level of NOP16 in NPC tissues and adjacent tissues was measured by qRT-polymerase chain reaction (PCR) and immunohistochemistry (IHC) tests. In the in vitro study, the expression levels of NOP16 and RhoA/phosphatidylinositol 3-kinase (PI3K)/Akt/c-Myc and IKK/IKB/NF-κB signalling pathway-related proteins in NPC cells were measured by qRT-PCR and Western blot (WB). CCK8 assays and colony formation assays were used to detect cell proliferation. Transwell assays were used to detect the migration and invasion ability of NPC cells. Flow cytometry and WB were used to measure the level of apoptosis. For the in vivo study, NPC xenograft models were established in nude mice, and tumour weight and volume were recorded. The expression levels of NOP16 and RhoA/PI3K/Akt/c-Myc signalling pathway-related proteins and mRNAs were measured by immunofluorescence, qRT-PCR and WB experiments. In clinical samples, the results of qRT-PCR and IHC experiments showed that the expression level of NOP16 was significantly increased in NPC tissues. In the in vitro study, the results of qRT-PCR and WB experiments showed that NOP16 was significantly increased in NPC cells. The CCK8 assay, colony formation assay, transwell assay and flow cytometry results showed that knocking out NOP16 inhibited the proliferation, migration and invasion of NPC cells and increased apoptosis. WB results showed that knocking out NOP16 inhibited the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB signalling pathways. These effects were reversed by 740Y-P (PI3K activator). In the in vivo study, knockdown of NOP16 reduced tumour volume and weight and inhibited the RhoA/PI3K/Akt/c-Myc signalling pathway. In conclusion, knockdown of NOP16 inhibited the proliferation, migration and invasion of NPC cells and induced apoptosis by inhibiting the RhoA/PI3K/Akt/c-Myc and IKK/IKB/NF-κB pathways, leading to the malignant phenotype of NPC.
Collapse
Affiliation(s)
- Wenmin Xiong
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Fenghua Ao
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Ziwei Tu
- Department of Head and Neck Tumour Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Li D, Liu Y, Li Y, Xiang Y, Yuan R. Simultaneous and Sensitive Sensing of Intracellular MicroRNA and mRNA for the Detection of the PI3K/AKT Signaling Pathway in Live Cells. Anal Chem 2024; 96:3329-3334. [PMID: 38366976 DOI: 10.1021/acs.analchem.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Simultaneous detection of the concentration variations of microRNA-221 (miRNA-221) and PTEN mRNA molecules in the PI3K/AKT signaling pathway is of significance to elucidate cancer cell migration and invasion, which is useful for cancer diagnosis and therapy. In this work, we show the biodegradable MnO2 nanosheet-assisted and target-triggered DNAzyme recycling signal amplification cascaded approach for the specific detection of the PI3K/AKT signaling pathway in live cells via simultaneous and sensitive monitoring of the variation of intracellular miRNA-221 and PTEN mRNA. Our nanoprobes enable highly sensitive and multiplexed sensing of miRNA-221 and PTEN mRNA with low detection limits of 23.6 and 0.59 pM in vitro, respectively, due to the signal amplification cascades. Importantly, the nanoprobes can be readily delivered into cancer cells and the MnO2 nanosheets can be degraded by intracellular glutathione to release the Mn2+ cofactors to trigger multiple DNAzyme recycling cycles to show highly enhanced fluorescence at different wavelengths to realize sensitive and multiplexed imaging of PTEN mRNA and miRNA-221 for detecting the PI3K/AKT signaling pathway. Moreover, the regulation of PTEN mRNA expression by miRNA-221 upon stimulation by various drugs can also be verified by our method, indicating its promising potentials for both disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yinghan Liu
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yuhao Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
21
|
Shi H, Luo J, Ye L, Duan C, Zhang M, Ran H, Li C, Wu Q, Shao Y. SH2D4A inhibits esophageal squamous cell carcinoma progression through FAK/PI3K/AKT signaling pathway. Cell Signal 2024; 114:110997. [PMID: 38043670 DOI: 10.1016/j.cellsig.2023.110997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most common malignant tumors, is now afflicting approximately 80% of patients diagnosed with esophageal cancers. The therapeutic effect and prognosis of ESCC remain inadequate due to the unusual early symptoms and rapid malignant progression. SH2 Domain containing 4 A (SH2D4A) is downregulated in malignancies and is closely associated with tumor progression. However, neither the biological functions nor the fundamental mechanisms of SH2D4A on ESCC are known. In this study, it was found that SH2D4A is downregulated in ESCC tissues and cell lines. Incorporating immunohistochemistry and clinicopathological findings, we determined that decreased SH2D4A expression was substantially associated with adverse clinical outcomes. Overexpression of SH2D4A inhibited cell proliferation and migration, whereas suppressing SH2D4A has the opposite effect. SH2D4A mechanistically inhibited cells from proliferating and migrating through the FAK/PI3K/AKT signaling pathway. Furthermore, the results of xenograft tumor growth confirmed the preceding findings. In conclusion, our findings reveal that SH2D4A is a gene which can serve as a cancer suppressor in ESCC and may inhibits the ESCC progression by interfering with the FAK/PI3K/AKT signaling pathway. SH2D4A could act as a target for diagnostic or therapeutic purpose in ESCC.
