1
|
Ding M, Han L, Miao J, Wang X, Wang L, Pan L. Estrogen receptor knockdown suggests its role in gonadal development regulation in Manila clam Ruditapes philippinarum. J Steroid Biochem Mol Biol 2024; 243:106594. [PMID: 39084493 DOI: 10.1016/j.jsbmb.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The estrogen receptor (ER), a ligand-dependent transcription factor, is critical for vertebrate reproduction. However, its role in bivalves is not well understood, with ongoing debates regarding its function in regulating reproduction similarly to vertebrates. To investigate ER's function, we conducted a 21-day RNA interference experiment focusing on its role in gonadal development in bivalves. Histological analyses revealed that ER inhibition significantly suppressed ovarian development in females and, conversely, promoted gonadal development in males. Additionally, levels of 17β-estrogen (E2) were markedly reduced in the gonads of both sexes following ER suppression. Transcriptomic analysis from RNA-seq of testes and ovaries after ER interference showed changes in the expression of key genes such as Vtg, CYP17, 3β-HSD, and 17β-HSD. These genes are involved in the estrogen signaling pathway and steroid hormone biosynthesis. Furthermore, ER suppression significantly affected the expression of genes linked to gametogenesis and the reproductive cycle. Our findings highlight ER's crucial, yet complex and sex-specific roles in gonadal development in bivalves, emphasizing the need for further detailed studies.
Collapse
Affiliation(s)
- Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, PR China
| | - Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
2
|
Wang H, Yu H, Li Q. Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad. iScience 2024; 27:109499. [PMID: 38571762 PMCID: PMC10987912 DOI: 10.1016/j.isci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Gametogenesis drives the maturation of germ cell precursors into functional gametes, facilitated by interactions with the niche environment. However, the molecular mechanisms, especially in invertebrates, remain incompletely understood. In this study, the gonadal microenvironment and gametogenic processes in the Pacific oyster, a model for diffuse gonadal organization and periodic gametogenesis, are investigated. We combine single-nucleus RNA-seq and bulk RNA-seq to analyze gonadal microenvironments in oysters. Twenty-three male and nineteen female gonadal cell clusters are identified, revealing four male and three female germ cell types, alongside follicular cells in females and Sertoli/Leydig cells in males. The NOTCH and BMP (bone morphogenetic protein) signaling pathways play a significant role in the male germline niche, suggesting similarities with mammalian germ cell microenvironment. This study offers valuable insights into germ cell developmental transitions and microenvironmental characteristics.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
3
|
Li YF, Lin YT, Wang YQ, Ni JY, Power DM. Ioxynil and diethylstilbestrol impair cardiac performance and shell growth in the mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166834. [PMID: 37717744 DOI: 10.1016/j.scitotenv.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
The herbicide ioxynil (IOX) and the synthetic estrogen diethylstilbestrol (DES) are environmentally relevant contaminants that act as endocrine disruptors (EDCs) and have recently been shown to be cardiovascular disruptors in vertebrates. Mussels, Mytilus coruscus, were exposed to low doses of IOX (0.37, 0.037 and 0.0037 mg/L) and DES (0.27, 0.027 and 0.0027 mg/L) via the water and the effect monitored by generating whole animal transcriptomes and measuring cardiac performance and shell growth. One day after IOX (0.37 and 0.037 mg/L) and DES (0.27 and 0.027 mg/L) exposure heart rate frequency was decreased in both groups and 0.27 mg/L DES significantly reduced heart rate frequency with increasing time of exposure (P < 0.05) and no acclimatization occurred. The functional effects were coupled to significant differential expression of genes of the serotonergic synapse pathway and cardiac-related genes at 0.027 mg/L DES, which suggests that impaired heart function may be due to interference with neuroendocrine regulation and direct cardiac effect genes. Multiple genes related to detoxifying xenobiotic substances were up regulated and genes related to immune function were down regulated in the DES group (vs. control), indicating that detoxification processes were enhanced, and the immune response was depressed. In contrast, IOX had a minor disrupting effect at a molecular level. Of note was a significant suppression (P < 0.05) by DES of shell growth in juveniles and lower doses (< 0.0027 mg/L) had a more severe effect. The shell growth depression in 0.0027 mg/L DES-treated juveniles was not accompanied by abundant differential gene expression, suggesting that the effect of 0.0027 mg/L DES on shell growth may be direct. The results obtained in the present study reveal for the first time that IOX and DES may act as neuroendocrine disrupters with a broad spectrum of effects on cardiac performance and shell growth, and that DES exposure had a much more pronounced effect than IOX in a marine bivalve.
