1
|
Mennigen JA, Ramachandran D, Shaw K, Chaube R, Joy KP, Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (Lausanne) 2022; 13:1005863. [PMID: 36313759 PMCID: PMC9606234 DOI: 10.3389/fendo.2022.1005863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
The vertebrate nonapeptide families arginine vasopressin (AVP) and oxytocin (OXT) are considered to have evolved from a single vasopressin-like peptide present in invertebrates and termed arginine vasotocin in early vertebrate evolution. Unprecedented genome sequence availability has more recently allowed new insight into the evolution of nonapeptides and especially their receptor families in the context of whole genome duplications. In bony fish, nonapeptide homologues of AVP termed arginine vasotocin (Avp) and an OXT family peptide (Oxt) originally termed isotocin have been characterized. While reproductive roles of both nonapeptide families have historically been studied in several vertebrates, their roles in teleost reproduction remain much less understood. Taking advantage of novel genome resources and associated technological advances such as genetic modifications in fish models, we here critically review the current state of knowledge regarding the roles of nonapeptide systems in teleost reproduction. We further discuss sources of plasticity of the conserved nonapeptide systems in the context of diverse reproductive phenotypes observed in teleost fishes. Given the dual roles of preoptic area (POA) synthesized Avp and Oxt as neuromodulators and endocrine/paracrine factors, we focus on known roles of both peptides on reproductive behaviour and the regulation of the hypothalamic-pituitary-gonadal axis. Emphasis is placed on the identification of a gonadal nonapeptide system that plays critical roles in both steroidogenesis and gamete maturation. We conclude by highlighting key research gaps including a call for translational studies linking new mechanistic understanding of nonapeptide regulated physiology in the context of aquaculture, conservation biology and ecotoxicology.
Collapse
Affiliation(s)
- Jan A. Mennigen
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Divya Ramachandran
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Katherine Shaw
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Keerikkattil P. Joy
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Vance L. Trudeau
- Department of Biology, Faculty of Science, University of Ottawa, ON, Canada
| |
Collapse
|
2
|
Garlov PE, Kuzik VV. The Involvement and Functional Role of the Fish Nonapeptidergic Preoptico-Hypophysial Neurosecretory System in Spawning Migrations. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Nobata S, Kitagawa T, Houki S, Ito M, Aoki Y, Sato K, Hyodo S. Relationships between maturational status and migration behavior of homing chum salmon Oncorhynchus keta in inner bays of the Sanriku coast. Gen Comp Endocrinol 2021; 313:113896. [PMID: 34499908 DOI: 10.1016/j.ygcen.2021.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
The correlations among gonad maturity and various homing behaviors of chum salmon, Oncorhynchus keta, were evaluated using acoustic tracking of tagged fish in Otsuchi Bay, Japan. There was a negative correlation between the time duration from release of tagged fish until river entry and the plasma 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) levels, an indicator of final maturation. Females with high DHP entered the rivers soon after the release, whereas females with low DHP (<10 ng/ml) took a few days to more than one week until river entry. Similar correlation was also found in males. A pattern of river entry correlated with maturational conditions was also observed in fish entering the rivers of neighboring bays. DHP concentrations of fish caught in the rivers were consistently higher. On the other hand, more than half of released salmon departed from the bay regardless of their plasma DHP level, suggesting that maturational status does not force homing adults to enter the most available nearest rivers. Fish entering the rivers experienced ambient temperatures less than 8 °C, which is approximately 5 °C lower than that of the bay. These results indicate that homing salmon hold their position in the bay until just before spawning, which may be attributable to low temperature avoidance. This characteristic type of river entry may be suitable to geographical features and thermal regimes of this region.
