1
|
Raymond M, Crochet PA. Carving Non-Proximal Explanations for Same-Sex Sexual Orientation. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:3007-3012. [PMID: 36469147 DOI: 10.1007/s10508-022-02497-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Michel Raymond
- CNRS, EPHE, IRD, Institut des Sciences de l'Evolution, Univ Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 05, France.
| | | |
Collapse
|
2
|
Freitas-de-Melo A, Agrati D, Rodriguez MGK, Clariget RP, Ungerfeld R. Sex or maternal care? Nursing oestrous ewes prefer to interact with rams over their lambs. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Schmitt CA, Garrett EC. De-Scent with Modification: More Evidence and Caution Needed to Assess Whether the Loss of a Pheromone Signaling Protein Permitted the Evolution of Same-Sex Sexual Behavior in Primates. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:2301-2307. [PMID: 31741251 DOI: 10.1007/s10508-019-01583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Christopher A Schmitt
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA, 02215, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Eva C Garrett
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA, 02215, USA
| |
Collapse
|
4
|
Sexual behaviour, semen quality and fertility of young Border Leicester rams administered melatonin during spring. Anim Reprod Sci 2021; 231:106804. [PMID: 34271495 DOI: 10.1016/j.anireprosci.2021.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
This study was conducted to test the hypothesis that between year variability in reproductive response to melatonin treatment of young Border Leicester (BL) rams in spring was related to sexual maturity at the time of treatment. Two variables of sexual maturity (mating behaviour and semen quality) were examined. In Experiment 1, mating activity of melatonin-treated and untreated rams was examined at two sites before a flock mating at one site. In Experiment 2, testosterone concentrations, semen quality and variables of in vitro fertilising capacity were examined. In Experiment 1, melatonin treatment did not alter sexual behaviour (latency to nose, total nosings, courtings including Flehmen expression, attempted mounts, mounts, ejaculations) with the exception of a lesser (P < 0.05) Flehmen expression at Site 1 whereas values for most variables were greater (P < 0.05) at Site 2. Treatment resulted in a greater pregnancy rate (89 % and 82 %, respectively; P < 0.05) and advanced distribution of pregnancies (P < 0.001) at Site 1. Testicular size and testosterone concentrations were also greater (P < 0.05) as a result of melatonin treatment in spring whilst the reverse occurred in autumn. In Experiment 2, sperm motility and in vitro fertilising capacity were greater (P < 0.05) and acrosome damage less (P < 0.05) as a result of melatonin treatment. In conclusion, variability in age at sexual maturity of young BL rams at spring mating can be reduced with melatonin treatment and is associated with differences in sexual behaviour, testicular growth, testosterone concentrations, and sperm quality.
Collapse
|
5
|
Balthazart J. Sexual partner preference in animals and humans. Neurosci Biobehav Rev 2020; 115:34-47. [PMID: 32450091 PMCID: PMC7484171 DOI: 10.1016/j.neubiorev.2020.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
Sex differences in brain and behavior of animals including humans result from an interaction between biological and environmental influences. This is also true for the differences between men and women concerning sexual orientation. Sexual differentiation is mediated by three groups of biological mechanisms: early actions of sex steroids, more direct actions of sex-specific genes not mediated by gonadal sex steroids and epigenetic mechanisms. Differential interactions with parents and conspecifics have additionally long-term influences on behavior. This presentation reviews available evidence indicating that these different mechanisms play a significant role in the control of sexual partner preference in animals and humans, in other words the homosexual versus heterosexual orientation. Clinical and epidemiological studies of phenotypically selected populations indicate that early actions of hormones and genetic factors clearly contribute to the determination of sexual orientation. The maternal embryonic environment also modifies the incidence of male homosexuality via immunological mechanisms. The relative contribution of each of these mechanisms remains however to be determined.