Collapse
Affiliation(s)
- Yi-Feng Li
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| | - Yue-Tong Lin
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yu-Qing Wang
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Ji-Yue Ni
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- International Research Centre for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Centre of Marine Sciences, University of Algarve, Faro, Portugal.
| |
Collapse
|
4
|
Madaloz TZ, Dos Santos K, Zacchi FL, Bainy ACD, Razzera G. Nuclear receptor superfamily structural diversity in pacific oyster: In silico identification of estradiol binding candidates. CHEMOSPHERE 2023; 340:139877. [PMID: 37619748 DOI: 10.1016/j.chemosphere.2023.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-β-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.
Collapse
Affiliation(s)
- Tâmela Zamboni Madaloz
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Karin Dos Santos
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Afonso Celso Dias Bainy
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
5
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
6
|
Gu W, Thitiphuree T, Otoki Y, Marquez EC, Kitano T, Itoh N, Nagasawa K, Osada M. Expression and functional analyses for estrogen receptor and estrogen related receptor of Yesso scallop, Patinopecten yessoensis. J Steroid Biochem Mol Biol 2023; 231:106302. [PMID: 36990165 DOI: 10.1016/j.jsbmb.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Estrogen receptors (ERs) were known as estrogen-activated transcription factors and function as major reproduction regulators in vertebrates. The presence of er genes had been reported in Molluscan cephalopods and gastropods. However, they were considered as constitutive activators with unknown biological functions since reporter assays for these ERs did not show a specific response to estrogens. In this study, we tried characterization of ER orthologues from the Yesso scallop, Patinopecten yessoensis, in which estrogens had been proven to be produced in the gonads and involved in the spermatogenesis and vitellogenesis. Identified ER and estrogen related receptor (ERR) of Yesso scallops, designated as py-ER and py-ERR, conserved specific domain structures for a nuclear receptor. Their DNA binding domains showed high similarities to those of vertebrate ER orthologues, while ligand binding domains had low similarities with them. Both the py-er and py-err expression levels decreased in the ovary at the mature stage while py-vitellogenin expression increased in the ovary by quantitative real-time RT-PCR. Also, the py-er and py-err showed higher expressions in the testis than ovary during the developing and mature period, suggesting both genes might function in the spermatogenesis and testis development. The py-ER showed binding affinities to vertebrate estradiol-17β (E2). However, the intensity was weaker than the vertebrate ER, indicating scallops might exist endogenous estrogens with a different structure. On the other hand, the binding property of py-ERR to E2 was not confirmed in this assay, speculating that py-ERR was a constitutive activator as other vertebrate ERRs. Further, the py-er was localized in the spermatogonia in the testis and in the auxiliary cells in the ovary by in situ hybridization, indicating its potential roles in promoting spermatogenesis and vitellogenesis. Taken together, the present study demonstrated that py-ER was an authentic E2 receptor in the Yesso scallop and might have functions for the spermatogonia proliferation and vitellogenesis, while py-ERR was involved in the reproduction by undiscovered manners.
