1
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
3
|
Su Y, Wu Y, Ye M, Zhao C, Li L, Cai J, Chakraborty T, Yang L, Wang D, Zhou L. Star1 gene mutation reveals the essentiality of 11-ketotestosterone and glucocorticoids for male fertility in Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110985. [PMID: 38729293 DOI: 10.1016/j.cbpb.2024.110985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Steroidogenic acute regulatory protein (Star) plays an essential role in the biosynthesis of corticosteroids and sex steroids by mediating the transport of cholesterol from the outer to the inner membrane of mitochondria. Two duplicated Star genes, namely star1 and star2, have been identified in non-mammalian vertebrates. To investigate the roles of star genes in fish steriodogenesis, we generated two mutation lines of star1-/- and star1-/-/star2-/- in Nile tilapia (Oreochromis niloticus). Previous studies revealed that deficiency of star2 gene caused delayed spermatogenesis, sperm apoptosis and sterility in male tilapia. Our present data revealed that mutation of star genes impaired male fertility. Disordered seminiferous lobules and spermatic duct obstruction were found in the testis of both types of mutants. Moreover, significant decline in semen volume, sperm abnormality and impaired fertility were also detected in star1-/- and star1-/-/star2-/- males. In star1-/- male fish, lipid accumulation, up-regulation of steroidogenic enzymes, and significant decline of androgens were found. Additionally, hyperplasic interrenal cells, elevated steroidogenic gene expression level and decline of serum glucocorticoids were detected in star1 mutants. Intriguingly, either 11-KT or cortisol supplementation successfully rescued the impaired fertility of the star1-/- mutants. Taken together, these results further indicate that Star1 might play critical roles in the production of both 11-KT and glucocorticoids, which are indispensable for the maintenance of male fertility in fish.
Collapse
Affiliation(s)
- Yun Su
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - You Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Maolin Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chenhua Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | | | - Lanying Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, PR China.
| |
Collapse
|
4
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
5
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. 11-Deoxycorticosterone (DOC)'s Action on the Gill Osmoregulation of Juvenile Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2024; 13:107. [PMID: 38392325 PMCID: PMC10886319 DOI: 10.3390/biology13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
In aquaculture, stress can negatively affect fish growth. For years, the cortisol hormone has been thought to play both glucocorticoid and mineralocorticoid functions. Nevertheless, recent research has suggested that 11-deoxycorticosterone (DOC) released during stress could contribute to cortisol actions, though this process is still misunderstood. Here, we evaluated the DOC effects on physiological and early transcriptional responses by RNA-seq. Juvenile rainbow trout were treated with DOC and/or glucocorticoids (mifepristone) or mineralocorticoid (eplerenone) receptor antagonists. Subsequently, plasma was collected, and cDNA libraries were generated from the gills of vehicle (control), DOC, mifepristone, mifepristone with DOC, eplerenone, and eplerenone with DOC groups. Calcium and phosphate levels in plasma were changed. Results revealed 914 differentially expressed transcripts (DETs) induced by DOC compared with control, mainly associated with sodium ion transmembrane transport, gluconeogenesis, negative regulation of transmembrane transport, and activation of innate immune response. DOC versus eplerenone with DOC comparison displayed 444 DETs related to cell-cell junction organization, canonical glycolysis, positive regulation of immune response, and potassium ion transport. Conversely, no DETs were detected in DOC versus mifepristone with DOC comparison. These data suggest that DOC has a relevant role in gill stress response and ion transport, which is differentially regulated by mineralocorticoid receptors.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Luciano Ahumada-Langer
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan Antonio Valdés
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| |
Collapse
|
6
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Barany A, Fuentes J, Valderrama V, Broz-Ruiz A, Martínez-Rodríguez G, Mancera JM. Oral cortisol and dexamethasone intake: Differential physiology and transcriptional responses in the marine juvenile Sparus aurata. Gen Comp Endocrinol 2023; 344:114371. [PMID: 37640145 DOI: 10.1016/j.ygcen.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.
Collapse
Affiliation(s)
- A Barany
- Department of Biology, Morrill Science Center, University of Massachusetts, 01003 Amherst, MA, USA; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain.
| | - J Fuentes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - V Valderrama
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - A Broz-Ruiz
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| | - G Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Spanish National Research Council (ICMAN-CSIC), E-11510 Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, E-11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
8
|
Houdelet C, Blondeau-Bidet E, Estevez-Villar M, Mialhe X, Hermet S, Ruelle F, Dutto G, Bajek A, Bobe J, Geffroy B. Circulating MicroRNAs Indicative of Sex and Stress in the European Seabass (Dicentrarchus labrax): Toward the Identification of New Biomarkers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:749-762. [PMID: 37581865 DOI: 10.1007/s10126-023-10237-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.
Collapse
Affiliation(s)
- Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | | | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Sophie Hermet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - François Ruelle
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Gilbert Dutto
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Aline Bajek
- Ecloserie Marine de Gravelines-Ichtus, Voie des Enrochements, F-59820, Gravelines, France
| | - Julien Bobe
- INRAE, UR1037, Fish Physiology and Genomic laboratory, F-35000, Rennes, France
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| |
Collapse
|
9
|
Aedo JE, Aravena-Canales D, Zuloaga R, Alegría D, Valdés JA, Molina A. Early regulation of corticosteroid receptor expression in rainbow trout (Oncorhynchus mykiss) gills is mediated by membrane-initiated cortisol signaling. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111423. [PMID: 37044370 DOI: 10.1016/j.cbpa.2023.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Cortisol is a key stress-related hormone involved in the physiological adjustments of fish. In gills, cortisol contributes to acclimatization to changes in environmental salinity, promoting both ion uptake or salt excretion. Cortisol exerts its biological effects through its interaction with specific intracellular glucocorticoid (GR) and mineralocorticoid (MR) receptors. Additionally, the further identification of GR and MR on the surface of different tissues, together with the existence of cortisol-mediated effects observed using membrane-impermeable analogs (e.g., cortisol-BSA), supports the existence of membrane-initiated cortisol actions in fish. Nevertheless, the impact of this alternative cortisol mechanism in relevant tissues for fish salinity acclimation, such as gill, is unknown. In this work, we sought to explore the contribution of rapid membrane-initiated cortisol on GR and MR regulation in rainbow trout (Oncorhynchus mykiss) gills using in vivo and in vitro approaches. Juvenile rainbow trout intraperitoneally injected with cortisol or cortisol-BSA showed increased gr2 but no gr1 or mr mRNA levels in gills after one hour of treatment. This result was further confirmed using RT-gills-W1 cell lines stimulated with both versions of cortisol. Interestingly, after three and six hours of cortisol or cortisol-BSA treatment, there were no changes in the mRNA levels of any corticosteroid receptor in RT-gills-W1 cells. Finally, using immunofluorescence analysis, we identified GR and MR in rainbow trout gill cells localized on the cell surface. Considering the in vivo and in vitro results of this work, we suggest that membrane-initiated cortisol action contributes to the early expression of gr2 in rainbow trout gills during salinity acclimation.