Collapse
|
6
|
Adkins-Regan E. Sexual and pairing partner preference in birds and other animals. Horm Behav 2020; 118:104646. [PMID: 31778718 DOI: 10.1016/j.yhbeh.2019.104646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Research on hormonal involvement in animals' preferences for mating or pairing with same- or other-sex partners has been among the topics featured in Hormones and Behavior over the years. In several species of non-pair-forming mammals, there is good evidence that the early sex steroid environment has an organizational effect on later sexual partner preference. Research with zebra finches, a pair-forming species, shows a likely early estrogenic organizational hormone effect on pairing partner preference, an effect that can also interact with the early social environment to determine adult pairing preference. Experiments with two amphibian and fish species suggest that activational hormone effects (effects of the hormone milieu in adulthood) may regulate sexual partner preference. As a complement to the research on hormonal involvement, a growing body of theoretical and empirical research addresses the possible adaptive functions of the same-sex sexual and pairing behavior observed in many wild animals. Such advances have important implications for conceptualizing neuroendocrine mechanisms of partner preferences.
Collapse
Affiliation(s)
- Elizabeth Adkins-Regan
- Department of Psychology and Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Barrière DA, Ella A, Adriaensen H, Roselli CE, Chemineau P, Keller M. In vivo magnetic resonance imaging reveals the effect of gonadal hormones on morphological and functional brain sexual dimorphisms in adult sheep. Psychoneuroendocrinology 2019; 109:104387. [PMID: 31465941 DOI: 10.1016/j.psyneuen.2019.104387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
Sex differences in the brain and behavior are produced by the perinatal action of testosterone, which is converted into estradiol by the enzyme aromatase in the brain. Although magnetic resonance imaging (MRI) has been widely used in humans to study these differences, the use of animal models, where hormonal status can be properly manipulated, is necessary to explore the mechanisms involved. We used sheep, a recognized model in the field of neuroendocrinology, to assess brain morphological and functional sex differences and their regulation by adult gonadal hormones. To this end, we performed voxel-based morphometry and a resting-state functional MRI approach to assess sex differences in gonadally intact animals. We demonstrated significant sex differences in gray matter concentration (GMC) at the level of the gonadotropic axis, i.e., not only within the hypothalamus and pituitary but also within the hippocampus and the amygdala of intact animals. We then performed the same analysis one month after gonadectomy and found that some of these differences were reduced, especially in the hypothalamus and amygdala. By contrast, we found few differences in the organization of the functional connectome between males and females either before or after gonadectomy. As a whole, our study identifies brain regions that are sexually dimorphic in the sheep brain at the resolution of the MRI and highlights the role of gonadal hormones in the maintenance of these differences.
Collapse
Affiliation(s)
- David André Barrière
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université de Tours/IFCE, Nouzilly, France; Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arsène Ella
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université de Tours/IFCE, Nouzilly, France; MRC Cognition & Brain Science Unit, University of Cambridge, UK
| | - Hans Adriaensen
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | | | - Philippe Chemineau
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Matthieu Keller
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université de Tours/IFCE, Nouzilly, France.
| |
Collapse
|
8
|
Luoto S, Krams I, Rantala MJ. A Life History Approach to the Female Sexual Orientation Spectrum: Evolution, Development, Causal Mechanisms, and Health. ARCHIVES OF SEXUAL BEHAVIOR 2019; 48:1273-1308. [PMID: 30229521 DOI: 10.1007/s10508-018-1261-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Women's capacity for sexual fluidity is at least as interesting a phenomenon from the point of view of evolutionary biology and behavioral endocrinology as exclusively homosexual orientation. Evolutionary hypotheses for female nonheterosexuality have failed to fully account for the existence of these different categories of nonheterosexual women, while also overlooking broader data on the causal mechanisms, physiology, ontogeny, and phylogeny of female nonheterosexuality. We review the evolutionary-developmental origins of various phenotypes in the female sexual orientation spectrum using the synergistic approach of Tinbergen's four questions. We also present femme-specific and butch-specific hypotheses at proximate and ultimate levels of analysis. This review article indicates that various nonheterosexual female phenotypes emerge from and contribute to hormonally mediated fast life history strategies. Life history theory provides a biobehavioral explanatory framework for nonheterosexual women's masculinized body morphology, psychological dispositions, and their elevated likelihood of experiencing violence, substance use, obesity, teenage pregnancy, and lower general health. This pattern of life outcomes can create a feedback loop of environmental unpredictability and harshness which destabilizes intrauterine hormonal conditions in mothers, leading to a greater likelihood of fast life history strategies, global health problems, and nonheterosexual preferences in female offspring. We further explore the potential of female nonheterosexuality to function as an alloparental buffer that enables masculinizing alleles to execute their characteristic fast life history strategies as they appear in the female and the male phenotype. Synthesizing life history theory with the female sexual orientation spectrum enriches existing scientific knowledge on the evolutionary-developmental mechanisms of human sex differences.