Collapse
Affiliation(s)
- Wenbin Gu
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Tongchai Thitiphuree
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Yurika Otoki
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Emily C Marquez
- Pesticide Action Network of North America, 1611 Telegraph Ave, Suite 1200, Oakland, CA 94612, USA
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazue Nagasawa
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Makoto Osada
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan.
| |
Collapse
|
7
|
Fodor I, Pirger Z. From Dark to Light - An Overview of Over 70 Years of Endocrine Disruption Research on Marine Mollusks. Front Endocrinol (Lausanne) 2022; 13:903575. [PMID: 35872980 PMCID: PMC9301197 DOI: 10.3389/fendo.2022.903575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
|
8
|
Ip JCH, Leung PTY, Qiu JW, Lam PKS, Wong CKC, Chan LL, Leung KMY. Transcriptomics reveal triphenyltin-induced molecular toxicity in the marine mussel Perna viridis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148040. [PMID: 34091345 DOI: 10.1016/j.scitotenv.2021.148040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Triphenyltin (TPT) is widely used as an active ingredient in antifouling paints and fungicides, and continuous release of this highly toxic endocrine disruptor has caused serious pollution to coastal marine ecosystems and organisms worldwide. Using bioassays and transcriptome sequencing, this study comprehensively investigated the molecular toxicity of TPT chloride (TPTCl) to the marine mussel Perna viridis which is a commercially important species and a common biomonitor for marine pollution in Southeast Asia. Our results indicated that TPTCl was highly toxic to adult P. viridis, with a 96-h LC10 and a 96-h EC10 at 18.7 μg/L and 2.7 μg/L, respectively. A 21-day chronic exposure to 2.7 μg/L TPTCl revealed a strong bioaccumulation of TPT in gills (up to 36.48 μg/g dry weight) and hepatopancreas (71.19 μg/g dry weight) of P. viridis. Transcriptome analysis indicated a time course dependent gene expression pattern in both gills and hepatopancreas. Higher numbers of differentially expressed genes were detected at Day 21 (gills: 1686 genes; hepatopancreas: 1450 genes) and at Day 28 (gills: 628 genes; hepatopancreas: 238 genes) when compared with that at Day 7 (gills: 104 genes, hepatopancreas: 112 genes). Exposure to TPT strongly impaired the endocrine system through targeting on nuclear receptors and putative steroid metabolic genes. Moreover, TPT widely disrupted cellular functions, including lipid metabolism, xenobiotic detoxification, immune response and endoplasmic-reticulum-associated degradation expression, which might have caused the bioaccumulation of TPT in the tissues and aggregation of peptides and proteins in cells that further activated the apoptosis process in P. viridis. Overall, this study has advanced our understanding on both ecotoxicity and molecular toxic mechanisms of TPT to marine mussels, and contributed empirical toxicity data for risk assessment and management of TPT contamination.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jian-Wen Qiu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Chris K C Wong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Leo L Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| |
Collapse
|
9
|
Wang Y, Wang HS. Bisphenol A affects the pulse rate of Lumbriculus variegatus via an estrogenic mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109105. [PMID: 34119654 PMCID: PMC8373826 DOI: 10.1016/j.cbpc.2021.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Invertebrates are recognized as important species in endocrine disrupting chemical (EDC) testing. However, it is poorly understood whether the effects of EDCs in invertebrates are mediated by hormonal mechanisms. Previously, we showed that bisphenol A (BPA) affected the physiology of the freshwater oligochaete Lumbriculus variegatus. In the present study, we examined the mechanism of the impact of BPA on L. variegatus, using pulse rate of the dorsal blood vessel (DBV) as an endpoint. Both long term and acute exposures to BPA increased the pulsing rate of DBV. The former had a distinct inverted-U dose response relationship with a most efficacious dose of 10-9 M, which increased the pulse rate from 8.97 to 10.9 beats/min. The effects of BPA were mimicked by the synthetic estrogen ethinylestradiol with a most efficacious dose of 10-12 M. Interestingly E2 had no effect on pulsing rate, either acute or long term. The sensitivity of L. variegatus to estrogens were exquisite, with detectable effects at 10-14 to 10-10 M range. Both the long term and acute effects of BPA were partially or fully blocked by various vertebrate estrogen receptor (ER) antagonists, including ICI 182,780, MPP and G15. Our results suggest that the impact of BPA on pulsing rate of L. variegatus is likely mediated by an estrogenic mechanism instead of general toxicity. The exceptionally high sensitivity of L. variegatus to some estrogens makes it a possible tool for estrogenic EDC screening.