Collapse
Affiliation(s)
- Jorge E Aedo
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile; Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Daniela Aravena-Canales
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Rodrigo Zuloaga
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Denisse Alegría
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Juan A Valdés
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago 8370146, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile.
| |
Collapse
|
10
|
Nagarajan G, Aruna A, Chang YM, Alkhamis YA, Mathew RT, Chang CF. Effects of Osmotic Stress on the mRNA Expression of prl, prlr, gr, gh, and ghr in the Pituitary and Osmoregulatory Organs of Black Porgy, Acanthopagrus schlegelii. Int J Mol Sci 2023; 24:ijms24065318. [PMID: 36982391 PMCID: PMC10049143 DOI: 10.3390/ijms24065318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium–potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript’s role was solely to balance the homeostasis in the black porgy during salinity stress.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Basic Sciences, PYD, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (G.N.); (C.-F.C.); Tel.: +966-0135896810 (G.N.); +886-2-2462-2192 (ext. 5209) (C.-F.C.)
| | - Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Ming Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yousef Ahmed Alkhamis
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (G.N.); (C.-F.C.); Tel.: +966-0135896810 (G.N.); +886-2-2462-2192 (ext. 5209) (C.-F.C.)
| |
Collapse
|
11
|
Cortisol Rapidly Facilitates Glucocorticoid Receptor Translocation to the Plasma Membrane in Primary Trout Hepatocytes. BIOLOGY 2023; 12:biology12020311. [PMID: 36829586 PMCID: PMC9953755 DOI: 10.3390/biology12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Glucocorticoids (GCs) stimulate rapid cell signalling by activating the membrane-anchored intracellular glucocorticoid receptor (GR). However, the recruitment of the GR to the plasma membrane to facilitate nongenomic signalling is far from clear. As cytosolic free calcium ([Ca2+]i) is involved in intracellular protein dynamics, we tested the hypothesis that acute elevation in cortisol levels rapidly stimulates GR translocation to the plasma membrane via a calcium-dependent process in rainbow trout (Oncorhynchus mykiss) hepatocytes. To test this, we monitored temporal changes in intracellular GR distribution in response to cortisol exposure. Immunofluorescence labelling showed that the GR was present in cytosolic and nuclear compartments in trout hepatocytes. However, upon cortisol exposure, the GR rapidly (within 5 min) formed punctate and colocalized with caveolin-1, suggesting plasma membrane localization of the receptor. This redistribution of the GR to the plasma membrane was transient and lasted for 30 min and was evident even upon exposure to cortisol-BSA, a membrane-impermeable analogue of the steroid. The rapid cortisol-mediated GR translocation to the plasma membrane involved F-actin polymerization and was completely abolished in the presence of either EGTA or Cpd5J-4, a calcium release-activated calcium (CRAC) channel blocker. Additionally, the modulation of the biophysical properties of the plasma membrane by cholesterol or methyl β-cyclodextrin, which led to changes in ([Ca2+]i) levels, modified GR translocation to the plasma membrane. Altogether, acute cortisol-mediated rise in ([Ca2+]i) levels rapidly stimulated the translocation of intracellular GR to the plasma membrane, and we propose this as a mechanism promoting the nongenomic action of the GR for hepatocyte stress resistance.
Collapse
|
12
|
Servili A, Lévêque E, Mouchel O, Devergne J, Lebigre C, Roussel S, Mazurais D, Zambonino-Infante JL. Ocean acidification alters the acute stress response of a marine fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159804. [PMID: 36349621 DOI: 10.1016/j.scitotenv.2022.159804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The absorption of anthropogenic carbon dioxide from the atmosphere by oceans generates rapid changes in seawater carbonate system and pH, a process termed ocean acidification. Exposure to acidified water can impact the allostatic load of marine organism as the acclimation to suboptimal environments requires physiological adaptive responses that are energetically costly. As a consequence, fish facing ocean acidification may experience alterations of their stress response and a compromised ability to cope with additional stress, which may impact individuals' life traits and ultimately their fitness. In this context, we carried out an integrative study investigating the impact of ocean acidification on the physiological and behavioral stress responses to an acute stress in juvenile European sea bass. Fish were long term (11 months) exposed to present day pH/CO2 condition or acidified water as predicted by IPCC "business as usual" (RCP8.5) scenario for 2100 and subjected to netting stress (fish transfer and confinement test). Fish acclimated to acidified condition showed slower post stress return to plasma basal concentrations of cortisol and glucose. We found no clear indication of regulation in the central and interrenal tissues of the expression levels of gluco- and mineralocorticoid receptors and corticoid releasing factor. At 120 min post stress, sea bass acclimated to acidified water had divergent neurotransmitters concentrations pattern in the hypothalamus (higher serotonin levels and lower GABA and dopamine levels) and a reduction in motor activity. Our experimental data indicate that ocean acidification alters the physiological response to acute stress in European sea bass via the neuroendocrine regulation of the corticotropic axis, a response associated to an alteration of the motor behavioral profile. Overall, this study suggests that behavioral and physiological adaptive response to climate changes related constraints may impact fish resilience to further stressful events.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France.
| | - Etienne Lévêque
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Olivier Mouchel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Jimmy Devergne
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, F-29280 Plouzané, France
| | - Sabine Roussel
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | - David Mazurais
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | |
Collapse
|
13
|
Pfalzgraff T, Skov PV. Combined antagonist treatment of glucocorticoid and mineralocorticoid receptor does not affect weight loss of fasting rainbow trout but inhibits a fasting-induced elevation of cortisol secretion. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111321. [PMID: 36169060 DOI: 10.1016/j.cbpa.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
The gastrointestinal system of fish reacts rapidly to food deprivation. The relative masses of digestive organs and activities of digestive enzymes decrease within days of fasting. This is believed to be an energy-conserving strategy as the metabolic cost of maintaining digestive capacity is high. Cortisol is known for its role in energy mobilization following stress exposure, and prolonged elevated cortisol levels have been shown to reduce growth rates in fish. Fish experiencing chronic cortisol elevations show structural changes to their digestive tissues and overall reductions in relative digestive tissue masses. In fish fasting for prolonged periods, circulating cortisol levels have been reported to be downregulated, upregulated, or unchanged compared to feeding fish. This study aimed to investigate if RU486 and spironolactone, antagonists of the glucocorticoid receptor (GR), and mineralocorticoid receptor (MR), respectively, alone or in combination affect circulating cortisol levels during prolonged starvation. In addition, we tested the effects of blocking GR and MR, on the down-regulation of relative digestive tissue mass during starvation, and its effects on weight loss. Three treatment groups of rainbow trout were intraperitoneally implanted with either GR, MR, or GR and MR blockers. A fourth group was implanted with cortisol, while a fifth group served as a control. All treatment groups were sampled over a course of four weeks of food deprivation and compared against each other and fed control fish at day 0 of the trial. Starvation for 2 weeks and longer significantly increased circulating cortisol levels in all groups except for the group implanted with GR and MR antagonists. Loss of body mass occurred most rapidly during the first week of starvation. Spironolactone treatment resulted in significantly reduced loss of mass during the first week, however, over the following weeks, no differences in mass loss were observed in the groups implanted with blockers, while cortisol-treated fish showed the highest decrease in body mass over time. Relative digestive tissue mass decreased in all groups but apparently, the fasting-induced elevation in plasma cortisol levels did not affect the relative weight loss of digestive tissues as no differences were observed between control fish and GR + MR antagonist treated fish. Very high cortisol levels caused by cortisol treatment however caused a faster decrease in the relative mass of some digestive organs, particularly the stomach.
Collapse
Affiliation(s)
- Tilo Pfalzgraff
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark.
| | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark
| |
Collapse
|
14
|
Lebigre C, Woillez M, Barone H, Mourot J, Drogou M, Le Goff R, Servili A, Hennebert J, Vanhomwegen M, Aerts J. Temporal variations in scale cortisol indicate consistent local-and broad-scale constraints in a wild marine teleost fish. MARINE ENVIRONMENTAL RESEARCH 2022; 182:105783. [PMID: 36332421 DOI: 10.1016/j.marenvres.2022.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Environmental changes can alter the nursery function of coastal areas through their impact on juveniles' growth and survival rates, an effect mediated by individuals' chronic stress response. Fish chronic stress can be quantified using scale cortisol but no study has yet been quantified the spatio-temporal variations in scale cortisol and its relationship with growth in wild nurseries. We collected wild sea bass juveniles (Dicentrarchus labrax, four years, three nurseries) and found that scale cortisol levels increased consistently with age and across cohorts in 2019 and 2020 probably due to greater stress history in older fish and/or heatwaves that occurred in summers of 2018 and 2019. Growth was impaired in fish with high scale cortisol in 2019 and 2020, confirming the usefulness of scale cortisol as a biomarker of broad and local constraints in wild fish; longer time series will enable us to identify environmental factors underpinning these temporal variations.