Collapse
Affiliation(s)
- Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Arts 1, Building 206, Room 616, 14A Symonds St., Auckland, 1010, New Zealand.
- School of Psychology, University of Auckland, Auckland, New Zealand.
| | - Indrikis Krams
- Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Center, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Heck AL, Crestani CC, Fernández-Guasti A, Larco DO, Mayerhofer A, Roselli CE. Neuropeptide and steroid hormone mediators of neuroendocrine regulation. J Neuroendocrinol 2018; 30:e12599. [PMID: 29645316 PMCID: PMC6181757 DOI: 10.1111/jne.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
To maintain the health and well-being of all mammals, numerous aspects of physiology are controlled by neuroendocrine mechanisms. These mechanisms ultimately enable communication between neurones and glands throughout the body and are centrally mediated by neuropeptides and/or steroid hormones. A recent session at the International Workshop in Neuroendocrinology highlighted the essential roles of some of these neuropeptide and steroid hormone mediators in the neuroendocrine regulation of stress-, reproduction- and behaviour-related processes. Accordingly, the present review highlights topics presented in this session, including the role of the neuropeptides corticotrophin-releasing factor and gonadotrophin-releasing hormone in stress and reproductive physiology, respectively. Additionally, it details an important role for gonadal sex steroids in the development of behavioural sex preference.
Collapse
Affiliation(s)
- Ashley L. Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO USA 80523
| | - Carlos C. Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil 14800-903
| | | | | | - Artur Mayerhofer
- Biomedical Center, Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), Planegg, Germany 82152
| | - Charles E. Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR USA 97239-3098
| |
Collapse
|
10
|
Understanding Sexual Partner Preference: from Biological Diversity to Psychiatric Disorders. CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Roselli CE. Neurobiology of gender identity and sexual orientation. J Neuroendocrinol 2018; 30:e12562. [PMID: 29211317 PMCID: PMC6677266 DOI: 10.1111/jne.12562] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/03/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Sexual identity and sexual orientation are independent components of a person's sexual identity. These dimensions are most often in harmony with each other and with an individual's genital sex, although not always. The present review discusses the relationship of sexual identity and sexual orientation to prenatal factors that act to shape the development of the brain and the expression of sexual behaviours in animals and humans. One major influence discussed relates to organisational effects that the early hormone environment exerts on both gender identity and sexual orientation. Evidence that gender identity and sexual orientation are masculinised by prenatal exposure to testosterone and feminised in it absence is drawn from basic research in animals, correlations of biometric indices of androgen exposure and studies of clinical conditions associated with disorders in sexual development. There are, however, important exceptions to this theory that have yet to be resolved. Family and twin studies indicate that genes play a role, although no specific candidate genes have been identified. Evidence that relates to the number of older brothers implicates maternal immune responses as a contributing factor for male sexual orientation. It remains speculative how these influences might relate to each other and interact with postnatal socialisation. Nonetheless, despite the many challenges to research in this area, existing empirical evidence makes it clear that there is a significant biological contribution to the development of an individual's sexual identity and sexual orientation.