Collapse
Affiliation(s)
- Yuyang Wang
- Hefei No. 8 High School, Hefei, Anhui, China
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Fodor I, Koene JM, Pirger Z. Neuronal Transcriptome Analysis of a Widely Recognised Molluscan Model Organism Highlights the Absence of Key Proteins Involved in the De Novo Synthesis and Receptor-Mediation of Sex Steroids in Vertebrates. MALACOLOGIA 2021. [DOI: 10.4002/040.064.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joris M. Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| |
Collapse
|
11
|
Chen D, Li Q, Chen H, Huang Q, Zeng M. Estrogen receptor regulates immune defense by suppressing NF-κB signaling in the Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:796-803. [PMID: 32846244 DOI: 10.1016/j.fsi.2020.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The crosstalk between the estrogen receptor (ER) and NF-κB signalling pathways has merged in vertebrates and plays a key role in the control of genes involved in inflammation, cell proliferation and apoptosis. However, such crosstalk between the endocrine and immune systems needs to be explored in lower invertebrates. In this study, we identified a 2856-bp homologue of the estrogen receptor from Hong Kong oyster (ChER), containing a 5' untranslated region (UTR) of 234 bp, a 3' UTR of 387 bp, and an open reading frame (ORF) of 2235 bp. We observed that overexpression of ChER suppressed ChRel-dependent NF-kappaB (NF-κB) activation in the HEK293T (human embryonic kidney 293T) cell line, and depletion of ChER in vivo resulted in upregulation of two NF-κB-responsive marker genes, namely, TNF-α and IL-17, which confirmed its potential role in controlling NF-κB signalling. Furthermore, an EMSA (electrophoretic mobility shift assay) showed that ChER could negatively regulate the binding of ChRel to NF-κB probe-responsive elements. Serial domain requirement analysis showed that both region C (DNA-binding domain) and region E (ligand-binding domain) of ChER were essential for mediating the crosstalk underlying ChER-dependent NF-κB suppression. In conclusion, we demonstrate for the first time the negative regulatory role of the ER in NF-κB signalling in oysters, strongly indicating the presence of complex crosstalk between the endocrine and immune systems in lower marine molluscs.
Collapse
Affiliation(s)
- Dongbo Chen
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiuhong Li
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qingsong Huang
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Manhong Zeng
- School of Life Sciences and Biopharmaceutics of Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Fodor I, Urbán P, Scott AP, Pirger Z. A critical evaluation of some of the recent so-called 'evidence' for the involvement of vertebrate-type sex steroids in the reproduction of mollusks. Mol Cell Endocrinol 2020; 516:110949. [PMID: 32687858 DOI: 10.1016/j.mce.2020.110949] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Many studies on the control of reproduction in mollusks have focused on hormones (and proteins associated with the production and signaling of those hormones) which were originally discovered in humans, in the belief that if they are also present in mollusks, they must have the same role. However, although human sex steroids can be found in mollusks, they are so readily absorbed that their presence is not necessarily evidence of endogenous synthesis. A homolog of the vertebrate nuclear estrogen receptor has been found in mollusks, but it does not bind to estrogens or indeed to any steroid at all. Antibodies against human aromatase show positive immunostaining in mollusks, yet the aromatase gene has not been found in the genome of any invertebrates (let alone mollusks). This review will deal with these and other examples of contradictory evidence for a role of human hormones in invertebrate reproduction.
Collapse
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary.
| | - Péter Urbán
- Genomics and Bioinformatics Core Facilities, Szentágothai Research Centre, University of Pécs, 7624, Pécs, Hungary
| | - Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Research (Cefas), Barrack Road, Weymouth, DT4 8UB, UK
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| |
Collapse
|
13
|
Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30933-30944. [PMID: 31749003 DOI: 10.1007/s11356-019-06861-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days' exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK
- Bitung Marine Life Conservation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Tandurusa, Aertembaga, Bitung, North Sulawesi, Indonesia
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK.