Collapse
Affiliation(s)
- Haoming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Liu Ye
- The First Branch, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changzhu Duan
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 400016 Chongqing, China..
| | - Min Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Changying Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China..
| |
Collapse
|
22
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Chen L, Lu Y, Zhao M, Xu J, Wang Y, Xu Q, Cao Y, Liu H. A non-canonical role of endothelin converting enzyme 1 (ECE1) in promoting lung cancer development via directly targeting protein kinase B (AKT). J Gene Med 2024; 26:e3612. [PMID: 37897251 DOI: 10.1002/jgm.3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Lung cancer is the second most common malignancy in the world, and lung adenocarcinoma (LUAD) in particular is the leading cause of cancer death worldwide. Endothelin converting enzyme 1 (ECE1) is a membrane-bound metalloprotease involved in endothelin-1 (ET-1) processing and regulates vasoconstriction. However, very few studies have reported the involvement of ECE1 in regulating tumor cell proliferation, and the mechanism remains poorly understood. Therefore, we aimed to determine the role of ECE1 in lung cancer development. METHODS The Cancer Genome Atlas database and Kaplan-Meier plotter were used to assess the association between ECE1 and lung cancer. The expression of ECE1 was detected using immunohistochemistry staining and western blotting. A variety of in vitro assays were performed to evaluate the effects of ECE1 on the colony formation, proliferation, migration and invasion using ECE1 knockdown lung cancer cells. The gene expression profiles regulated by ECE1 were investigated by RNA sequencing. An immunoprecipitation assay and immunofluorescence assay were used to evaluate the mechanism underlying the regulatory effect of ECE1 on protein kinase B (AKT). The effect of ECE1 on tumor development was assessed by xenografted lung cancer cells in either C57BL/6 mice or nude mice. RESULTS ECE1 was upregulated in LUAD and correlated with the poor prognosis of patients with LUAD. Functional studies showed that knockdown of ECE1 retarded the progression of tumors formed by lung cancer cells at least partly by inhibiting tumor cell proliferation. Moreover, ECE1 accelerated tumor cell proliferation through promoting AKT activation dispensable of its canonical target ET-1. Mechanically, ECE1 interacted with the pleckstrin homology (PH) domain of AKT and facilitated its translocation to the plasma membrane for activation. Furthermore, the inhibition of AKT activity counteracted the lung cancer cell growth inhibition observed both in vitro and in xenografts caused by ECE1 suppression. CONCLUSIONS The present study reveals a non-canonical function of ECE1 in regulating AKT activation and cell proliferation, which provides the basis for the development of a novel strategy for the intervention of cancer including LUAD by abrogating ECE1-AKT signaling.