Collapse
Affiliation(s)
- Christophe Lebigre
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France.
| | - Mathieu Woillez
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Hervé Barone
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Jennyfer Mourot
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Mickaël Drogou
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Ronan Le Goff
- UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Arianna Servili
- Ifremer, Université de Brest, CNRS, IRD, UMR LEMAR, F-29820, Plouzané, France
| | - Jana Hennebert
- Stress Physiology Research Group, Department of Biology, Faculty of Science, Ghent University, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Marine Vanhomwegen
- Stress Physiology Research Group, Department of Biology, Faculty of Science, Ghent University, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Johan Aerts
- Stress Physiology Research Group, Department of Biology, Faculty of Science, Ghent University, Wetenschapspark 1, 8400, Ostend, Belgium; Stress Physiology Research Group, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Wetenschapspark 1, 8400, Ostend, Belgium
| |
Collapse
|
15
|
Park K, Kwak IS. Environmental co-exposure of high temperature and Cu induce hormonal disturbance of cortisol signaling and altered responses of cellular defense genes in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156555. [PMID: 35750185 DOI: 10.1016/j.scitotenv.2022.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Global warming is causing a continuous increase in environmental temperatures, which simultaneously activates toxic environmental stresses, such as heavy metal exposure, in aquatic ecosystems. The present study aimed at evaluating the effects of Cu toxicity along with increased temperature during zebrafish embryogenesis. Decreased survival rates were observed following combined exposure to high temperature and Cu. Heart rates of zebrafish embryos were significantly increased only during heat stress. An abnormal morphology with curved body shape was induced by exposure to a combination of Cu and heat stress. Furthermore, heat stress also triggered Cu-induced intracellular reactive oxygen species (ROS) production, with upregulation of superoxide dismutase (SOD) and glutathione s-transferase (GST) expression, and cell death with modified expression of p53 and B-cell lymphoma-2 (Bcl-2) in zebrafish embryos. Finally, increased cortisol levels and altered expression of cortisol-signaling genes were observed following exposure to Cu and high temperatures. These results highlight that realistic exposure to combined stressors induces developmental disturbances via stress-induced responses involving oxidative stress and cell death as well as transcriptional alterations leading to cortisol signaling in fish.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
16
|
Goikoetxea A, Servili A, Houdelet C, Mouchel O, Hermet S, Clota F, Aerts J, Fernandino JI, Allal F, Vandeputte M, Blondeau-Bidet E, Geffroy B. Natural cortisol production is not linked to the sexual fate of European sea bass. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1117-1135. [PMID: 35917042 DOI: 10.1007/s10695-022-01104-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.
Collapse
Affiliation(s)
| | - Arianna Servili
- Ifremer, IFREMER, Univ Brest, CNRS, IRD, LEMAR, 29280, Plouzané, France
| | - Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Olivier Mouchel
- Ifremer, IFREMER, Univ Brest, CNRS, IRD, LEMAR, 29280, Plouzané, France
| | - Sophie Hermet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Fréderic Clota
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | | | - François Allal
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| |
Collapse
|
17
|
Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Lu Y, Shi C, Jin X, He J, Yin Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus-pituitary-inter-renal endocrine axis. Front Endocrinol (Lausanne) 2022; 13:923475. [PMID: 35937837 PMCID: PMC9353172 DOI: 10.3389/fendo.2022.923475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhan Yin,
| |
Collapse
|
19
|
Cabrera-Busto J, Mancera JM, Ruiz-Jarabo I. Cortisol and Dexamethasone Mediate Glucocorticoid Actions in the Lesser Spotted Catshark (Scyliorhinus canicula). BIOLOGY 2021; 11:biology11010056. [PMID: 35053054 PMCID: PMC8772811 DOI: 10.3390/biology11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary For the first time, glucocorticoid actions of corticosteroids are evidenced in vivo and ex vivo in sharks, highlighting the importance of carbohydrate metabolism in situations of high-energy expenditure in this taxonomical group. Long-term (7 days) in vivo administration of dexamethasone (DEX, a synthetic glucocorticoid) decreased 1α-hydroxycorticosterone (1α-OHB, the main corticosteroid hormone in sharks), while also modified carbohydrates metabolism in liver and white muscle. Short-term (1 to 5 h) ex vivo incubation of liver and muscle explants with cortisol (corticosteroid not present in sharks) and DEX revealed glucose secretion mediated by glucocorticoid receptors (GR), as seen by the employment of mifepristone (a GR inhibitor). Abstract Corticosteroids are hormones produced in vertebrates exerting gluco- and mineralocorticoid actions (GC and MC) mediated by specific receptors (GR and MR, respectively). In elasmobranchs, the major circulating corticosteroid is the 1α-hydroxycorticosterone (1α-OHB). This hormone acts as a MC, but to date its role as a GC has not been established. As there is no 1α-OHB standard available, here we employed a set of in vivo and ex vivo approaches to test GC actions of other corticosteroids in the lesser spotted catshark (Scyliorhinus canicula). Dexamethasone (DEX, a synthetic corticosteroid) slow-release implants decreased plasma 1α-OHB levels after 7 days, and modified carbohydrates metabolism in liver and white muscle (energy stores and metabolic enzymes). In addition, ex vivo culture of liver and white muscle explants confirmed GC actions of corticosteroids not naturally present in sharks (cortisol and DEX) by increasing glucose secretion from these tissues. Dose–response curves induced by cortisol and DEX, altogether with the use of specific GR inhibitor mifepristone, confirmed the involvement of GR mediating glucose secretion. This study highlights the influence of corticosteroids in the glucose balance of S. canicula, though the role of 1α-OHB as a GC hormone in sharks should be further confirmed.
Collapse
Affiliation(s)
- Juncal Cabrera-Busto
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Juan M. Mancera
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
| | - Ignacio Ruiz-Jarabo
- Departament of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, 11510 Puerto Real, Spain; (J.C.-B.); (J.M.M.)
- Department of Physiology, Faculty of Biological Sciences, University Complutense Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913944984
| |
Collapse
|
20
|
Lin X, Takagi W, Hyodo S, Ijiri S, Katsu Y, Baker ME. Regulation by Progestins, Corticosteroids, and RU486 of Transcriptional Activation of Elephant Shark and Human Progesterone Receptors: An Evolutionary Perspective. ACS Pharmacol Transl Sci 2021; 5:52-61. [DOI: 10.1021/acsptsci.1c00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaozhi Lin
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Science, Hokkaido University, Hakodate 041-8611, Japan
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0808, Japan
| | - Michael E. Baker
- Division of Nephrology, Department of Medicine, University of California, San Diego, California 92093, United States
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, California 92093, United States
| |
Collapse
|
21
|
Aedo J, Aravena-Canales D, Ruiz-Jarabo I, Oyarzún R, Molina A, Martínez-Rodríguez G, Valdés JA, Mancera JM. Differential Metabolic and Transcriptional Responses of Gilthead Seabream ( Sparus aurata) Administered with Cortisol or Cortisol-BSA. Animals (Basel) 2021; 11:ani11113310. [PMID: 34828041 PMCID: PMC8614361 DOI: 10.3390/ani11113310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cortisol is a key stress hormone in teleosts. Cortisol exerts its effects through genomic—and membrane-initiated mechanisms, however, the role of the latter in long-term stress responses is unknown. Here, we treated Sparus aurata with cortisol or cortisol-BSA (exclusive inductor to membrane-initiated effects) to emulate a long-term stress situation. We found that cortisol, but not cortisol-BSA, promotes energy substrate mobilization in the liver, together with the regulation of metabolism-related genes. We suggest that genomic cortisol actions exclusively participate in metabolic responses during prolonged treatment using cortisol in S. aurata. This study contributes to the current knowledge on cortisol’s involvement in stress responses in fish. Abstract Cortisol is the main glucocorticoid hormone promoting compensatory metabolic responses of stress in teleosts. This hormone acts through genomic and membrane-initiated actions to exert its functions inside the cell. Experimental approaches, using exogenous cortisol administration, confirm the role of this hormone during short (minutes to hours)- and long-term (days to weeks) responses to stress. The role of membrane-initiated cortisol signaling during long-term responses has been recently explored. In this study, Sparus aurata were intraperitoneally injected with coconut oil alone or coconut oil containing cortisol, cortisol-BSA, or BSA. After 3 days of treatment, plasma, liver, and skeletal muscle were extracted. Plasma cortisol, as well as metabolic indicators in the plasma and tissues collected, and metabolism-related gene expression, were measured. Our results showed that artificially increased plasma cortisol levels in S. aurata enhanced plasma glucose and triacylglycerols values as well as hepatic substrate energy mobilization. Additionally, cortisol stimulated hepatic carbohydrates metabolism, as seen by the increased expression of metabolism-related genes. All of these responses, observed in cortisol-administered fish, were not detected by replicating the same protocol and instead using cortisol-BSA, which exclusively induces membrane-initiated effects. Therefore, we suggest that after three days of cortisol administration, only genomic actions are involved in the metabolic responses in S. aurata.