Collapse
Affiliation(s)
- C E Roselli
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
12
|
Experimental evolution with an insect model reveals that male homosexual behaviour occurs due to inaccurate mate choice. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Tecamachaltzi-Silvaran MB, Barradas-Moctezuma M, Herrera-Covarrubias D, Carrillo P, Corona-Morales AA, Perez CA, García LI, Manzo J, Coria-Avila GA. Olfactory conditioned same-sex partner preference in female rats: Role of ovarian hormones. Horm Behav 2017; 96:13-20. [PMID: 28867385 DOI: 10.1016/j.yhbeh.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/09/2017] [Accepted: 08/29/2017] [Indexed: 11/22/2022]
Abstract
The dopamine D2-type receptor agonist quinpirole (QNP) facilitates the development of conditioned same-sex partner preference in males during cohabitation, but not in ovariectomized (OVX) females, primed with estradiol benzoate (EB) and progesterone (P). Herein we tested the effects of QNP on OVX, EB-only primed females. Females received a systemic injection (every four days) of either saline (Saline-conditioned) or QNP (QNP-conditioned) and then cohabited for 24h with lemon-scented stimulus females (CS+), during three trials. In test 1 (female-female) preference was QNP-free, and females chose between the CS+ female and a novel female. In test 2 (male-female) they chose between the CS+ female and a sexually experienced male. In test 1 Saline-conditioned females displayed more hops & darts towards the novel female, but QNP-conditioned females displayed more sexual solicitations towards the CS+ female. In test 2 Saline-conditioned females displayed a clear preference for the male, whereas QNP-conditioned females displayed what we considered a bisexual preference. We discuss the effect of dopamine and ovarian hormones on the development of olfactory conditioned same-sex preference in females.
Collapse
Affiliation(s)
| | | | | | - P Carrillo
- Instituto de Neuroetología, Universidad Veracruzana, Mexico
| | | | - C A Perez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - L I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | - J Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | |
Collapse
|
14
|
Remage-Healey L, Krentzel AA, Macedo-Lima M, Vahaba D. Species Diversity Matters in Biological Research. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/2372732217719908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Species diversity in experimental neuroscience research provides a vital resource. Addressing contemporary questions using nontraditional model systems (i.e., studies of species other than rats or mice) have regularly led to serendipitous breakthroughs in this discipline. The “comparative” approach to neuroscience and neuroendocrinology harnesses the diversity of organisms—and their nervous systems—that have been refined and differentiated over evolutionary timescales. Here, we review some recent examples of unexpected and impactful outcomes resulting from research on nontraditional study species. This work shows that maintaining broad diversity in study species will continue to provide the best path forward for extraordinary advances and insights into the neural mechanisms of behavior.
Collapse
Affiliation(s)
| | | | - Matheus Macedo-Lima
- University of Massachusetts Amherst, USA
- CAPES Foundation, Ministry of Education of Brazil, Distrito Federal, Brazil
| | | |
Collapse
|
15
|
Balthazart J, Court L. Human Sexual Orientation: The Importance of Evidentiary Convergence. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:1595-1600. [PMID: 28500563 PMCID: PMC5532062 DOI: 10.1007/s10508-017-0997-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/02/2017] [Indexed: 05/26/2023]
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium.