Collapse
Affiliation(s)
- Shigenori Nobata
- Division of Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Takashi Kitagawa
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan
| | - Shouji Houki
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan
| | - Motohiro Ito
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan
| | - Yoshinori Aoki
- International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan
| | - Katsufumi Sato
- Division of Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan
| | - Susumu Hyodo
- Division of Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
4
|
Shahjahan M, Zahangir MM, Islam SMM, Ashaf-Ud-Doulah M, Ando H. Higher acclimation temperature affects growth of rohu (Labeorohita) through suppression of GH and IGFs genes expression actuating stress response. J Therm Biol 2021; 100:103032. [PMID: 34503781 DOI: 10.1016/j.jtherbio.2021.103032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
Water temperature alone can affect the growth, metabolic rates and physiological responses of aquatic organisms. Our earlier study reported that higher temperature affects cellular and hemato-biochemical responses in rohu, Labeo rohita. In this backdrop, the present study assessed the effect of higher acclimation temperature on the regulatory mechanisms of growth and stress responses of juvenile L. rohita acclimatized in three temperature conditions (30 °C, 33 °C, and 36 °C) for a period of 30 days. The relative expression of genes for growth hormone (GH), insulin-like growth factors (IGF-1 and IGF-2) and heat shock proteins (hsp70 and hsp90) were measured by real-time quantitative PCR. The results revealed that the highest acclimation temperature (36 °C) significantly decreased the weight gain (WG) and specific growth rate (SGR), and increased the feed conversion ratio (FCR) compared to 30 °C (control), while increased WG, SGR and lowered FCR were observed in fish reared at the intermediate temperature (33 °C) compared to 30 °C. Similarly, the GH gene expression in the pituitary was significantly decreased and increased at 36 °C and 33 °C, respectively as compared to 30 °C. A significantly lower expression of IGF-1 and IGF-2, and higher expression of hsp70 and hsp90 were observed in the liver of fish at 36 °C. The results of the present study indicate that although slightly elevated temperature promotes the growth of juvenile L. rohita, the higher acclimation temperature may induce stress response and impair growth performance by suppressing GH/IGF system.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata, 952-2135, Japan; Department of Fish Biology and Biotechnology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - S M Majharul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Ashaf-Ud-Doulah
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata, 952-2135, Japan
| |
Collapse
|
5
|
Mottola G, Kristensen T, Anttila K. Compromised thermal tolerance of cardiovascular capacity in upstream migrating Arctic char and brown trout-are hot summers threatening migrating salmonids? CONSERVATION PHYSIOLOGY 2020; 8:coaa101. [PMID: 34868596 PMCID: PMC7720086 DOI: 10.1093/conphys/coaa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 06/13/2023]
Abstract
Heat waves are threatening fish around the world, leading sometimes to mass mortality events. One crucial function of fish failing in high temperatures is oxygen delivery capacity, i.e. cardiovascular function. For anadromous salmonids, increased temperature could be especially detrimental during upstream migration since they need efficiently working oxygen delivery system in order to cross the river rapids to reach upstream areas. The migration also occurs during summer and early autumn exposing salmonids to peak water temperatures, and in shallow rivers there is little availability for thermal refuges as compared to thermally stratified coastal and lake habitats. In order to shed light on the mechanisms underpinning the capacity of migrating fish to face high environmental temperatures, we applied a physiological and molecular approach measuring cardiovascular capacities of migrating and resident Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in Northern Norway. The maximum cardiovascular capacity of migrating fish was significantly lower compared to the resident conspecifics. The onset of cardiac impairment started only 2°C higher than river temperature, meaning that even a small increase in water temperature may already compromise cardiac function. The migrating fish were also under significant cellular stress, expressing increased level of cardiac heat shock proteins. We consider these findings highly valuable when addressing climate change effect on migrating fish and encourage taking action in riverine habitat conservation policies. The significant differences in upper thermal tolerance of resident and migrating fish could also lead changes in population dynamics, which should be taken into account in future conservation plans.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| | - Torstein Kristensen
- Faculty of Bioscience and Aquaculture, Nord University, Universitetsalléen 11, 8026, Bødo, Norway
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland
| |
Collapse
|
6
|
Oto Y. Preference for saline water of an amphidromous goby maintained during migration to upstream freshwater areas. JOURNAL OF FISH BIOLOGY 2020; 97:202-211. [PMID: 32285453 DOI: 10.1111/jfb.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to reveal the salinity preference of juveniles of an amphidromous goby, Sumi-ukigori Gymnogobius petschiliensis, while migrating to a freshwater area. Salinity choice experiments revealed that juveniles of this species significantly prefer brackish water (salinity 20) to freshwater (salinity 0) when acclimated to a salinity of 20 in advance. Additional experiments revealed no preference between brackish water and seawater (salinity 35). Since body size was not correlated with the strength of preference for brackish water, and adults of this species are also known to prefer brackish water at a salinity of 20 to freshwater, the preference for saline water may be consistent after migration to a freshwater area. Considering that juvenile G. petschiliensis would often migrate to freshwater areas just after entering streams, the migration should be against its salinity preference. This directly contrasts with other diadromous species, which prefer the salinity of destination areas during and after migration. Adult and juvenile G. petschiliensis may take advantage of high euryhalinity to choose habitats where such ecological costs, such as high predation risk and interspecific competition, are low (i.e., freshwater areas).