Collapse
Affiliation(s)
- Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junfang Xu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinghua Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Zhan K, Pan H, Zhou Z, Tang W, Ye Z, Huang S, Luo L. Biological role of long non-coding RNA KCNQ1OT1 in cancer progression. Biomed Pharmacother 2023; 169:115876. [PMID: 37976888 DOI: 10.1016/j.biopha.2023.115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of RNAs that are more than 200 nucleotides without protein-coding potential. In recent years, more and more attention has been paid to the role of lncRNAs in cancer pathogenesis. LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is located on chromosome 11p15.5 with a total length of 91 kb and is highly expressed in various malignancies, which is closely related to tumor growth, lymph node metastasis, survival cycle and recurrence rate. In addition, KCNQ1OT1 is involved in the regulation of PI3K/AKT and Wnt/β-catenin signaling pathways. In this review, the mechanism and related progress of KCNQ1OT1 in different cancers were reviewed. It was found that KCNQ1OT1 can stabilize mRNA expression through sponging miRNA, which not only induced tumor cell proliferation, migration, invasion, drug resistance, epithelial-mesenchymal transition (EMT) and inhibited cell apoptosis in vitro, but also promoted tumor growth and metastasis in vivo. Therefore, as a new biomarker and therapeutic target, KCNQ1OT1 has broad prospects for the diagnosis and treatment of different cancers.
Collapse
Affiliation(s)
- Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhang Zhou
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan 430000, China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, China.
| |
Collapse
|
26
|
Zuo B, Wang L, Li X, Li X, Wang J, Xiong Y, Lei J, Zhang X, Chen Y, Liu Q, Jiao J, Sui M, Fan J, Wu N, Song Z, Li G. Abnormal low expression of SFTPC promotes the proliferation of lung adenocarcinoma by enhancing PI3K/AKT/mTOR signaling transduction. Aging (Albany NY) 2023; 15:12451-12475. [PMID: 37955668 PMCID: PMC10683597 DOI: 10.18632/aging.205191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
The abnormality of surfactant protein C (SFTPC) has been linked to the development of a number of interstitial lung diseases, according to mounting evidence. Nonetheless, the function and mechanism of SFTPC in the biological progression of lung adenocarcinoma (LUAD) remain unclear. Analysis of public datasets and testing of clinical samples suggested that SFTPC expression was abnormally low in LUAD, which was associated with the onset and poor prognosis of LUAD. The SFTPC-related risk score was derived using least absolute shrinkage and selection operator Cox regression as well as multivariate Cox regression. The risk score was highly correlated with tumor purity and tumor mutation burden, and it could serve as an independent prognostic indicator for LUAD. Low-risk LUAD patients may benefit more from CTLA-4 or/and PD-1 inhibitors. Overall, the risk score is useful for LUAD patient prognostication and treatment guidance. Moreover, in vitro and in vivo experiments demonstrated that SFTPC inhibits the proliferation of LUAD by inhibiting PI3K/AKT/mTOR signaling transduction. These results reveal the molecular mechanism by which SFTPC inhibits the proliferation of LUAD and suggest that SFTPC could be a new therapeutic target for LUAD.
Collapse
Affiliation(s)
- Baile Zuo
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Li
- Department of Geriatric Medicine, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Provincial People’s Hospital, Affiliate of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifan Chen
- College of Management, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Qiongwen Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinke Jiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Mengru Sui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jinhan Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Ningxue Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- MOE Key Laboratory of Modern Teaching Technology, Center for Teacher Professional Ability Development, Shaanxi Normal University, Xi’an, Shaanxi, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
28
|
Zhang L, Gao J, Li Z, Liu J, Zhang C, Liu J, Dong H, Mei W. Astragaloside IV relieves IL-1β-induced human nucleus pulposus cells degeneration through modulating PI3K/Akt signaling pathway. Medicine (Baltimore) 2023; 102:e34815. [PMID: 37603510 PMCID: PMC10443759 DOI: 10.1097/md.0000000000034815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a multifactorial disease that is associated with nucleus pulposus (NP) apoptosis and extracellular matrix (ECM) degeneration and inflammation. Astragaloside IV (AS IV) has antioxidant, free radical scavenging, anti-inflammatory and anti-apoptosis effects. This study was to investigate whether AS IV could inhibit IL-1β-mediated apoptosis of HNP cells and its possible signal transduction pathway. METHODS Human nucleus pulposus cells (HNPCs) were stimulated with AS IV or LY294002 (PI3K inhibitor), followed by exposure to IL-1β for 24 hours. CCK8, TUNEL analysis and flow cytometry, ELISA and Western blotting were used to analyze the effects of AS IV on cell proliferation, apoptosis, inflammation, ECM and PI3K/Akt pathway signaling path-related proteins in IL-1β-induced HNPCs. RESULTS Compared with IL-1β-induced HNPCs, AS IV could improve the proliferation activity and the expressions of Collagen II, Aggrecan and Bcl-2 proteins, inhibit the apoptosis rate, inflammation and Bax and cleaved caspase-3 protein expression, and increase the activity of PI3K/Akt pathway. LY294002 attenuated the protective effect of AS IV against IL-1β-induced HNPCs degeneration. CONCLUSION AS IV can inhibit IL-1β-induced HNPCs apoptosis inflammation and ECM degeneration by activating PI3K/Akt signaling pathway, which can be an effective drug to reduce disc degeneration.