Collapse
Affiliation(s)
- Jorge Aedo
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Daniela Aravena-Canales
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Spain; (I.R.-J.); (J.M.M.)
- Department of Animal Physiology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain
| | - Ricardo Oyarzún
- Institute of Marine and Limnological Sciences, Faculty of Sciences, University Austral of Chile, Valdivia 5110652, Chile;
| | - Alfredo Molina
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Spain;
| | - Juan Antonio Valdés
- Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, Santiago 8320000, Chile; (J.A.); (D.A.-C.); (A.M.)
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción 4030000, Chile
- Correspondence: ; Tel.: +56-2661-8363; Fax: +56-2661-8415
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Spain; (I.R.-J.); (J.M.M.)
| |
Collapse
|
22
|
Culbert BM, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Aubin-Horth N, Bernier NJ, Balshine S. Rank- and sex-specific differences in the neuroendocrine regulation of glucocorticoids in a wild group-living fish. Horm Behav 2021; 136:105079. [PMID: 34717080 DOI: 10.1016/j.yhbeh.2021.105079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
Individuals that live in groups experience different challenges based on their social rank and sex. Glucocorticoids have a well-established role in coordinating responses to challenges and glucocorticoid levels often vary between ranks and sexes. However, the neuroendocrine mechanisms regulating glucocorticoid dynamics in wild groups are poorly understood, making it difficult to determine the functional consequences of differences in glucocorticoid levels. Therefore, we observed wild social groups of a cooperatively breeding fish (Neolamprologus pulcher) and evaluated how scale cortisol content (an emerging method to evaluate cortisol dynamics in fishes) and expression of glucocorticoid-related genes varied across group members. Scale cortisol was detectable in ~50% of dominant males (7/17) and females (7/15)-but not in any subordinates (0/16)-suggesting that glucocorticoid levels were higher in dominants. However, the apparent behavioural and neuroendocrine factors regulating cortisol levels varied between dominant sexes. In dominant females, higher cortisol was associated with greater rates of territory defense and increased expression of corticotropin-releasing factor in the preoptic and hypothalamic regions of the brain, but these patterns were not observed in dominant males. Additionally, transcriptional differences in the liver suggest that dominant sexes may use different mechanisms to cope with elevated cortisol levels. While dominant females appeared to reduce the relative sensitivity of their liver to cortisol (fewer corticosteroid receptor transcripts), dominant males appeared to increase hepatic cortisol breakdown (more catabolic enzyme transcripts). Overall, our results offer valuable insights on the mechanisms regulating rank- and sex-based glucocorticoid dynamics, as well as the potential functional outcomes of these differences.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nadia Aubin-Horth
- Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
USE OF SYMMETRIC DIMETHYLARGININE TO DETECT RENAL LESIONS IN FISH: A PRELIMINARY STUDY IN BROOK TROUT ( SALVELINUS FONTINALIS). J Zoo Wildl Med 2021; 52:1024-1029. [PMID: 34687520 DOI: 10.1638/2020-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Symmetric dimethylarginine (SDMA) is an early marker for renal lesions in mammals. The objectives of this study were 1) to establish a reference interval of SDMA in healthy brook trout, Salvelinus fontinalis (Mitchill, 1814), and 2) to assess its sensibility as a marker of renal pathology. Plasma SDMA was quantified by liquid chromatography-mass spectrometry in 25 adult brook trout, including 20 fish displaying no renal histologic lesions, and five fish displaying chronic nonactive microscopic granulomas. The fish size (P = 0.30) and weight (P = 0.12) were not statistically different among groups, nor were SDMA values (P = 0.22). However, brook trout without microscopic renal lesions tended to have lower SDMA values (no lesions: mean = 24.9 µg/dL; lesions: mean = 31.4 µg/dL). The reference interval (90% confidence interval [90% CI]) for SDMA concentration in brook trout ranged between 10.0 µg/dL (90% CI: 5.4-14.7) and 39.8 µg/dL (90% CI: 34.8-43.9). These values were higher than those previously reported in other vertebrate species. Further research is needed to evaluate the use of SDMA as a marker of renal function in fishes.
Collapse
|
24
|
Viengchareun S, Pussard E, Castanet M, Sachs LM, Vu TA, Boileau P, Lombès M, Martinerie L. The invention of aldosterone, how the past resurfaces in pediatric endocrinology. Mol Cell Endocrinol 2021; 535:111375. [PMID: 34197901 DOI: 10.1016/j.mce.2021.111375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Sodium and water homeostasis are drastically modified at birth, in mammals, by the transition from aquatic life to terrestrial life. Accumulating evidence during the past ten years underscores the central role for the mineralocorticoid signaling pathway, in the fine regulation of this equilibrium, at this critical period of development. Interestingly, regarding evolution, while the mineralocorticoid receptor is expressed in fish, the appearance of its related ligand, aldosterone, coincides with terrestrial life, as it is first detected in lungfish and amphibian. Thus, aldosterone is likely one of the main hormones regulating the transition from an aquatic environment to an air environment. This review will focus on the different actors of the mineralocorticoid signaling pathway from aldosterone secretion in the adrenal gland, to mineralocorticoid receptor expression in the kidney, summarizing their regulation and roles throughout fetal and neonatal development, in the light of evolution.