Collapse
Affiliation(s)
- Yumeki Oto
- Department of Zoology, Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Yada T, Fukuda N, Abe M, Tsukamoto K. Changes in PRL Gene Expression During Upstream Movement of the Japanese Eel, Anguilla japonica. Zoolog Sci 2019; 36:521-527. [PMID: 31833323 DOI: 10.2108/zs190012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022]
Abstract
Changes in mRNA levels of prolactin (PRL) during upstream movement were examined in juvenile Japanese eels, Anguilla japonica. Glass eels and elvers were collected from 2007 to 2009 near the entrance of Hamana Lake, and in a small inflowing stream, the Egawa River. Quantification of mRNA was performed by real-time PCR and expressed as whole-body content. PRL mRNA levels of glass eels caught in the coastal zone and tidal area were low. Eels that moved downward in the tidal zone and migrated upstream to enter into freshwater showed increased levels of PRL mRNA. These changes suggest the importance of up-regulation of PRL gene expression in juvenile eels during their upstream movement from seawater to fresh water, particularly in relation to hyperosmoregulation.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Station, National Research Institute of Fisheries Science, Tochigi 321-1661, Japan,
| | - Nobuto Fukuda
- Yokohama Station, National Research Institute of Fisheries Science, Kanagawa 236-8648, Japan
| | - Michihisa Abe
- Nikko Station, National Research Institute of Fisheries Science, Tochigi 321-1661, Japan
| | - Katsumi Tsukamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Yamaguchi Y, Breves JP, Haws MC, Lerner DT, Grau EG, Seale AP. Acute salinity tolerance and the control of two prolactins and their receptors in the Nile tilapia (Oreochromis niloticus) and Mozambique tilapia (O. mossambicus): A comparative study. Gen Comp Endocrinol 2018; 257:168-176. [PMID: 28652133 PMCID: PMC5742082 DOI: 10.1016/j.ygcen.2017.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Osmoregulation in vertebrates is largely controlled by the neuroendocrine system. Prolactin (PRL) is critical for the survival of euryhaline teleosts in fresh water by promoting ion retention. In the euryhaline Mozambique tilapia (Oreochromis mossambicus), pituitary PRL cells release two PRL isoforms, PRL188 and PRL177, in response to a fall in extracellular osmolality. Both PRLs function via two PRL receptors (PRLRs) denoted PRLR1 and PRLR2. We conducted a comparative study using the Nile tilapia (O. niloticus), a close relative of Mozambique tilapia that is less tolerant to increases in environmental salinity, to investigate the regulation of PRLs and PRLRs upon acute hyperosmotic challenges in vivo and in vitro. We hypothesized that differences in the regulation of PRLs and PRLRs underlie the variation in salinity tolerance of tilapias within the genus Oreochromis. When transferred from fresh water to brackish water (20‰), Nile tilapia increased plasma osmolality and decreased circulating PRLs, especially PRL177, to a greater extent than Mozambique tilapia. In dispersed PRL cell incubations, the release of both PRLs was less sensitive to variations in medium osmolality in Nile tilapia than in Mozambique tilapia. By contrast, increases in pituitary and branchial prlr2 gene expression in response to a rise in extracellular osmolality were more pronounced in Nile tilapia relative to its congener, both in vitro and in vivo. Together, these results support the conclusion that inter-specific differences in salinity tolerance between the two tilapia congeners are tied, at least in part, to the distinct responses of both PRLs and their receptors to osmotic stimuli.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Maria C Haws
- Pacific Aquaculture and Coastal Resources Center, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
9
|
Costa LS, Rosa PV, Fortes-Silva R, Sánchez-Vázquez FJ, López-Olmeda JF. Daily rhythms of the expression of genes from the somatotropic axis: The influence on tilapia (Oreochromis niloticus) of feeding and growth hormone administration at different times. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:27-34. [PMID: 26743958 DOI: 10.1016/j.cbpc.2015.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/23/2022]
Abstract
The aim of this research was to investigate the presence of daily rhythms in the somatotropic axis of tilapia fed at two times (mid-light, ML or mid-dark, MD) and the influence of the time of day of growth hormone (GH) administration on the response of this axis. Two different GH injection times were tested: ZT 3 (3h after lights on) and ZT 15 (3h after lights off). In both experiments, the mRNA expression levels of hypothalamic pituitary adenylate cyclase-activating polypeptide (pacap), pituitary growth hormone (gh), liver insulin-like growth factors (igf1 and igf2a), and liver and muscle growth hormone receptors (ghr1 and ghr2) and IGF receptors (igf1ra and igf2r) were evaluated by means of qPCR. Daily rhythms were observed in the liver for ghr1, ghr2 and igf2r but only in fish fed at ML, with the acrophases located in the light phase (ZT 3:30, 3:31 and 7:38 h, respectively). In the muscle, ghr1 displayed a significant rhythm in both groups and ghr2 in ML fed fish (acrophases at ZT 5:29, 7:14 and 9:23h). The time of both GH administration and feeding influenced the response to GH injection: ML fed fish injected with GH at ZT 15 h showed a significant increase in liver igf1, igf2a and ghr2; and muscle ghr2 expression. This is the first report that describes the existence of daily rhythms in the somatotropic axis of tilapia and its time-dependent responses of GH administration. Our results should be considered when investigating the elements of the somatotropic axis in tilapia and GH administration.