| | - Lucas Court
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate, 4000, Liège, Belgium
| |
Collapse
|
16
|
Ramírez-Rodríguez R, Tecamachaltzi-Silvaran MB, Díaz-Estrada VX, Chena-Becerra F, Herrera-Covarrubias D, Paredes-Ramos P, Manzo J, Garcia LI, Coria-Avila GA. Heterosexual experience prevents the development of conditioned same-sex partner preference in male rats. Behav Processes 2017; 136:43-49. [DOI: 10.1016/j.beproc.2017.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
17
|
Prenatal administration of letrozole reduces SDN and SCN volume and cell number independent of partner preference in the male rat. Physiol Behav 2017; 171:61-68. [PMID: 28057567 DOI: 10.1016/j.physbeh.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/30/2016] [Accepted: 01/01/2017] [Indexed: 12/17/2022]
Abstract
During development, the exposure to testosterone, and its conversion to estradiol by an enzyme complex termed aromatase, appears to be essential in adult male rats for the expression of typical male sexual behavior and female-sex preference. Some hypothalamic areas are the supposed neural bases of sexual preference/orientation; for example, male-oriented rams have a reduced volume of the sexually dimorphic nucleus (oSDN), while in homosexual men this nucleus does not differ from that of heterosexual men. In contrast, homosexual men showed a larger number of vasopressinergic cells in the suprachiasmatic nucleus (SCN). Interestingly, male rats perinatally treated with an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), also showed bisexual preference and an increased number of vasopressinergic neurons in the SCN. However, this steroidal aromatase inhibitor has affinity for all three steroid receptors. Recently, we reported that the prenatal administration of the selective aromatase inhibitor, letrozole, produced a subpopulation of males with same-sex preference. The aim of this study was to compare the volume and number of cells of the SDN and SCN (the latter nucleus was immunohistochemically stained for vasopressin) between males treated with letrozole with same-sex preference, males treated with letrozole with female preference and control males with female preference. Results showed that all males prenatally treated with letrozole have a reduced volume and estimated cell number in the SDN and SCN, independent of their partner preference. These results indicate that the changes in these brain areas are not related to sexual preference, but rather to the effects of letrozole. The divergent results may be explained by species differences as well as by the critical windows during which the aromatase inhibitor was administered.
Collapse
|
18
|
Balthazart J. Sex differences in partner preferences in humans and animals. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150118. [PMID: 26833838 PMCID: PMC4785903 DOI: 10.1098/rstb.2015.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 11/12/2022] Open
Abstract
A large number of morphological, physiological and behavioural traits are differentially expressed by males and females in all vertebrates including humans. These sex differences, sometimes, reflect the different hormonal environment of the adults, but they often remain present after subjects of both sexes are placed in the same endocrine conditions following gonadectomy associated or not with hormonal replacement therapy. They are then the result of combined influences of organizational actions of sex steroids acting early during development, or genetic differences between the sexes, or epigenetic mechanisms differentially affecting males and females. Sexual partner preference is a sexually differentiated behavioural trait that is clearly controlled in animals by the same type of mechanisms. This is also probably true in humans, even if critical experiments that would be needed to obtain scientific proof of this assertion are often impossible for pragmatic or ethical reasons. Clinical, epidemiological and correlative studies provide, however, converging evidence strongly suggesting, if not demonstrating, that endocrine, genetic and epigenetic mechanisms acting during the pre- or perinatal life control human sexual orientation, i.e. homosexuality versus heterosexuality. Whether they interact with postnatal psychosexual influences remains, however, unclear at present.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 avenue Hippocrate, 4000 Liège, Belgium
| |
Collapse
|
19
|