| |
Collapse
|
14
|
Fernández-González LE, Diz AP, Gloria Grueiro N, Muniategui-Lorenzo S, Beiras R, Sánchez-Marín P. No evidence that vitellogenin protein expression is induced in marine mussels after exposure to an estrogenic chemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137638. [PMID: 32169639 DOI: 10.1016/j.scitotenv.2020.137638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
A wide variety of endocrine disrupting chemicals reach the marine environment and can cause harmful effects in different marine organisms. Vitellogenin (Vtg), the egg-yolk precursor, is a commonly used endocrine disruption biomarker in fish and more recently in marine invertebrates under the assumption of high expected similarities in the endocrine system of vertebrates and invertebrates. However, this assumption has been recently questioned. The results from previous studies focused on bivalve molluscs showed that Vtg induction could be misleading because of the use of either non-robust or indirect techniques to measure Vtg. In this study, mussels (Mytilus galloprovincialis) were exposed to either 10 or 100 ng/L of the synthetic hormone 17α-ethinylestradiol (EE2) at different exposure times (4 and 24 days) and under different feeding regimes (representing different energy balances), and Vtg levels in both male and female mussel gonads were quantified by label free shotgun LC-MS/MS proteomic analysis. Vtg protein was not detected in male gonads. In female gonads, Vtg levels were not significantly affected by EE2 at any exposure time or EE2 concentration tested, whereas a significant correlation was found between the degree of maturation of the gonad and Vtg levels in females. Results obtained in the present study critically question the use of Vtg as a biomarker of endocrine disruption in marine mussels, and show that the degree of maturation of the gonad can be an important confounding factor in the attempts to evaluate estrogenic effects through Vtg measurement in mussel gonads.
Collapse
Affiliation(s)
- Laura Emilia Fernández-González
- Departamento de Ecología y Biología Animal, Universidad de Vigo, 36310 Vigo, Galicia, Spain; Centro de Investigaciones Marinas, Universidad de Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Galicia, Spain; Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310 Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigaciones Marinas, Universidad de Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Galicia, Spain; Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310 Vigo, Galicia, Spain
| | - Noche Gloria Grueiro
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidad de A Coruña, 15071 A Coruña, Galicia, Spain
| | - Soledad Muniategui-Lorenzo
- Grupo Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidad de A Coruña, 15071 A Coruña, Galicia, Spain
| | - Ricardo Beiras
- Departamento de Ecología y Biología Animal, Universidad de Vigo, 36310 Vigo, Galicia, Spain; Centro de Investigaciones Marinas, Universidad de Vigo (CIM-UVIGO), Isla de Toralla, Vigo, Galicia, Spain
| | - Paula Sánchez-Marín
- Departamento de Ecología y Biología Animal, Universidad de Vigo, 36310 Vigo, Galicia, Spain; Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, 36390 Vigo, Galicia, Spain.
| |
Collapse
|
15
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
16
|
Nuurai P, Wanichanon C, Wanichanon R. Effect of gonadotropin releasing hormone on the expression of luteinizing hormone and estrogen in the nerve ganglia and ovary of a tropical abalone, Haliotis asinina Linnaeus. Acta Histochem 2020; 122:151454. [PMID: 31606271 DOI: 10.1016/j.acthis.2019.151454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 11/26/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is a peptide brain hormone that is involved in the regulation of reproduction in vertebrates via stimulation of the secretion of the pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which in their turn stimulate sexual development and sex steroid hormone secretion by the gonads. The tropical abalone, Haliotis asinina, in common with many other invertebrates contains a peptide with a similar structure to GnRH. This study looks at its possible involvement in reproduction by injecting groups of one-year-old female abalone at the mature phase by injecting them with synthetic H. asinina (Has) GnRH at doses of 0, 250 and 500 ng/g and then measuring the amount of material in nerve ganglia, ovary and hemolymph that cross-reacted with enzyme-linked immunosorbent assays (ELISA) for vertebrate LH and steroid, estradiol. Immunohistochemistry, using antibodies for the same two compounds, was also carried out to examine the location of immunoactivity in the tissues of the animals. There were slight (in some cases statistically significant) increases in LH-immunoactivity and estradiol in the hemolymph and tissues. However, this applied to the lower dose only (i.e the dose-response relationship was non-monotonic). Using immunohistochemistry, LH-immunoreactive cells were observed in types 1 and 2 neurosecretory (NS1 and NS2) cells within the cerebral and pleuropedal ganglia of H. asinina. In addition, LH-immunoreactive nerve fiber bundles were strongly detected in both ganglia. The immunoactivity against the estrogen appeared to be localized in the granulated cells within the connective tissue and trabeculae of the mature ovary. There was no positive staining in the cytoplasm of any stage of the germ cells. The interpretation of these findings is presently hindered by the fact that the homologous gene for vertebrate LH has not yet been identified in the genomes of any mollusks (so the cause of the immunostaining is as yet unknown) and also by the fact that mollusks are known to readily absorb steroids from the environment and store them long-term in the form of fatty acid esters. More work, involving identification of the protein that cross-reacts with the LH antiserum and also exclusion of the possibility that the estradiol is of exogenous origin, will have to be carried out before these findings can be used to manipulate reproduction in this species.