Collapse
Affiliation(s)
- Leandro S Costa
- Department of Animal Science, Federal University of Lavras, Minas Gerais, 37200-000, Brazil; Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Priscila V Rosa
- Department of Animal Science, Federal University of Lavras, Minas Gerais, 37200-000, Brazil
| | - Rodrigo Fortes-Silva
- Agricultural Science, Biological and Environmental Center, University of Bahia, 44380-000, Cruz das Almas, Bahia, Brazil
| | - F Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| | - Jose F López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
10
|
Mohammed-Geba K, Martos-Sitcha JA, Galal-Khallaf A, Mancera JM, Martínez-Rodríguez G. Insulin-like growth factor 1 (IGF-1) regulates prolactin, growth hormone, and IGF-1 receptor expression in the pituitary gland of the gilthead sea bream Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:365-377. [PMID: 26486515 DOI: 10.1007/s10695-015-0144-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The role of insulin-like growth factor 1 (IGF-1) on regulation of growth hormone (GH) and prolactin (PRL) as well as the possible involvement of IGF-1 receptor subtype a (IGF-1Ra) mRNA was assessed in juvenile specimens of Sparus aurata. IGF-1Ra was successfully cloned, and active receptor domains were localized in its mRNA precursor. Also, phylogenetic analysis of the protein sequence indicated a closer proximity to IGF-1Ra isoform found in zebrafish and other teleosts, than to the isoform IGF-1Rb. The most abundant presence of IGF-1Ra mRNA was detected in white muscle, whereas head kidney showed the lowest gene expression among 24 different studied tissues. Pituitaries of juvenile specimens of S. aurata were incubated in vitro with different doses of IGF-1 (0, 1, 100, and 1000 ng mL(-1)) during a period of 10 h. Total RNA with a high quality could be obtained from these pituitaries. PRL mRNA expression significantly increased with increasing IGF-1 doses. Similarly, IGF-1Ra mRNA increased its expression in response to IGF-1. However, GH mRNA levels decreased in a dose-dependent manner after IGF-1 treatment. The contradictory responses of GH and PRL expressions to IGF-1 in our experiment are possibly mediated by IGF-1Ra presence on the somatotrophs and prolactotrophs. The increase in IGF-1Ra mRNA levels may be related to the proper activation of the PI3-K/Akt signal transduction pathways which are normally involved in GH and PRL regulation.
Collapse
|
11
|
Palstra AP, Fukaya K, Chiba H, Dirks RP, Planas JV, Ueda H. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta. PLoS One 2015; 10:e0137404. [PMID: 26397372 PMCID: PMC4580453 DOI: 10.1371/journal.pone.0137404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
- * E-mail:
| | - Kosuke Fukaya
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| | - Hiroaki Chiba
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ron P. Dirks
- ZF-screens BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| |
Collapse
|
12
|
Covelo-Soto L, Saura M, Morán P. Does DNA methylation regulate metamorphosis? The case of the sea lamprey (Petromyzon marinus) as an example. Comp Biochem Physiol B Biochem Mol Biol 2015; 185:42-6. [DOI: 10.1016/j.cbpb.2015.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/20/2015] [Accepted: 03/31/2015] [Indexed: 02/03/2023]
|
13
|
Mu X, Su M, Gui L, Liang X, Zhang P, Hu P, Liu Z, Zhang J. Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). Gen Comp Endocrinol 2015; 215:25-35. [PMID: 25304824 DOI: 10.1016/j.ygcen.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 11/18/2022]
Abstract
Scatophagus argus, a euryhaline fish, is notable for its ability to tolerate a wide range of environmental salinities and especially for its tolerance to a rapid, marked reduction in salinity. Therefore, S. argus is a good model for studying the molecular mechanisms mediating abrupt hyperosmoregulation. The serum osmotic pressure decreased steeply within one hour after transferring S. argus from seawater (SW) to freshwater (FW) and remained at new balance throughout the duration of one week. To explain this phenomenon and understand the molecular responses to an abrupt hypoosmotic shock, hypoosmotic stress responsive genes were identified by constructing two suppression subtractive hybridization (SSH) cDNA libraries from the kidneys of S. argus that had been transferred from SW to FW. After trimming and blasting, 52 ESTs were picked out from the subtractive library. Among them, 11 genes were significantly up-regulated (p < 0.05). The kinetics studies of gene expression levels were conducted for 1 week after the transfer using quantitative real-time PCR. A significant variation in the expression of these genes occurred within 12h after the hypoosmotic shock, except for growth hormone (GH) and polyadenylate binding protein 1 (PBP1), which were significantly up-regulated 2 days post-transfer. Our results suggest different functional roles for these genes in response to hypoosmotic stress during the stress response phase (1 hpt-12 hpt) and stable phase (12 hpt-7 dpt). Furthermore, the plasma growth hormone level was detected to be significantly elevated at 1 hpt and 24 hpt following abrupt hypoosmotic shock. Meanwhile, several hematological parameters, hemoglobin (HGB), red blood cell (RBC) and mean cellular hemoglobin concentration (MCHC), were observed to be significantly increased at 12 hpt and 2 dpt compared with that of control group. Our results provide a solid basis from which to conduct future studies on the osmoregulatory mechanisms in the euryhaline fish.