McCarthy MM. Multifaceted origins of sex differences in the brain. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150106. [PMID: 26833829 DOI: 10.1098/rstb.2015.0106] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Studies of sex differences in the brain range from reductionistic cell and molecular analyses in animal models to functional imaging in awake human subjects, with many other levels in between. Interpretations and conclusions about the importance of particular differences often vary with differing levels of analyses and can lead to discord and dissent. In the past two decades, the range of neurobiological, psychological and psychiatric endpoints found to differ between males and females has expanded beyond reproduction into every aspect of the healthy and diseased brain, and thereby demands our attention. A greater understanding of all aspects of neural functioning will only be achieved by incorporating sex as a biological variable. The goal of this review is to highlight the current state of the art of the discipline of sex differences research with an emphasis on the brain and to contextualize the articles appearing in the accompanying special issue.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Triana-Del Rio R, Tecamachaltzi-Silvarán MB, Díaz-Estrada VX, Herrera-Covarrubias D, Corona-Morales AA, Pfaus JG, Coria-Avila GA. Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: effect on sexually dimorphic brain nuclei. Behav Brain Res 2015; 283:69-77. [PMID: 25601575 DOI: 10.1016/j.bbr.2015.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 02/04/2023]
Abstract
Conditioned same-sex partner preference can develop in male rats that undergo cohabitation under the effects of quinpirole (QNP, D2 agonist). Herein, we assessed the development of conditioned same-sex social/sexual preference in males that received either nothing, saline, QNP, oxytocin (OT), or QNP+OT during cohabitation with another male (+) or single-caged (-). This resulted in the following groups: (1) Intact-, (2) Saline+, (3) QNP-, (4) OT-, (5) QNP+, (6) OT+ and (7) QNP/OT+. Cohabitation occurred during 24h in a clean cage with a male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days for a total of three trials. Social and sexual preference were assessed four days after the last conditioning trial in a drug-free test in which experimental males chose between the scented familiar male and a novel sexually receptive female. Results showed that males from groups Intact-, Saline+, QNP- and OT- displayed a clear preference for the female (opposite-sex), whereas groups QNP+, OT+ and QNP/OT+ displayed socio/sexual preference for the male partner (same-sex). In Experiment 2, the brains were processed for Nissl dye and the area size of two sexually dimorphic nuclei (SDN-POA and SON) was compared between groups. Males from groups OT-, OT+ and QNP/OT+ expressed a smaller SDN-POA and groups QNP+ and QNP/OT+ expressed a larger SON. Accordingly, conditioned same-sex social/sexual partner preference can develop during cohabitation under enhanced D2 or OT activity but such preference does not depend on the area size of those sexually dimorphic nuclei.
Collapse
Affiliation(s)
- Rodrigo Triana-Del Rio
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Miriam B Tecamachaltzi-Silvarán
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Victor X Díaz-Estrada
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Deissy Herrera-Covarrubias
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Aleph A Corona-Morales
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - James G Pfaus
- CSBN/Psychology, Concordia University, Montreal, QC, Canada.
| | - Genaro A Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
21
|
Olvera-Hernández S, Fernández-Guasti A. Perinatal administration of aromatase inhibitors in rodents as animal models of human male homosexuality: similarities and differences. ADVANCES IN NEUROBIOLOGY 2015; 10:381-406. [PMID: 25287550 DOI: 10.1007/978-1-4939-1372-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this chapter we briefly review the evidence supporting the existence of biological influences on sexual orientation. We focus on basic research studies that have affected the estrogen synthesis during the critical periods of brain sexual differentiation in male rat offspring with the use of aromatase inhibitors, such as 1,4,6-androstatriene-3,17 (ATD) and letrozole. The results after prenatal and/or postnatal treatment with ATD reveal that these animals, when adults, show female sexual responses, such as lordosis or proceptive behaviors, but retain their ability to display male sexual activity with a receptive female. Interestingly, the preference and sexual behavior of these rats vary depending upon the circadian rhythm.Recently, we have established that the treatment with low doses of letrozole during the second half of pregnancy produces male rat offspring, that when adults spend more time in the company of a sexually active male than with a receptive female in a preference test. In addition, they display female sexual behavior when forced to interact with a sexually experienced male and some typical male sexual behavior when faced with a sexually receptive female. Interestingly, these males displayed both sexual behavior patterns spontaneously, i.e., in absence of exogenous steroid hormone treatment. Most of these features correspond with those found in human male homosexuals; however, the "bisexual" behavior shown by the letrozole-treated rats may be related to a particular human population. All these data, taken together, permit to propose letrozole prenatal treatment as a suitable animal model to study human male homosexuality and reinforce the hypothesis that human sexual orientation is underlied by changes in the endocrine milieu during early development.