Collapse
|
17
|
Agnese M, Rosati L, Prisco M, Borzacchiello L, Abagnale L, Andreuccetti P. The expression of estrogen receptors during the Mytilus galloprovincialis ovarian cycle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:367-373. [PMID: 31145556 DOI: 10.1002/jez.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | | |
Collapse
|
18
|
Hallmann A, Konieczna L, Swiezak J, Milczarek R, Smolarz K. Aromatisation of steroids in the bivalve Mytilus trossulus. PeerJ 2019; 7:e6953. [PMID: 31198629 PMCID: PMC6535040 DOI: 10.7717/peerj.6953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, we demonstrated the presence of the enzymatic complex able to perform aromatization (estrogen synthesis) in both, the microsomal and mitochondrial fractions of gills and gonads from Mytilus trossulus. Based on in vitro experiments, we highlighted the importance of temperature as the limiting factor of aromatisation efficiency (AE) in mussels. After testing range of temperatures (4–23 °C), the highest AE was found during incubation at 8 °C and pH 7.6 (41.66 pmol/h/mg protein in gills and 58.37 pmol/h/mg protein in gonads). The results were confirmed during field studies where the most efficient aromatisation occurred in bivalves collected in spring while the least effective in those collected in winter. During in vitro studies, AE turned out to be more intensive in female gonads than in male gonads. The process was also more intensive in mitochondrial fraction than in microsomal one (62.97 pmol/h/mg protein in male gills and 73.94 pmol/h/mg protein in female gonads). Enzymatic complex (aromatase-like enzyme) catalysing aromatisation in mussels was found to be insensitive to inhibitory effect of selective inhibitors of mammalian aromatase such as letrozole and anastrazole, suggesting its different structure from vertebrate aromatase. Further in vivo studies using 13C-labeled steroids at 8 °C temperature window confirmed that bivalves are able to uptake testosterone and androstenedione from the ambient environment and metabolise them to estrone and 17β-estradiol thus confirming endogenous estrogen’ synthesis.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Swiezak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Ryszard Milczarek
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| |
Collapse
|
19
|
Tran TKA, Yu RMK, Islam R, Nguyen THT, Bui TLH, Kong RYC, O'Connor WA, Leusch FDL, Andrew-Priestley M, MacFarlane GR. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1067-1078. [PMID: 31091639 DOI: 10.1016/j.envpol.2019.02.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Thi Hong Tham Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Thi Lien Ha Bui
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Experimental Biology, Research Institute for Aquaculture No 2, Viet Nam
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment and Science, Griffith University, QLD, 4111, Australia
| | | | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
20
|
Rosati L, Agnese M, Abagnale L, Aniello F, Andreuccetti P, Prisco M. The Mussel
Mytilus galloprovincialis
in the Bay of Naples: New Insights on Oogenic Cycle and Its Hormonal Control. Anat Rec (Hoboken) 2019; 302:1039-1049. [DOI: 10.1002/ar.24075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2018] [Accepted: 10/12/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Luigi Rosati
- Department of BiologyFederico II Naples University Naples Italy
- Dipartimento di Scienze e TecnologieUniversità degli Studi di Napoli “Parthenope” Naples Italy
| | - Marisa Agnese
- Department of BiologyFederico II Naples University Naples Italy
| | - Ludovico Abagnale
- 3th South Naples ASLVeterinary Operative Unit, Torre del Greco Naples Italy
| | | | | | - Marina Prisco
- Department of BiologyFederico II Naples University Naples Italy
| |
Collapse
|
21
|