Collapse
Affiliation(s)
- Xingjiang Mu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Maoliang Su
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenhao Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Nikoleris L, Hansson MC. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load. Mol Cell Endocrinol 2015; 400:10-20. [PMID: 25451980 DOI: 10.1016/j.mce.2014.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
Abstract
Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available.
Collapse
Affiliation(s)
- Lina Nikoleris
- Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden; Center for Environmental and Climate Research (CEC), Lund University, SE-223 62 Lund, Sweden.
| | - Maria C Hansson
- Center for Environmental and Climate Research (CEC), Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
15
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
16
|
Yada T, Iguchi K, Yamamoto S, Sakano H, Takasawa T, Katsura K, Abe N, Aawata S, Uchida K. Prolactin and upstream migration of the amphidromous teleost, ayu Plecoglossus altivelis. Zoolog Sci 2014; 31:507-14. [PMID: 25088591 DOI: 10.2108/zs130181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Changes in mRNA levels of prolactin (PRL) during the upstream migration were examined in fry of the amphidromous fish, ayu Plecoglossus altivelis. Quantification of mRNA has been done with real-time PCR and expressed as whole body or pituitary contents depending the body size of fry. PRL mRNA levels of ayu caught in seawater of the coastal area remained low during early spring. Prior to the start of the upstream migration, the fish caught in the coastal area in mid spring showed increased levels of PRL mRNA. There were further increases in PRL levels in the fish caught in the river. Analysis of proportions revealed that there were significant differences among PRL mRNA in the fish caught in different environmental salinities. Body weight showed a positive relation with PRL mRNA in ayu caught in seawater. A landlocked population of ayu, which migrates from lake to river, showed no significant change in PRL mRNA levels before and after upstream migration. Results in this study indicate the importance of up-regulation of PRL gene expression of ayu during the upstream migration from seawater to fresh water. There is a possible relationship between body size and PRL in the early developmental stage of ayu in seawater, but not in the fish in fresh water.
Collapse
Affiliation(s)
- Takashi Yada
- 1 Nikko Station, National Research Institute of Aquaculture, Tochigi 321-1661, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Choi YJ, Kim NN, Shin HS, Choi CY. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:479-87. [PMID: 25049977 PMCID: PMC4093526 DOI: 10.5713/ajas.2013.13592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/16/2013] [Accepted: 12/03/2013] [Indexed: 11/27/2022]
Abstract
Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.
Collapse
|
18
|
Ueda H. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2012; 81:543-558. [PMID: 22803723 DOI: 10.1111/j.1095-8649.2012.03354.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids.
Collapse
Affiliation(s)
- H Ueda
- Field Science Center for Northern Biosphere, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
19
|
EVANS TYLERG, HAMMILL EDD, KAUKINEN KARIA, SCHULZE ANGELAD, PATTERSON DAVIDA, ENGLISH KARLK, CURTIS JANELLEMR, MILLER KRISTINAM. Transcriptomics of environmental acclimatization and survival in wild adult Pacific sockeye salmon (Oncorhynchus nerka) during spawning migration. Mol Ecol 2011; 20:4472-89. [DOI: 10.1111/j.1365-294x.2011.05276.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Ueda H. Physiological mechanism of homing migration in Pacific salmon from behavioral to molecular biological approaches. Gen Comp Endocrinol 2011; 170:222-32. [PMID: 20144612 DOI: 10.1016/j.ygcen.2010.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The amazing abilities of Pacific salmon to migrate long distances from the ocean to their natal streams for spawning have been investigated intensively since 1950's, but there are still many mysteries because of difficulties to follow their whole life cycle and to wait their sole reproductive timing for several years. In my laboratory, we have tried to clarify physiological mechanisms of homing migration in Pacific salmon, using four anadromous Pacific salmon (pink, Oncorhynchus gorbuscha; chum, Oncorhynchus keta; sockeye, Oncorhynchus nerka; masu, Oncorhynchus masou) in the north Pacific Ocean as well as two lacustrine salmon (sockeye and masu) in Lake Toya and Lake Shikotsu, Hokkaido, Japan, where the lakes serve as a model "ocean". Three different approaches from behavioral to molecular biological researches have been conducted using these model fish. First, the homing behaviors of adult chum salmon from the Bering Sea to Hokkaido as well as lacustrine sockeye and masu salmon in Lake Toya were examined by means of physiological biotelemetry techniques, and revealed that salmon can navigate in open water using different sensory systems. Second, the hormone profiles in the brain-pituitary-gonadal (BPG) axis were investigated in chum salmon and lacustrine sockeye salmon during their homing migration by means of hormone specific time-resolved fluoroimmunoassay (TR-FIA) systems, and clarified that salmon gonadotropin-releasing hormone (sGnRH) plays leading roles on homing migration. Third, the olfactory functions of salmon were studied by means of electrophysiological, behavioral, and molecular biological techniques, and made clear that olfactory discriminating ability of natal stream odors. These results have discussed with the evolutional aspects of four Pacific salmon, sexual differences in homing profiles, and the possibility of dissolved free amino acids (DFAA) as natal stream odors for salmon.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Field Science Center for Northern Biosphere, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0809, Japan.