Collapse
Affiliation(s)
- Lu Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Junsheng Gao
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Zhentao Li
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jun Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Chong Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jie Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Hui Dong
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Wei Mei
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| |
Collapse
|
29
|
Zhang J, Li X, Zhou Y, Lin M, Zhang Q, Wang Y. FNBP1 Facilitates Cervical Cancer Cell Survival by the Constitutive Activation of FAK/PI3K/AKT/mTOR Signaling. Cells 2023; 12:1964. [PMID: 37566043 PMCID: PMC10417648 DOI: 10.3390/cells12151964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Cervical cancer is the most prevalent gynecological tumor among women worldwide. Although the incidence and mortality of cervical cancer have been declining thanks to the wide-scale implementation of cytological screening, it remains a major challenge in clinical treatment. High viability is one of the leading causes of the chemotherapeutic resistance in cervical cancers. Formin-binding protein 1 (FNBP1) could stimulate F-actin polymerization beneath the curved plasma membrane in the cell migration and endocytosis, which had previously been well defined. Here, FNBP1 was also demonstrated to play a crucial role in cervical cancer cell survival, and the knockdown of which could result in the attenuation of FAK/PI3K/AKT signaling followed by significant apoptotic accumulation and proliferative inhibition. In addition, the epidermal growth factor (hrEGF) abrogated all the biological effects mediated by the silencing of FNBP1 except for the cell adhesion decrease. These findings indicated that FNBP1 plays a key role in maintaining the activity of focal adhesion kinase (FAK) by promoting cell adhesion. The activated FAK positively regulated downstream PI3K/AKT/mTOR signaling, which is responsible for cell survival. Promisingly, FNBP1 might be a potential target against cervical cancer in combination therapy.
Collapse
Affiliation(s)
- Jun Zhang
- Basic Medical School, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | |
Collapse
|
30
|
Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX. Toxic effects of cadmium exposure on intestinal histology, oxidative stress, microbial community, and transcriptome change in the mud crab (Scylla paramamosain). CHEMOSPHERE 2023; 326:138464. [PMID: 36965531 DOI: 10.1016/j.chemosphere.2023.138464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Cadmium is one of hazardous pollutants that has a great threat to aquatic organisms and ecosystems. The intestine plays important roles in barrier function and immunity to defend against environmental stress. However, whether cadmium exposure caused the intestine injury is not well studied. Thus, the aim of this study was to explore the potential mechanisms of cadmium toxicity in the intestine of mud crab (Scylla paramamosain) via physiological, histological, microbial community, and transcriptional analyses. Mud crabs were exposed to 0, 0.01, and 0.125 mg/L cadmium. After a 21-day of cadmium exposure, 0.125 mg/L cadmium caused intestine damaged by decreasing superoxide dismutase and catalase activities, and increasing hydrogen peroxide and malondialdehyde levels. Integrated biological index analysis confirmed that the toxicity of cadmium exhibited a concentration-dependent manner. Comparative transcriptional analyses showed that the up-regulations of several genes associated with heat shock proteins, detoxification and anti-oxidant defense, and two key signaling pathways (PI3k-Akt and apoptosis) revealed an adaptive response mechanism against cadmium exposure. Transcriptomic analysis also suggested that cadmium exposure disturbed the expression of ion transport and immune-related genes, indicating that it has negative effects on the immune functions of the mud crab. Furthermore, the intestinal microbial diversity and composition were significantly influenced by cadmium exposure. The abundance of the dominant phyla Fusobacteria and Bacteroidetes significantly changed after cadmium exposure. KEGG pathway analysis demonstrated that cadmium exposure could change energy metabolism and environmental information processing. Overall, we concluded that excessive cadmium exposure could be potentially exerted adverse effects to the mud crab health by inducing oxidative damage, decreasing immune system, disrupting metabolic function, and altering intestinal microbial composition. These results provided a novel insight into the mechanism of cadmium toxicity on crustaceans.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| |