Collapse
Affiliation(s)
- Sandra Olvera-Hernández
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Calzada de los Tenorios 235 Colonia Granjas Coapa, 14330, México, D.F., Mexico,
| | | |
Collapse
|
22
|
Ungerfeld R, Lacuesta L, Damián J, Giriboni J. Does heterosexual experience matter for bucks' homosexual mating behavior? J Vet Behav 2013. [DOI: 10.1016/j.jveb.2013.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Roles of sex and gonadal steroids in mammalian pheromonal communication. Front Neuroendocrinol 2013; 34:268-84. [PMID: 23872334 DOI: 10.1016/j.yfrne.2013.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/27/2023]
Abstract
A brain circuit (the accessory olfactory system) that originates in the vomeronasal organ (VNO) and includes the accessory olfactory bulb (AOB) plus additional forebrain regions mediates many of the effects of pheromones, typically comprised of a variety of non-volatile and volatile compounds, on aspects of social behavior. A second, parallel circuit (the main olfactory system) that originates in the main olfactory epithelium (MOE) and includes the main olfactory bulb (MOB) has also been shown to detect volatile pheromones from conspecifics. Studies are reviewed that point to specific roles of several different steroids and their water-soluble metabolites as putative pheromones. Other studies are reviewed that establish an adult, 'activational' role of circulating sex hormones along with sex differences in the detection and/or processing of non-steroidal pheromones by these two olfactory circuits. Persisting questions about the role of sex steroids in pheromonal processing are posed for future investigation.
Collapse
|
24
|
Rice WR, Friberg U, Gavrilets S. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model. Bioessays 2013; 35:764-70. [PMID: 23868698 PMCID: PMC3840696 DOI: 10.1002/bies.201300033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model.
Collapse
Affiliation(s)
- William R Rice
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, USA.
| | | | | |
Collapse
|
25
|
Cibrian-Llanderal T, Rosas-Aguilar V, Triana-Del Rio R, Perez CA, Manzo J, Garcia LI, Coria-Avila GA. Enhaced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats. Pharmacol Biochem Behav 2012; 102:177-83. [PMID: 22564860 DOI: 10.1016/j.pbb.2012.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/07/2012] [Accepted: 04/21/2012] [Indexed: 11/25/2022]
Abstract
Animal models have shown that the neural bases of social attachment, sexual preference and pair bonds, depend on dopamine D2-type receptor and oxytocin activity. In addition, studies have demonstrated that cohabitation can shape partner preference via conditioning. Herein, we used rats to explore the development of learned same-sex partner preferences in adulthood as a result of cohabitation during enhanced D2 activity. Experimental Wistar males (N=20), received saline or the D2 agonist (quinpirole) and were allowed to cohabitate during 24 h, with a stimulus male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. Four days later they were drug-free tested for partner preference between the scented male partner and a sexually receptive female. Sexual partner preference was analyzed by measuring frequency and latency for appetitive and consummatory sexual behaviors, as well as non-contact erections. Social preference was also analyzed by measuring the frequency and latency of visits, body contacts and time spent together. Results indicated that only quinpirole-treated males displayed sexual and social preference for the scented male over the sexually receptive female. They spent more time together, displayed more body contacts, more female-like proceptive behaviors, and more non-contact erections. Accordingly, conditioned males appeared to be more sexually aroused and motivated by the known male than by a receptive female. We discuss the implications of this animal model on the formation of learned homosexual partner preferences.
Collapse
|
26
|
Borja F, Fabre-Nys C. Brain structures involved in the sexual behaviour of Ile de France rams with different sexual preferences and levels of sexual activity. Behav Brain Res 2011; 226:411-9. [PMID: 21985862 DOI: 10.1016/j.bbr.2011.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 02/04/2023]
Abstract
Using Fos, as a marker, we analysed the brain structures of rams, with different libidos or sexual preferences that had been activated by contact with males or females. Ile de France rams aged from 1.5 to 7 years were used. Fos immunoreactivity (Fos IR) was analysed in rams with high (HL) or low libido (LL) after 90 min of direct contact with females (HL DirF n=7 or LL DirF n=7) or in rams of high libido having indirect contact through a fence, with females (HL IndF n=6) or males (HL IndM n=5) and finally, in males who preferred other males as partners by indirect contact through a fence with males (MO IndM n=4). Direct or indirect contact with a preferred sexual partner (LL DirF, HL Dir F, HL IndF, MO IndM) induced the appearance of Fos-IR cells in several diencephalic and cortical structures. Conversely, indirect contact with males did not induce Fos-IR in males interested in females (HL IndM). In the medial preoptic area (MPOA), the paraventricular nucleus and the medial bed nucleus of the stria terminalis the cell density of Fos IR cells was higher in HL Dir F than in LL DirF suggesting involvement in sexual motivation whereas only the MPOA seemed involved the consummatory component of sexual behaviour (Fos IR density HL DirF>HL IndF). The enthorinal cortex was the only structure specifically activated by males attracted to other males (Fos IR density MO IndM>HL IndM) whereas Fos IR density did not differ between the HL IndF and HL IndM groups.