| |
Collapse
|
21
|
Onuma TA, Makino K, Ando H, Ban M, Fukuwaka MA, Azumaya T, Urano A. Expression of GnRH genes is elevated in discrete brain loci of chum salmon before initiation of homing behavior and during spawning migration. Gen Comp Endocrinol 2010; 168:356-68. [PMID: 20470776 DOI: 10.1016/j.ygcen.2010.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 04/26/2010] [Accepted: 05/03/2010] [Indexed: 11/19/2022]
Abstract
Our previous studies suggested the importance of gonadotropin-releasing hormones (GnRHs) for initiation of spawning migration of chum salmon, although supporting evidence had been not available from oceanic fish. In farmed masu salmon, the amounts of salmon GnRH (sGnRH) mRNAs in the forebrain increased in the pre-pubertal stage from winter through spring, followed by a decrease toward summer. We thus hypothesized that gene expression for GnRHs in oceanic chum salmon changes similarly, and examined this hypothesis using brain samples from winter chum salmon in the Gulf of Alaska and summer fish in the Bering Sea. They were classified into sexually immature and maturing adults, which had maturing gonads and left the Bering Sea for the natal river by the end of summer. The absolute amounts of GnRH mRNAs were determined by real-time PCRs. The amounts of sGnRH mRNA in the maturing winter adults were significantly larger than those in the maturing summer adults. The amounts of sGnRH and chicken GnRH mRNAs then peaked during upstream migration from the coast to the natal hatchery. Such changes were observed in various brain loci including the olfactory bulb, terminal nerve, ventral telencephalon, nucleus preopticus parvocellularis anterioris, nucleus preopticus magnocellularis and midbrain tegmentum. These results suggest that sGnRH neurons change their activity for gonadal maturation prior to initiation of homing behavior from the Bering Sea. The present study provides the first evidence to support a possible involvement of neuropeptides in the onset of spawning migration.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Yada T, Tsuruta T, Sakano H, Yamamoto S, Abe N, Takasawa T, Yogo S, Suzuki T, Iguchi K, Uchida K, Hyodo S. Changes in prolactin mRNA levels during downstream migration of the amphidromous teleost, ayu Plecoglossus altivelis. Gen Comp Endocrinol 2010; 167:261-7. [PMID: 20350547 DOI: 10.1016/j.ygcen.2010.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 11/19/2022]
Abstract
Changes in mRNA levels of prolactin (PRL) during seaward migration and after experimental transfer from fresh water (FW) to seawater (SW) were examined in larvae of the amphidromous fish, ayu Plecoglossus altivelis. In the field study, ayu larvae caught in the surf zone showed lower levels of PRL mRNA than those in the river, while growth hormone (GH) levels showed no significant change. Decrease in PRL gene transcription was also observed 24h after direct transfer from FW to SW, whereas there was no significant influence of water temperature. On the other hand, there was no significant change in GH mRNA levels in relation to SW transfer or environmental temperature. In a raceway with a vertical salinity gradient, PRL mRNA levels of ayu larvae showed a significant reduction during spontaneous migration from FW to SW, which mimicked the results from the field observation and the transfer experiment, and then a gradual increase during the course of development. Whole body water and sodium contents of larvae in a salinity gradient were stable during migration to SW. Results in this study indicated the importance of regulation of PRL gene expression in the downstream migration and acclimation to SW during the early development of ayu.