Collapse
Affiliation(s)
- Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Eric Pussard
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275, Le Kremlin Bicêtre, France
| | - Mireille Castanet
- Normandie Univ, UNIROUEN, Inserm U1239, CHU Rouen, Department of Pediatrics, F-76000, Rouen, France
| | - Laurent M Sachs
- UMR 7221 Molecular Physiology and Adaption, Department Adaptation of Life, Centre National de La Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris, France
| | - Thi An Vu
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Pascal Boileau
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Department of Neonatal Pediatrics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain, 10, Rue du Champ Gaillard 78300 Poissy France; Université Paris-Saclay, UVSQ, 78180, Montigny-Le-Bretonneux, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276, Le Kremlin-Bicêtre, France; Université de Paris, 75019, Paris, France; Pediatric Endocrinology Department, AP-HP, Hôpital Universitaire Robert-Debre, 75019, Paris, France.
| |
Collapse
|
25
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
26
|
Geffroy B, Gesto M, Clota F, Aerts J, Darias MJ, Blanc MO, Ruelle F, Allal F, Vandeputte M. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci Rep 2021; 11:13620. [PMID: 34193934 PMCID: PMC8245542 DOI: 10.1038/s41598-021-93116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - Manuel Gesto
- Techn Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850, Hirtshals, Denmark
| | - Fréderic Clota
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Odile Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Ruelle
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
27
|
Shaughnessy CA, McCormick SD. 11-Deoxycortisol is a stress responsive and gluconeogenic hormone in a jawless vertebrate, the sea lamprey (Petromyzon marinus). J Exp Biol 2021; 224:269003. [PMID: 34086050 DOI: 10.1242/jeb.241943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Although corticosteroid-mediated hepatic gluconeogenic activity in response to stress has been extensively studied in fishes and other vertebrates, there is little information on the stress response in basal vertebrates. In sea lamprey (Petromyzon marinus), a representative member of the most basal extant vertebrate group Agnatha, 11-deoxycortisol and deoxycorticosterone are the major circulating corticosteroids. The present study examined changes in circulating glucose and 11-deoxycortisol concentrations in response to a physical stressor. Furthermore, the gluconeogenic actions of 11-deoxycortisol and deoxycorticosterone were examined. Within 6 h of exposure of larval and juvenile sea lamprey to an acute handling stress, plasma 11-deoxycortisol levels increased 15- and 6-fold, respectively, and plasma glucose increased 3- and 4-fold, respectively. Radiometric receptor binding studies revealed that a corticosteroid receptor (CR) is present in the liver at lower abundance than in other tissues (gill and anterior intestine) and that the binding affinity of the liver CR was similar for 11-deoxycortisol and deoxycorticosterone. Transcriptional tissue profiles indicate a wide distribution of cr transcription, kidney-specific transcription of steroidogenic acute regulatory protein (star) and liver-specific transcription of phosphoenolpyruvate carboxykinase (pepck). Ex vivo incubation of liver tissue with 11-deoxycortisol resulted in dose-dependent increases in pepck mRNA levels. Finally, intraperitoneal administration of 11-deoxycortisol and deoxycorticosterone demonstrated that only 11-deoxycortisol resulted in an increase in plasma glucose. Together, these results provide the first direct evidence for the gluconeogenic activity of 11-deoxycortisol in an agnathan, indicating that corticosteroid regulation of plasma glucose is a basal trait among vertebrates.
Collapse
Affiliation(s)
- Ciaran A Shaughnessy
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Stephen D McCormick
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA.,U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Mateus AP, Mourad M, Power DM. Skin damage caused by scale loss modifies the intestine of chronically stressed gilthead sea bream (Sparus aurata, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103989. [PMID: 33385418 DOI: 10.1016/j.dci.2020.103989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to test if the damage caused by scale loss provokes a change in other innate immune barriers such as the intestine and how chronic stress affects this response. Sea bream (Sparus aurata) were kept in tanks at low density (16 kg m-3, LD) or exposed to a chronic high density (45 kg m-3, HD) stress for 4 weeks. Scales were then removed (approximately 50%) from the left flank in the LD and HD fish. Intestine samples (n = 8/group) were examined before and at 12 h, 3 days and 7 days after scale removal. Changes in the morphology of the intestine revealed that chronic stress and scale loss was associated with intestinal inflammation. Specifically, enterocyte height and the width of the lamina propria, submucosa and muscle layer were significantly increased (p < 0.05) 3 days after skin damage in fish under chronic stress (HD) compared to other treatments (LDWgut3d or HDgut0h). This was associated with a significant up-regulation (p < 0.05) in the intestine of gene transcripts for cell proliferation (pcna) and anti-inflammatory cytokine tgfβ1 and down-regulation of gene transcripts for the pro-inflammatory cytokines tnf-α and il1β (p < 0.05) in HD and LD fish 3 days after scale removal compared to the undamaged control (LDgut0h). Furthermore, a significant up-regulation of kit, a marker of mast cells, in the intestine of HDWgut3d and LDWgut3d fish suggests they may mediate the crosstalk between immune barriers. Skin damage induced an increase in cortisol levels in the anterior intestine in HDWgut12 h fish and significant (p < 0.05) down-regulation of mr expression, irrespective of stress. These results suggest glucocorticoid levels and signalling in the intestine of fish are modified by superficial cutaneous wounds and it likely modulates intestine inflammation.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Mona Mourad
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography & Fisheries, Kayet-bey, Al-Anfoushy, 21556, Alexandria, Egypt.
| | - Deborah M Power
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
29
|
Wang Y, Salem AZM, Tan Z, Kang J, Wang Z. Activation of glucocorticoid receptors is associated with the suppression of antioxidant responses in the liver of goats fed a high-concentrate diet. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1873706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yan Wang
- College of Bioscience and Biotechnology,Hunan Agricultural University, Changsha, Hunan, P. R. China
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- College of Agriculture and Biotechnology,Hunan University of Humanities, Science and Technology, Loudi, Hunan, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, P. R. China
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia,Universidad Autónoma del Estado de México, México, México
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, P. R. China
| | - Jinhe Kang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, P. R. China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, P. R. China
| | - Zheng Wang
- College of Bioscience and Biotechnology,Hunan Agricultural University, Changsha, Hunan, P. R. China
| |
Collapse
|
30
|
Evaluation of an in vitro assay to screen for the immunotoxic potential of chemicals to fish. Sci Rep 2021; 11:3167. [PMID: 33542403 PMCID: PMC7862612 DOI: 10.1038/s41598-021-82711-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
A wide variety of environmental contaminants has been shown to disrupt immune functions of fish and may compromise their defense capability against pathogens. Immunotoxic effects, however, are rarely considered in ecotoxicological testing strategies. The aim of this study was to systematically evaluate the suitability of an in vitro immuno-assay using selected fish immune parameters to screen for chemicals with known immunotoxic potential and to differentiate them from non-immunotoxicants. Non-stimulated and lipopolysaccharide-stimulated head kidney leukocytes of rainbow trout (Oncorhynchus mykiss) were exposed for 3 h or 19 h to chemicals with different modes of action. As immune parameters, phagocytosis activity, oxidative burst activity and cytokine transcription (IL-1β, TNFα, IL-10) were examined, accompanied by in silico modelling. The immunotoxicants dexamethasone, benzo(a)pyrene, ethinylestradiol and bisphenol A significantly altered the immune parameters at non-cytotoxic concentrations whereas diclofenac had only weak effects. However, the two baseline chemicals with no known immunotoxic potential, butanol and ethylene glycol, caused significant effects, too. From our results it appears that the in vitro fish leukocyte assay as performed in the present study has only a limited capacity for discriminating between immunotoxicants and non-immunotoxicants.
Collapse
|
31
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
32
|
Shaughnessy CA, Breves JP. Molecular mechanisms of Cl
−
transport in fishes: New insights and their evolutionary context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:207-216. [DOI: 10.1002/jez.2428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jason P. Breves
- Department of Biology Skidmore College Saratoga Springs New York USA
| |
Collapse
|
33
|
Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids. Int J Mol Sci 2020; 21:ijms21186748. [PMID: 32938015 PMCID: PMC7555618 DOI: 10.3390/ijms21186748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Some fish have acquired the ability to breathe air, but these fish can no longer flush their gills effectively when out of water. Hence, they have developed characteristic means for defense against external stressors, including thirst (osmolarity/ions) and toxicity. Amphibious fish, extant air-breathing fish emerged from water, may serve as models to examine physiological responses to these stressors. Some of these fish, including mudskipper gobies such as Periophthalmodon schlosseri, Boleophthalmus boddarti and our Periophthalmus modestus, display distinct adaptational behaviors to these factors compared with fully aquatic fish. In this review, we introduce the mudskipper goby as a unique model to study the behaviors and the neuro/endocrine mechanisms of behavioral responses to the stressors. Our studies have shown that a local sensation of thirst in the buccal cavity—this being induced by dipsogenic hormones—motivates these fish to move to water through a forebrain response. The corticosteroid system, which is responsive to various stressors, also stimulates migration, possibly via the receptors in the brain. We suggest that such fish are an important model to deepen insights into the stress-related neuro/endocrine-behavioral effects.