Collapse
|
31
|
Jiang Y, Zhao X, Chen J, Aniagu S, Chen T. PM2.5 induces cardiac malformations via PI3K/akt2/mTORC1 signaling pathway in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121306. [PMID: 36804889 DOI: 10.1016/j.envpol.2023.121306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Growing evidence indicates that maternal fine particulate matter (PM2.5) exposure is linked with congenital heart diseases in the offspring. To explore the underlying molecular mechanisms, we tested the effects of a number of pharmaceutical inhibitors, and found that suppressing the PI3K/akt signaling pathway had a protective effect against cardiac defects in zebrafish larvae exposed to extractable organic matter (EOM) from PM2.5. Using genetic knockdown and a specific akt2 pharmacological inhibitor, CCT128930, we demonstrated that akt2 activation is essential to EOM-induced heart malformations. Next, we found that the EOM-induced akt2 overactivation enhances intracellular reactive oxygen species (ROS)/mitochondrial ROS production, decreases mitochondrial membrane potential levels, and elicits intrinsic apoptosis in the heart of zebrafish embryos. In addition, EOM-induced akt2 activation decreased active β-catenin levels and inhibited the expression of Wnt target genes axin2 and nkx2.5. We further demonstrated that mTORC1 phosphorylation mediates the adverse effects of akt2 on intrinsic apoptosis and canonical Wnt signaling in the heart of zebrafish larvae exposed to EOM. Moreover, EOM-induced akt2 activation is mediated via aryl hydrocarbon receptor (AHR)/ROS-induced PTEN inhibition. In conclusion, our results indicate that PM2.5 activates PI3K/akt2/mTORC1 signaling via AHR/ROS-induced PTEN suppression, which leads to mitochondrial-mediated intrinsic apoptosis and Wnt signaling suppression, resulting in cardiac defects in zebrafish larvae.
Collapse
Affiliation(s)
- Yan Jiang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiahao Zhao
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Jin Chen
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Tao Chen
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Cardinali G, Kovacs D, Mosca S, Bellei B, Flori E, Morrone A, Mileo AM, Maresca V. The αMSH-Dependent PI3K Pathway Supports Energy Metabolism, via Glucose Uptake, in Melanoma Cells. Cells 2023; 12:cells12071099. [PMID: 37048170 PMCID: PMC10093374 DOI: 10.3390/cells12071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Stimulation of melanocytes and murine melanoma cells with αMSH plus the PI3K inhibitor LY294002 resulted in ROS increase, oxidative DNA damage, and pigment retention. We performed cellular and molecular biology assays (Western blot, FACS, immunofluorescence analysis, scratch assay) on murine and human melanoma cells. Treatment with αMSH plus LY294002 altered cortical actin architecture. Given that cytoskeleton integrity requires energy, we next evaluated ATP levels and we observed a drop in ATP after exposure to αMSH plus LY294002. To evaluate if the αMSH-activated PI3K pathway could modulate energy metabolism, we focused on glucose uptake by analyzing the expression of the Glut-1 glucose translocator. Compared with cells treated with αMSH alone, those exposed to combined treatment showed a reduction of Glut-1 on the plasma membrane. This metabolic alteration was associated with changes in mitochondrial mass. A significant decrease of the cell migratory potential was also observed. We demonstrated that the αMSH-dependent PI3K pathway acts as a regulator of energy metabolism via glucose uptake, influencing the actin cytoskeleton, which is involved in melanosome release and cell motility. Hence, these results could constitute the basis for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Aldo Morrone
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, Department of Research Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy
| | - Vittoria Maresca
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
33