Collapse
Affiliation(s)
- Fernando Borja
- UMR 6175 INRA Physiologie de la Reproduction et des Comportements, CNRS, Université de Tours, Institut du cheval et de l'équitation, 37380 Nouzilly, France
| | | |
Collapse
|
27
|
Abstract
Many people believe that sexual orientation (homosexuality vs. heterosexuality) is determined by education and social constraints. There are, however, a large number of studies indicating that prenatal factors have an important influence on this critical feature of human sexuality. Sexual orientation is a sexually differentiated trait (over 90% of men are attracted to women and vice versa). In animals and men, many sexually differentiated characteristics are organized during early life by sex steroids, and one can wonder whether the same mechanism also affects human sexual orientation. Two types of evidence support this notion. First, multiple sexually differentiated behavioral, physiological, or even morphological traits are significantly different in homosexual and heterosexual populations. Because some of these traits are known to be organized by prenatal steroids, including testosterone, these differences suggest that homosexual subjects were, on average, exposed to atypical endocrine conditions during development. Second, clinical conditions associated with significant endocrine changes during embryonic life often result in an increased incidence of homosexuality. It seems therefore that the prenatal endocrine environment has a significant influence on human sexual orientation but a large fraction of the variance in this behavioral characteristic remains unexplained to date. Genetic differences affecting behavior either in a direct manner or by changing embryonic hormone secretion or action may also be involved. How these biological prenatal factors interact with postnatal social factors to determine life-long sexual orientation remains to be determined.
Collapse
Affiliation(s)
- Jacques Balthazart
- University of Liège, Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, Research Group in Behavioral Neuroendocrinology, 1 Avenue de l'Hôpital (B36), B-4000 Liège, Belgium.
| |
Collapse
|
28
|
Triana-Del Rio R, Montero-Domínguez F, Cibrian-Llanderal T, Tecamachaltzi-Silvaran MB, Garcia LI, Manzo J, Hernandez ME, Coria-Avila GA. Same-sex cohabitation under the effects of quinpirole induces a conditioned socio-sexual partner preference in males, but not in female rats. Pharmacol Biochem Behav 2011; 99:604-13. [PMID: 21704064 DOI: 10.1016/j.pbb.2011.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/30/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
The effects of the dopamine D2-type receptor agonist quinpirole (QNP) were examined on the development of conditioned same-sex partner preference induced by cohabitation in rats. In Experiment 1, males received either saline or QNP (1.25mg/kg) and cohabited during three trials with almond-scented stimulus males that were sexually naïve. In Experiment 2, males received six trials, and in Experiment 3 received three trials with sexually expert stimulus males. During a final drug-free preference test, males chose between the familiar or a novel male partner. In Experiments 1, 2 and 3 only QNP-treated males displayed a social preference for the familiar male, observed with more time spent together. In Experiment 3 males also displayed a sexual preference observed with more non-contact erections when were exposed to their male partner. In Experiment 4 we tested the effects on OVX, E+P primed females that received 1 systemic injection of either saline or QNP during three conditioning trials. In Experiment 5, females received 2 injections 12-h apart during each trial. Results indicated that both saline and QNP-treated females failed to develop partner preference. These data demonstrate that enhanced D2-type receptor activity during cohabitation facilitates the development of conditioned same-sex partner preference in males, but not in female rats. We discuss the implications for same-sex partner preferences.
Collapse
|