Collapse
|
34
|
Whitehouse LM, Faught E, Vijayan MM, Manzon RG. Hypoxia affects the ontogeny of the hypothalamus-pituitary-interrenal axis functioning in the lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2020; 295:113524. [PMID: 32526331 DOI: 10.1016/j.ygcen.2020.113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
Early life stages are sensitive to environmental insults and changes during critical developmental periods; this can often result in altered adult behaviour and physiology. Examining the development of the hypothalamus-pituitary-interrenal (HPI) axis and its responsiveness, or lack thereof, during development are important for understanding the short- and long-term impacts of stressors on embryonic and larval fish. We examined the ontogeny of the HPI axis in embryonic (21, 38, 63, 83 and 103 days post-fertilisation (dpf)) and larval (1, 2, 3 and 4 weeks post-hatch (wph)) lake whitefish (Coregonus clupeaformis) by quantifying changes in mRNA levels of several genes associated with HPI axis functioning and whole animal cortisol levels throughout development and in response to a severe or mild hypoxic stress. Cortisol, and crh, crhbp1, pomc and star transcripts were detected from the earliest embryonic age studied. Cortisol levels in control embryos decreased between 21 and 63 dpf, suggesting the utilisation of maternal cortisol deposits. However, by 83 dpf (70% developed) endogenous de novo synthesis had generated a 4.5-fold increase in whole embryo cortisol. Importantly, we provide novel data showing that the HPI axis can be activated even earlier. Whole body cortisol increased in eyed lake whitefish embryos (38 dpf; ~32% developed) in response to hypoxia stress. Coincident with this hypoxia-induced increase in cortisol in 38 dpf embryos were corresponding increases in crh, crhbp1, pomc and star transcript levels. Beyond 38 dpf, the HPI axis in lake whitefish embryos was hyporesponsive to hypoxia stress at all embryonic ages examined (63, 83 and 103 dpf; 54, 72 and 85% developed, respectively). Post-hatch, larvae responded to hypoxia with an increase in cortisol levels and HPI axis genes at 1 wph, but this response was lost and larvae appeared hyporesponsive at subsequent ages (2, 3 and 4 wph). Collectively our work demonstrates that during fish embryogenesis and the larval stage there are windows where the HPI axis is responsive and windows where it is truly hyporesponsive; both could be beneficial in ensuring undisrupted development particularly in the face of increasing environmental changes.
Collapse
Affiliation(s)
- Lindy M Whitehouse
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
35
|
Romero A, Vega M, Santibáñez N, Spies J, Pérez T, Enríquez R, Kausel G, Oliver C, Oyarzún R, Tort L, Vargas-Chacoff L. Salmo salar glucocorticoid receptors analyses of alternative splicing variants under stress conditions. Gen Comp Endocrinol 2020; 293:113466. [PMID: 32194046 DOI: 10.1016/j.ygcen.2020.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022]
Abstract
Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.
Collapse
Affiliation(s)
- Alex Romero
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile.
| | - Matías Vega
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Natacha Santibáñez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Johana Spies
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Tatiana Pérez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile.
| | - Gudrun Kausel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral De Chile, Chile.
| | - Cristian Oliver
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral De Chile, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Chile
| | - Ricardo Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
36
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
37
|
Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish ( Danio rerio) Testicular Explants. Biomolecules 2020; 10:biom10030429. [PMID: 32164184 PMCID: PMC7175196 DOI: 10.3390/biom10030429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system. The results revealed that cortisol treatment did not modulate basal androgen production, but it influenced transcript levels of a selected number of genes involved in the zebrafish testicular function ar (androgen receptor), star (steroidogenic acute regulatory), cyp17a1 (17α-hydroxylase/17,20 lyase/17,20 desmolase), cyp11a2 (cytochrome P450, family 11, subfamily A, polypeptide 2), hsd11b2 (11-beta hydroxysteroid dehydrogenase), cyp2k22 (cytochrome P450, family 2, subfamily K, polypeptide 22), fkbp5 (FKBP prolyl isomerase 5), grα (glucocorticoid receptor alpha), and grβ (glucocorticoid receptor beta) in a short-term culture. We also showed that cortisol stimulates spermatogonial proliferation and differentiation in an androgen independent manner as well as promoting meiosis and spermiogenesis by increasing the number of spermatozoa in the testes. Moreover, we demonstrated that concomitant treatment with RU 486, a potent glucocorticoid receptor (Gr) antagonist, did not affect the cortisol effects on spermatogonial differentiation but blocked the induced effects on meiosis and spermiogenesis. Supporting the Gr-mediated effects, RU 486 nullified the cortisol-induced expression of sycp3l (synaptonemal complex protein 3), a marker for the meiotic prophase that encodes a component of the synaptonemal complex. This is consistent with in silico analysis that found 10 putative GREs (glucocorticoid response elements) upstream of the zebrafish sycp3l. Finally, we also showed that grα mRNA is expressed in Sertoli and Leydig cells, but also in several types of germ cells, including spermatogonia and spermatocytes. Altogether, this evidence indicates that cortisol exerts paracrine roles in the zebrafish testicular function and spermatogenesis, highlighting its effects on spermatogonial differentiation, meiosis, and spermiogenesis.
Collapse
|
38
|
Reyes-Contreras M, Glauser G, Rennison DJ, Taborsky B. Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180119. [PMID: 30966879 DOI: 10.1098/rstb.2018.0119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In many vertebrate species, early social experience generates long-term effects on later life social behaviour. These effects are accompanied by persistent modifications in the expression of genes implicated in the stress axis. It is unknown, however, whether stress axis programming can affect the development of social competence, and if so, by which mechanism(s). Here, we used pharmacological manipulations to persistently reprogramme the hypothalamic-pituitary-interrenal axis of juvenile cooperatively breeding cichlids, Neolamprologus pulcher. During the first two months of life, juveniles were repeatedly treated with cortisol, mifepristone or control treatments. Three months after the last manipulation, we tested for treatment effects on (i) social competence, (ii) the expression of genes coding for corticotropin-releasing factor ( crf), glucocorticoid receptor ( gr1) and mineralocorticoid receptor ( mr) in the telencephalon and hypothalamus and (iii) cortisol levels. Social competence in a social challenge was reduced in cortisol-treated juveniles, which is in accordance with previous work applying early-life manipulations using different social experiences. During early life, both cortisol and mifepristone treatments induced a persistent downregulation of crf and upregulation of mr in the telencephalon. We suggest that these persistent changes in stress gene expression may represent an effective physiological mechanism for coping with stress. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- 1 Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern , Wohlenstrasse 50A, 3032 Hinterkappelen , Switzerland
| | - Gaétan Glauser
- 2 Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel , Avenue de Bellevaux 51, 2009 Neuchâtel , Switzerland
| | - Diana J Rennison
- 3 Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern , Baltzerstrasse 6, 3012 Bern , Switzerland
| | - Barbara Taborsky
- 1 Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern , Wohlenstrasse 50A, 3032 Hinterkappelen , Switzerland
| |
Collapse
|
39
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Aedo JE, Zuloaga R, Bastías-Molina M, Meneses C, Boltaña S, Molina A, Valdés JA. Early transcriptomic responses associated with the membrane-initiated action of cortisol in the skeletal muscle of rainbow trout (Oncorhynchus mykiss). Physiol Genomics 2019; 51:596-606. [DOI: 10.1152/physiolgenomics.00042.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cortisol is a critical neuroendocrine regulator of the stress response in fish. Cortisol practically affects all tissues by interacting with an intracellular receptor and modulating target gene expression. However, cortisol also interacts with components of the plasma membrane in a nongenomic process that activates rapid signaling. Until now, the implication of this novel cortisol signaling for the global transcriptional response has not been explored. In the present work, we evaluated the effects of the membrane-initiated actions of cortisol on the in vivo transcriptome of rainbow trout ( Oncorhynchus mykiss) skeletal muscle. RNA-Seq analyses were performed to examine the transcriptomic changes in rainbow trout stimulated by physiological concentrations of cortisol and cortisol coupled with bovine serum albumin (cortisol-BSA), a membrane-impermeable analog of cortisol. A total of 660 million paired-ends reads were generated. Reads mapped onto the reference genome revealed that 1,737; 897; and 1,012 transcripts were differentially expressed after 1, 3, and 9 h of cortisol-BSA treatment, respectively. Gene Ontology analysis showed that this novel action of cortisol modulates several biological processes, such as mRNA processing, ubiquitin-dependent protein catabolic processes, and transcription regulation. In addition, a KEGG analysis revealed that focal adhesion was the main signaling pathway that was upregulated at all the times tested. Taking these results together, we propose that the membrane-initiated cortisol action contributes significantly in the regulation of stress-mediated gene expression.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Rodrigo Zuloaga