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Nonsense-Mediated mRNA Decay as a Mediator of Tumorigenesis. Genes (Basel) 2023; 14:genes14020357. [PMID: 36833284 PMCID: PMC9956241 DOI: 10.3390/genes14020357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved and well-characterized biological mechanism that ensures the fidelity and regulation of gene expression. Initially, NMD was described as a cellular surveillance or quality control process to promote selective recognition and rapid degradation of erroneous transcripts harboring a premature translation-termination codon (PTC). As estimated, one-third of mutated and disease-causing mRNAs were reported to be targeted and degraded by NMD, suggesting the significance of this intricate mechanism in maintaining cellular integrity. It was later revealed that NMD also elicits down-regulation of many endogenous mRNAs without mutations (~10% of the human transcriptome). Therefore, NMD modulates gene expression to evade the generation of aberrant truncated proteins with detrimental functions, compromised activities, or dominant-negative effects, as well as by controlling the abundance of endogenous mRNAs. By regulating gene expression, NMD promotes diverse biological functions during development and differentiation, and facilitates cellular responses to adaptation, physiological changes, stresses, environmental insults, etc. Mutations or alterations (such as abnormal expression, degradation, post-translational modification, etc.) that impair the function or expression of proteins associated with the NMD pathway can be deleterious to cells and may cause pathological consequences, as implicated in developmental and intellectual disabilities, genetic defects, and cancer. Growing evidence in past decades has highlighted NMD as a critical driver of tumorigenesis. Advances in sequencing technologies provided the opportunity to identify many NMD substrate mRNAs in tumor samples compared to matched normal tissues. Interestingly, many of these changes are tumor-specific and are often fine-tuned in a tumor-specific manner, suggesting the complex regulation of NMD in cancer. Tumor cells differentially exploit NMD for survival benefits. Some tumors promote NMD to degrade a subset of mRNAs, such as those encoding tumor suppressors, stress response proteins, signaling proteins, RNA binding proteins, splicing factors, and immunogenic neoantigens. In contrast, some tumors suppress NMD to facilitate the expression of oncoproteins or other proteins beneficial for tumor growth and progression. In this review, we discuss how NMD is regulated as a critical mediator of oncogenesis to promote the development and progression of tumor cells. Understanding how NMD affects tumorigenesis differentially will pave the way for the development of more effective and less toxic, targeted therapeutic opportunities in the era of personalized medicine.
Collapse
|
35
|
Kim W, Jeon TJ. Phosphatidylinositol 3-kinases play a suppressive role in cell motility of vegetative Dictyostelium cells. Biochem Biophys Res Commun 2022; 629:106-111. [PMID: 36116372 DOI: 10.1016/j.bbrc.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Phosphatidylinositol 3-Kinase (PI3K) is a key regulator of cell motility during chemotaxis and plays an important role in relaying and amplifying the shallow gradient of chemoattractant signals to ultimately mediate rearrangements of the actin cytoskeleton. To determine whether PI3K plays a similar role in electrotaxis as in chemotaxis, we examined directional cell migration in response to an electric field (EF) and unexpectedly found that the role of PI3K in regulating cell motility differs depending on the state of Dictyostelium cells. Contrary to chemotaxis experiments using aggregation-competent cells, in the cell migration assay, we used a recently developed method for electrotaxis using 3-h starved cells. Wild-type cells starved for 3 h showed increased motility in the presence of LY294002, a PI3K inhibitor, whereas aggregation-competent cells showed slightly decreased motility, indicating the effect of LY294002 on cell motility differ depending on the state of the cells. Consistent with these results, pi3k null cells in the vegetative state exhibited increased motility similar to that in the presence of LY294002, compared to wild-type cells. These findings were confirmed through random migration experiments. These results suggest that PI3Ks play a suppressive role in regulating cell motility of vegetative Dictyostelium cells and that the suppressive effect is reversed on inhibition or lack of PI3Ks, leading to high motility.