Collapse
Affiliation(s)
- Takashi Yada
- Nikko Station, National Research Institute of Fisheries Science, Nikko, Tochigi 321-1661, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cooperman MS, Hinch SG, Crossin GT, Cooke SJ, Patterson DA, Olsson I, Lotto AG, Welch DW, Shrimpton JM, Van Der Kraak G, Farrell AP. Effects of Experimental Manipulations of Salinity and Maturation Status on the Physiological Condition and Mortality of Homing Adult Sockeye Salmon Held in a Laboratory. Physiol Biochem Zool 2010; 83:459-72. [PMID: 20345242 DOI: 10.1086/650473] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M S Cooperman
- Centre for Applied Conservation Research, Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Onuma TA, Ban M, Makino K, Katsumata H, Hu W, Ando H, Fukuwaka MA, Azumaya T, Urano A. Changes in gene expression for GH/PRL/SL family hormones in the pituitaries of homing chum salmon during ocean migration through upstream migration. Gen Comp Endocrinol 2010; 166:537-48. [PMID: 20100485 DOI: 10.1016/j.ygcen.2010.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Gene expression for growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family hormones in the pituitaries of homing chum salmon were examined, because gene expression for these hormones during ocean-migrating phases remains unclear. Fish were collected in the winter Gulf of Alaska, the summer Bering Sea and along homing pathway in the Ishikari River-Ishikari Bay water system in Hokkaido, Japan in autumn. The oceanic fish included maturing adults, which had developing gonads and left the Bering Sea for the natal river by the end of summer. The absolute amounts of GH, PRL and SL mRNAs in the pituitaries of the maturing adults in the summer Bering Sea were 5- to 20-fold those in the winter Gulf of Alaska. The amount of GH mRNA in the homing adults at the coastal seawater (SW) areas was smaller than that in the Bering fish, while the amount of PRL mRNA remained at the higher level until fish arrived at the Ishikari River. The gill Na(+),K(+)-ATPase activity in the coastal SW fish and the plasma Na(+) levels in the brackish water fish at the estuary were lowered to the levels that were comparable to those in the fresh water (FW) fish. In conclusion, gene expression for GH, PRL and SL was elevated in the pituitaries of chum salmon before initiation of homing behavior from the summer Bering Sea. Gene expression for GH is thereafter lowered coincidently with malfunction of SW adaptability in the breeding season, while gene expression for PRL is maintained high until forthcoming FW adaptation.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Animal and Marine Bioresource Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
26
|
Crossin GT, Hinch SG, Cooke SJ, Patterson DA, Lotto AG, Van Der Kraak G, Zohar Y, Klenke U, Farrell AP. Testing the synergistic effects of GnRH and testosterone on the reproductive physiology of pre-adult pink salmon Oncorhynchus gorbuscha. JOURNAL OF FISH BIOLOGY 2010; 76:112-128. [PMID: 20738702 DOI: 10.1111/j.1095-8649.2009.02479.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To test the hypothesis that the hypothalmic gonadotropin-releasing hormone (GnRH) and testosterone (T) co-treatment stimulates both the hypothalmo-pituitary-gonadal (HPG) and hypothalmo-pituitary-interrenal axes, the reproductive and osmoregulatory responses of pre-adult pink salmon Oncorhynchus gorbuscha were compared after GnRH and T administration either alone or in combination. Relative to controls, neither GnRH nor T treatment resulted in significantly greater ovarian or testicular growth, but co-treatment significantly increased ovarian growth after 5 months. Interestingly, the stimulation was undetectable after 3 months. However, once daily photoperiod began shortening after the summer solstice, c. 2 months before the natural spawning date, GnRH+T-treated females were stimulated to produce larger ovaries. Final fish body length and the size of individual eggs did not differ among treatment groups. GnRH+T eggs, however, showed signs of advanced vitellogenesis relative to GnRH-treated and control eggs, whereas T-treated eggs became atretic. Testis size increased significantly from initial values and most males were spermiating, but this growth and development were independent of hormone treatments. Final plasma ion, metabolite and cortisol concentrations did not differ among treatment groups. It is concluded that GnRH+T co-treatment was effective in stimulating female but not male maturation. GnRH and T treatment, however, presumably had little effect on the hypothalmo-pituitary-interrenal axis as observed by ionoregulatory status.