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Macarena Bastías-Molina
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Claudio Meneses
- Universidad Andrés Bello, Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Alfredo Molina
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andrés Bello, Departamento Ciencias Biológicas, Facultad de Ciencias de la Vida, Santiago, Chile
- Universidad de Concepción, ThermoFish Lab, Biotechnology Center, Concepción, Chile
| |
Collapse
|
41
|
Hu YC, Chu KF, Hwang LY, Lee TH. Cortisol regulation of Na +, K +-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-Hsd1L) in gills of hypothermal freshwater milkfish, Chanos chanos. J Steroid Biochem Mol Biol 2019; 192:105381. [PMID: 31128249 DOI: 10.1016/j.jsbmb.2019.105381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Hypothermal stress changes the balance of osmoregulation by affecting Na+, K+-ATPase (Na-K-ATPase) activity or inducing modulation to epithelium permeability in fish. Meanwhile, cellular concentrations of cortisol can be modulated by the pre-receptor enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-Hsd1 and 2). In fish, increasing levels of exogenous cortisol stimulate Na+ uptake via specific interaction with cortisol. This study investigated cortisol effects on expression of Na-K-ATPase subunit proteins and activity in gills of milkfish under hypothermal stress and revealed that the plasma cortisol contents as well as gill 11β-hsd1l and na-k-atpase β1 mRNA abundance were decreased in fresh water (FW) milkfish. Meanwhile, in the seawater (SW) milkfish, the plasma cortisol contents and gill 11β-hsd1l and na-k-atpase β1 mRNA abundance was increased under hypothermal stress. On the other hand, the abundance of 11β-hsd2 mRNA increased in both FW and SW. In addition, 11β-hsd1l expression increased in FW milkfish but decreased in SW milkfish after cortisol injection. Accordingly, the results that gill Na-K-ATPase activity of FW milkfish was affected by environmental temperatures as well as cortisol-dependent Na-K-ATPase β1-subunit levels might be due to increased expression of 11β-hsd1l that elevated intracellular cortisol contents. In hypothermal SW milkfish, decreasing abundance of Na-K-ATPase β1 protein due to reduced expression of 11β-hsd1l was found after cortisol injection. Thus, under hypothermal stress, 11β-HSD1L in FW milkfish gills was used to modulate cortisol and the following effects on increasing the transcription of Na-K-ATPase β1 protein.
Collapse
Affiliation(s)
- Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Keng-Fu Chu
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Lie-Yueh Hwang
- Taishi Station, Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, Yulin, 636, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
42
|
Yada T, Abe M, Miyamoto K. Down-regulation of corticosteroid receptor in leucocytes of stressed rainbow trout. Gen Comp Endocrinol 2019; 280:54-61. [PMID: 30980804 DOI: 10.1016/j.ygcen.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022]
Abstract
The relationship between stress and immunosuppression was investigated in peripheral blood leucocytes (PBL) in rainbow trout, with reference to corticosteroid receptor (CR) expression and responses to cortisol- and/or lipopolysaccharide (LPS)-administration. Confinement stress in shallow water resulted in a sustained elevation of plasma cortisol, whereas lysozyme and immunoglobin levels were suppressed. Significant increases in mRNA levels of caspase-6 and insulin-like growth factor (IGF)-I were observed in PBL isolated from stressed fish. Confinement stress also suppressed proinflammatory cytokine, interleukin (IL)-1β, expression in PBL. There were decreasing tendencies for the mRNA levels of CRs in PBL of stressed fish. In-vitro treatment of cortisol and LPS on isolated PBL from unstressed trout increased both IL-1 β and CR mRNA expression. However, in PBL from stressed fish, cortisol and LPS treatment increased IL-1 β but not CR mRNA levels. Proliferative activities estimated as in-vitro incorporation of bromodeoxyuridine (BrdU) were decreased by cortisol in PBL from the unstressed and stressed fish groups; however, LPS-stimulated proliferation was observed only in the unstressed fish. Ratios of apoptotic PBL quantified as cell fragmentation using an automated cell counter were increased by cortisol in both groups; however, LPS-stimulated apoptosis was observed only in the stressed fish. Our study reveals cortisol has immune-suppressive effects in stressed fish, irrespective of CR down-regulation and desensitization. The complexity of immune-endocrine interaction is shown by the stress-induced attenuation of LPS effects.
Collapse
Affiliation(s)
- Takashi Yada
- Coastal and Freshwater Fisheries Research Center, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Nikko, Japan.
| | - Michihisa Abe
- Coastal and Freshwater Fisheries Research Center, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Nikko, Japan
| | - Kouta Miyamoto
- Coastal and Freshwater Fisheries Research Center, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Nikko, Japan
| |
Collapse
|
43
|
Peterson BC, Chatakondi NG, Small BC. Ontogeny of the cortisol stress response and glucocorticoid receptor expression during early development in channel catfish, Ictalurus punctatus. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:119-123. [DOI: 10.1016/j.cbpa.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
|
44
|
Palstra AP, Mendez S, Dirks RP, Schaaf MJM. Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish ( Danio rerio). Front Physiol 2019; 9:1889. [PMID: 30692930 PMCID: PMC6339955 DOI: 10.3389/fphys.2018.01889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the role of cortisol, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal, and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol signaling through Gr cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analyzed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 vs. 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish, and in this cluster genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Because these two processes appear to be regulated in both wild type and mutant fish, which both display exercise-enhanced growth, we suggest that they play an important role in the growth of muscles upon exercise.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | - Silvia Mendez
- Wageningen Marine Research, Wageningen University and Research, Yerseke, Netherlands.,Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
45
|
Baker ME, Katsu Y. Evolution of the Mineralocorticoid Receptor. VITAMINS AND HORMONES 2019; 109:17-36. [DOI: 10.1016/bs.vh.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Aedo JE, Ruiz-Jarabo I, Martínez-Rodríguez G, Boltaña S, Molina A, Valdés JA, Mancera JM. Contribution of Non-canonical Cortisol Actions in the Early Modulation of Glucose Metabolism of Gilthead Sea Bream ( Sparus aurata). Front Endocrinol (Lausanne) 2019; 10:779. [PMID: 31798534 PMCID: PMC6863068 DOI: 10.3389/fendo.2019.00779] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/24/2019] [Indexed: 11/24/2022] Open
Abstract
Teleost fish are exposed to diverse stressors in farming and wildlife conditions during their lifespan. Cortisol is the main glucocorticoid hormone involved in the regulation of their metabolic acclimation under physiological stressful conditions. In this context, increased plasma cortisol is associated with energy substrate mobilization from metabolic tissues, such as liver and skeletal muscle, to rapidly obtain energy and cope with stress. The metabolic actions of cortisol have primarily been attributed to its genomic/classic action mechanism involving the interaction with intracellular receptors, and regulation of stress-responsive genes. However, cortisol can also interact with membrane components to activate rapid signaling pathways. In this work, using the teleost fish gilthead sea bream (Sparus aurata) as a model, we evaluated the effects of membrane-initiated cortisol actions on the early modulation of glucose metabolism. For this purpose, S. aurata juveniles were intraperitoneally administrated with cortisol and with its membrane impermeable analog, cortisol-BSA. After 1 and 6 h of each treatment, plasma cortisol levels were measured, together with glucose, glycogen and lactate in plasma, liver and skeletal muscle. Transcript levels of corticosteroids receptors (gr1, gr2, and mr) and key gluconeogenesis (g6pc and pepck)- and glycolysis (pgam1 and aldo) related genes in the liver were also measured. Cortisol and cortisol-BSA administration increased plasma cortisol levels in S. aurata 1 h after administration. Plasma glucose levels enhanced 6 h after each treatment. Hepatic glycogen content decreased in the liver at 1 h of both cortisol and cortisol-BSA administration, while increased at 6 h due to cortisol but not in response to cortisol-BSA. Expression of gr1, g6pc, pgam1, and aldo were preferentially increased by cortisol-BSA in the liver. Taking all these results in consideration, we suggest that non-canonical cortisol mechanisms contribute to the regulation of the early glucose metabolism responses to stress in S. aurata.