Collapse
Affiliation(s)
- Wonbum Kim
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Taeck Joong Jeon
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
36
|
Liu C, Feng H, Song L, Li S, Wu Y, Yang L. Synergistic effects of thalidomide and cisplatin are mediated via the PI3K/AKT and JAK1/STAT3 signaling pathways in cervical cancer. Oncol Rep 2022; 48:169. [PMID: 35920185 PMCID: PMC9478987 DOI: 10.3892/or.2022.8384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022] Open
Abstract
Thalidomide (THD) has been found to synergize with cisplatin (DDP) in certain types of cancers; however, their combined use in the treatment of cervical cancer has not been reported to date, at least to the best of our knowledge. Thus, the present study aimed to explore the synergistic effects of THD and DDP and determine their regulatory effects on the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) and Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathways in cervical cancer. For this purpose, 0‑160 µM THD and 0‑64 µM DDP monotherapy or in combination were used to treat the HeLa and SiHa cervical cancer cell lines. This was followed by the calculation of the combination index (CI) and 160 µM THD and 16 µM DDP were then used to treat the cells. Relative cell viability and apoptosis, as well as the mRNA and protein levels of PI3K, AKT, JAK1 and STAT3 were evaluated. The results revealed that THD and DDP monotherapy suppressed the viability of the HeLa and SiHa cells in a concentration‑dependent manner. Moreover, THD and DDP treatment exerted a more prominent suppressive effect on the relative viability of HeLa and SiHa cells compared with DDP monotherapy at several concentration settings; further CI calculation revealed that the optimal synergistic concentrations were 160 µM for THD and 16 µM for DDP. Subsequently, combined treatment with THD and DDP suppressed relative cell viability, whereas it promoted cell apoptosis compared with THD or DPP monotherapy; it also inhibited the PI3K/AKT and JAK1/STAT3 signaling pathways compared with DPP or THD monotherapy in both HeLa and SiHa cells. On the whole, the present study demonstrated that THD synergizes with DDP to exert suppressive effects on cervical cancer cell lines. This synergistic action also inactivated the PI3K/AKT and JAK1/STAT3 pathways. Thus, these findings suggest that the combined use of THD and DPP may have potential for use in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Cairu Liu
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Haiqin Feng
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Lihong Song
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Shuirui Li
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Yiping Wu
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| | - Liping Yang
- Department of Gynecology and Obstetrics, HanDan Central Hospital, Handan, Hebei 056008, P.R. China
| |
Collapse
|
37
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Platelet Activation and Alzheimer’s Disease: The Probable Role of PI3K/AKT Pathway. J Alzheimers Dis 2022; 90:529-534. [DOI: 10.3233/jad-220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In recent years, the association between the activity of platelets and risk of Alzheimer’s disease (AD) risk has been noticed in numerous studies. However, there in no investigations on the role of specific intracellular pathways to explain this connection. The phosphatidylinositol 3 kinase (PI3K)/AKT pathway is one of the main regulators of cell survival which regulates cellular responses to environmental changes. This pathway also regulates the activity of platelets, and its aberrant activity has been linked to platelet dysfunction in different pathologies. On the other hand, the PI3K/AKT pathway regulates amyloid-β (Aβ) production through regulation of amyloid-β protein precursor (AβPP), BACE-1, ADAMs, and γ-secretase. In addition, alterations in the activity of all of these factors in platelets has been shown in AD-related pathologies. Therefore, this paper aims to introduce the PI3K/AKT pathway as a molecular inducer of platelet dysfunction during aging and AD progression.
Collapse
Affiliation(s)
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
38
|
Lu Y, Mao J, Xu Y, Pan H, Wang Y, Li W. Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum Exp Toxicol 2022; 41:9603271221120652. [PMID: 36124980 DOI: 10.1177/09603271221120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Ovarian cancer is a malignant tumor in women all over the world. Ropivacaine is identified as a potential drug for the treatment of malignant tumors, but the role and mechanism of ropivacaine in ovarian cancer remains unknown. MATERIALS AND METHODS Ovarian cancer cells were treated with different doses of ropivacaine. The function of ropivacaine in ovarian cancer was assessed using Cell Counting Kit-8 assay, flow cytometry, sphere-formation assay, Western blot, Fe2+ level analysis, and immunofluorescence. Meanwhile, the mechanism of ropivacaine in ovarian cancer was investigated by multiple molecular experiments. The protective function of ropivacaine in ovarian cancer was further confirmed by in vivo assay. RESULTS The functional research data indicated that the growth and stemness of ovarian cancer cells were restrained after ropivacaine treatment, while the ferroptosis in ovarian cancer cells was facilitated. The mechanism results confirmed that ropivacaine inactivated the PI3K/AKT signaling pathway in ovarian cancer cells. Furthermore, in vivo assay demonstrated that ropivacaine repressed the proliferation of ovarian cancer cells in vivo and had a protective function in ovarian cancer. CONCLUSION Ropivacaine restrained ovarian cancer cell stemness and accelerated cell ferroptosis by inactivating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yi Lu
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinbao Mao
- Department Of Anesthesia and Surgery, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanbing Xu
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hao Pan
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Wang
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Li
- Department Of Anesthesia, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|