Collapse
Affiliation(s)
- G T Crossin
- Centre for Applied Conservation Research and Department of Forest Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hansson MC, Persson ME, Larsson P, von Schantz T. Polychlorinated biphenyl (PCB) load, lipid reserves and biotransformation activity in migrating Atlantic salmon from River Mörrum, Sweden. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:3396-3403. [PMID: 19616879 DOI: 10.1016/j.envpol.2009.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/07/2009] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
Atlantic salmon accumulate high levels of contaminants such as polychlorinated biphenyls (PCBs) in their lipids during the adult growth phase spent at sea. The lipids are later utilized during migration for swimming and biological adaptations. We hypothesize that migrating salmons' biotransformation processes are affected by the high levels of built-up PCBs compared to salmon that in a pre-migrational stage. For these analyses we sampled adult Atlantic salmon during migration in the Swedish River Mörrum and measured the 21 most common PCB congeners ( summation operatorPCB) and lipid levels in muscle tissue, aryl hydrocarbon receptor (AHR2) and cytochrome P4501A1 (CYP1A1) transcript levels as well as ethoxyresorufin-O-deethylase activity (EROD) in liver. We also determined which AHR2 genotypes the salmon carried. We show that EROD activity is correlated to CYP1A1 level but not to summation operatorPCB concentration. summation operatorPCB concentration does not predict levels of neither the AHR2 nor CYP1A1 genes. We find no associations between specific AHR2 transcription levels and AHR2 genotypes or a correlation between AHR2 and CYP1A1 transcription levels, which is in direct contrast to pre-migrational adult salmon from the Baltic Sea. When we compare River Mörrum to salmon we have previously sampled in the Baltic Sea we show that migrating salmon have significantly lower lipid levels in their muscles; higher muscle concentrations of summation operatorPCB on a lipid basis; and significantly lower CYP1A1 and EROD levels compared to salmon from the Baltic Sea. Also, transcript levels of three out of four AHR2 genes are significantly different. In conclusion, migrating Swedish Atlantic salmon carry higher concentrations of PCBs in their lipids compared to salmon in the Baltic Sea, but have lower activation of biotransformation genes and enzymes. Our results indicate that accumulated pollutants from the Baltic Sea are deactivated inside the migrating salmon's lipid tissues and increase in concentration when migration is initiated thereby limiting their impact on biotransformation processes.
Collapse
Affiliation(s)
- Maria C Hansson
- Department of Environmental Science, Ecology Building, Lund University, SE-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
28
|
Onuma TA, Sato S, Katsumata H, Makino K, Hu W, Jodo A, Davis ND, Dickey JT, Ban M, Ando H, Fukuwaka MA, Azumaya T, Swanson P, Urano A. Activity of the pituitary-gonadal axis is increased prior to the onset of spawning migration of chum salmon. ACTA ACUST UNITED AC 2009; 212:56-70. [PMID: 19088211 DOI: 10.1242/jeb.021352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity of the pituitary-gonadal axis (PG axis) in pre-migratory and homing chum salmon was examined because endocrine mechanisms underlying the onset of spawning migration remain unknown. Pre-migratory fish were caught in the central Bering Sea in June, July and September 2001, 2002 and 2003, and in the Gulf of Alaska in February 2006. They were classified into immature and maturing adults on the basis of gonadal development. The maturing adults commenced spawning migration to coastal areas by the end of summer, because almost all fish in the Bering Sea were immature in September. In the pituitaries of maturing adults, the copy numbers of FSHbeta mRNA and the FSH content were 2.5- to 100-fold those of the immature fish. Similarly, the amounts of LHbeta mRNA and LH content in the maturing adults were 100- to 1000-fold those of immature fish. The plasma levels of testosterone, 11-ketotestosterone and estradiol were higher than 10 nmol l(-1) in maturing adults, but lower than 1.0 nmol l(-1) in immature fish. The increase in the activity of the PG-axis components had already initiated in the maturing adults while they were still in the Gulf of Alaska in winter. In the homing adults, the pituitary contents and the plasma levels of gonadotropins and plasma sex steroid hormones peaked during upstream migration from the coast to the natal hatchery. The present results thus indicate that the seasonal increase in the activity of the PG axis is an important endocrine event that is inseparable from initiation of spawning migration of chum salmon.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
St-Cyr S, Aubin-Horth N. Integrative and genomics approaches to uncover the mechanistic bases of fish behavior and its diversity. Comp Biochem Physiol A Mol Integr Physiol 2008; 152:9-21. [PMID: 18824118 DOI: 10.1016/j.cbpa.2008.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/07/2023]
Abstract
Understanding the molecular mechanisms underlying fish behavior is of fundamental importance to further our understanding of the proximate and ultimate causes of variation in this trait and informs us on issues of animal husbandry, conservation, and welfare. One way to approach this question is to study variation in gene expression in individuals exhibiting different behaviors and relating it to variations at other phenotypic levels in an organismic, ecological and evolutionary context. Here we review studies that have shown that the use of such an integrative and genomics approach is greatly useful for shedding new light on the mechanisms of behaviors as diverse as social dominance, mate choice, reproduction and migration. We present studies that use functional genomics tools and integrate several biological levels of organization, including transcription variation, which are important in the context of integrative biology and genomics of fish behavior. We review studies of phenotype-level variation in transcription but also studies that focus on variation at the individual-level. Dissecting the molecular bases of among-individual variation in behavior, including the study of variation in temperament (behavioral syndrome/coping style) within and among populations, will gain importance in the field in the years to come.
Collapse
Affiliation(s)
- Sophie St-Cyr
- Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|