Collapse
Affiliation(s)
- Jorge E. Aedo
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Ignacio Ruiz-Jarabo
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Spain
| | - Sebastián Boltaña
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Juan A. Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Juan A. Valdés
| | - Juan M. Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, Cádiz, Spain
| |
Collapse
|
47
|
Sanhueza N, Donoso A, Aguilar A, Farlora R, Carnicero B, Míguez JM, Tort L, Valdes JA, Boltana S. Thermal Modulation of Monoamine Levels Influence Fish Stress and Welfare. Front Endocrinol (Lausanne) 2018; 9:717. [PMID: 30559717 PMCID: PMC6287116 DOI: 10.3389/fendo.2018.00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm organisms that move through different thermal zones according to their physiological requirements and environmental availability, a behavior known as thermoregulation. Thermoregulation in ectothermic animals is influenced by their ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown how physiological and/or metabolic traits are impacted by modifications in the thermal environment. In captivity (land-based infrastructures or nets located in the open sea), fish are often restricted to spatially constant temperature conditions within the containment unit and cannot choose among different thermal conditions for thermoregulation. In order to understand how spatial variation of temperature may affect fish welfare and stress, we designed an experiment using either restricted or wide thermal ranges, looking for changes at hormonal and molecular levels. Also, thermal variability impact on fish behavior was measured. Our results showed that in Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.8°C) was associated with significant increases in monoamines hormone levels and in the expression of clock genes. Aggressive and territoriality behavior decreased, positively affecting parameters linked to welfare, such as growth and fin damage. In contrast, a restricted thermal range (ΔT 1.4°C) showed the opposite pattern in all the analyzed parameters, therefore, having detrimental effects on welfare. In conclusion, our results highlight the key role of thermal range amplitude on fish behavior and on interactions with major metabolism-regulating processes, such as hormone performance and molecular regulatory mechanisms that have positive effects on the welfare.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Donoso
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Rodolfo Farlora
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Beatriz Carnicero
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Jesús Manuel Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Lluis Tort
- Departamento de Biología Celular, Inmunología i Fisiologia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Sebastian Boltana
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
48
|
Sakamoto T, Hyodo S, Takagi W. A possible principal function of corticosteroid signaling that is conserved in vertebrate evolution: Lessons from receptor-knockout small fish. J Steroid Biochem Mol Biol 2018; 184:57-61. [PMID: 29481854 DOI: 10.1016/j.jsbmb.2018.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022]
Abstract
Corticosteroid receptors are critical for homeostasis maintenance, but understanding of the principal roles of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) throughout vertebrates is limited. Lines of constitutive GR-knockout zebrafish and MR-knockout medaka have recently been generated as the first adult-viable corticosteroid receptor-knockout animals, in contrast to the lethality of these receptor knockouts in mice. Here, we describe behavioral and physiological modifications following disruption of corticosteroid receptor function in these animal models. We suggest these data point toward a potentially conserved function of corticosteroid receptors in integrating brain-behavior and visual responses in vertebrates. Finally, we discuss how future work in cartilaginous fishes (Chondrichthyes) will further advance understanding of the unity and diversity of corticosteroid receptor function, since distinct orthologs of GR and MR derived from an ancestral corticoid receptor appear in these basal jawed vertebrates.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17, Kashino, Ushimado, Setouchi 701-4303, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
49
|
Tsalafouta A, Sarropoulou E, Papandroulakis N, Pavlidis M. Characterization and Expression Dynamics of Key Genes Involved in the Gilthead Sea Bream (Sparus aurata) Cortisol Stress Response during Early Ontogeny. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:611-622. [PMID: 29948235 DOI: 10.1007/s10126-018-9833-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/14/2018] [Indexed: 05/25/2023]
Abstract
The present study identified and characterized six key genes involved in the hypothalamic-pituitary-interrenal (HPI) axis of gilthead sea bream (Sparus aurata), a commercially important European aquaculture species. The key genes involved in the HPI axis for which gene structure and synteny analysis was carried out, comprised of two functional forms of glucocorticoid receptors (GR), as well as three forms of pro-opiomelanocortin (POMC) genes and one form of mineralocorticoid receptor (MR) gene. To explore their functional roles during development but also in the stress response, the expression profiles of gr1, gr2, mr, pomc_aI, pomc_aII, and pomc_β were examined during early ontogeny and after an acute stress challenge. The acute stress challenge was applied at the stage of full formation of all fins, where whole body cortisol was also measured. Both the cortisol and the molecular data implied that sea bream larvae at the stage of the full formation of all fins at 45 dph are capable of a response to stress of a similar profile as observed in adult fish.
Collapse
Affiliation(s)
- A Tsalafouta
- Department of Biology, University of Crete, P.O. Box 2208, 714 09, Heraklion, Crete, Greece.
| | - E Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, P.O. Box 2208, 714 09, Heraklion, Crete, Greece
| |
Collapse
|
50
|
Das C, Thraya M, Vijayan MM. Nongenomic cortisol signaling in fish. Gen Comp Endocrinol 2018; 265:121-127. [PMID: 29673844 DOI: 10.1016/j.ygcen.2018.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
Glucocorticoids are critical regulators of the cellular processes that allow animals to cope with stressors. In teleosts, cortisol is the primary circulating glucocorticoid and this hormone mediates a suite of physiological responses, most importantly energy substrate mobilization that is essential for acute stress adaptation. Cortisol signaling has been extensively studied and the majority of work has been on the activation of the glucocorticoid receptor (GR), a ligand-bound transcription factor, and the associated downstream transcriptional and protein responses. Despite the role of this hormone in acute stress adaptation, very few studies have examined the rapid effects of this hormone on cellular function. The nongenomic corticosteroid effects, which are rapid (seconds to minutes) and independent of transcription and translation, involve changes to second-messenger pathways and effector proteins, but the primary receptors involved in this pathway activation remain elusive. In teleosts, a few studies suggested the possibility that GR located on the membrane may be initiating a rapid response based on the abrogation of this effect with RU486, a GR antagonist. However, studies have also proposed other signaling mechanisms, including a putative novel membrane receptor and changes to membrane biophysical properties as initiators of rapid signaling in response to cortisol stimulation. Emerging evidence suggests that cortisol activates multiple signaling pathways in cells to bring about rapid effects, but the underlying physiological implications on acute stress adaptation are far from clear.
Collapse
Affiliation(s)
- Chinmayee Das
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Marwa Thraya
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|