Thitiphuree T, Nagasawa K, Osada M. Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis. J Steroid Biochem Mol Biol 2019; 186:22-33. [PMID: 30195968 DOI: 10.1016/j.jsbmb.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023]
Abstract
Sex steroids are crucial for controlling gametogenesis and germ cell maturation in vertebrates. It has been proposed that Yesso scallop (Mizuhopecten yessoensis) has the same sex steroids as those animals, but the scallop biosynthetic pathway is unclear. In this study, we characterized several steroidogenesis-related genes in M. yessoensis and proposed a putative biosynthetic pathway for sex steroids that is similar to that of vertebrates. Specifically, we identified several steroidogenesis-related gene sequences that encode steroid metabolizing enzymes: StAR-related lipid transfer (START) protein, 17α-hydroxylase, 17,20-lyase (cyp17a), 17β-hydroxysteroid dehydrogenase (hsd17b), and 3β-hydroxysteroid dehydrogenase (hsd3b). We sampled adult scallops throughout their reproductive phase to compare their degree of maturation with their intensity of mRNA expression. Semi-quantitative RT-PCR analysis revealed a ubiquitous expression of transcripts for steroid metabolizing enzymes (i.e., star, cyp17a, hsd17b, and hsd3b) in peripheral and gonadal tissues. Real-time PCR analysis revealed a high level of expression of star3 and cyp17a genes in gonadal tissues at the early stage of cell differentiation in scallops. Interestingly, mRNA expression of hsd3b and hsd17b genes showed a synchronous pattern related to degree of gonad maturity. These results indicate that both hsd3b and hsd17b genes are likely involved in steroidogenesis in scallops. We therefore believe that these steroid-metabolizing enzymes allow scallops to endogenously produce sex steroids to regulate reproductive events.
Collapse
Affiliation(s)
- Tongchai Thitiphuree
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
22
|
Rosati L, Agnese M, Verderame M, Aniello F, Venditti M, Mita DG, Andreuccetti P, Prisco M. Morphological and molecular responses in ovaries of Mytilus galloprovincialis
collected in two different sites of the Naples Bay. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:52-60. [DOI: 10.1002/jez.2231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- L. Rosati
- Department of Biology; University of Naples Federico II; Naples Italy
| | - M. Agnese
- Department of Biology; University of Naples Federico II; Naples Italy
| | - M. Verderame
- Department of Biology; University of Naples Federico II; Naples Italy
| | - F. Aniello
- Department of Biology; University of Naples Federico II; Naples Italy
| | - M. Venditti
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate; Università degli studi della Campania “Luigi Vanvitelli”; Napoli Italy
| | - D. G. Mita
- Section of Molecular Oncology, Institute of Genetics and Biophysics of CNR; Naples Italy
- Section of Molecular Oncology, National Laboratory on Endocrine Disruptors - Interuniversity Consortium INBB; Naples Italy
| | - P. Andreuccetti
- Department of Biology; University of Naples Federico II; Naples Italy
| | - M. Prisco
- Department of Biology; University of Naples Federico II; Naples Italy
| |
Collapse
|
23
|
Expression and DNA methylation pattern of reproduction-related genes in partially fertile triploid Pacific oysters Crassostrea gigas. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0563-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. The constitutively active estrogen receptor (ER) binds and activates the promoter of the vitellogenin (Vtg) gene in the Sydney rock oyster, Saccostrea glomerata. MARINE POLLUTION BULLETIN 2017; 118:397-402. [PMID: 28259423 DOI: 10.1016/j.marpolbul.2017.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Vitellogenin (Vtg) is a well-established biomarker of estrogenic exposure in aquatic animals. In vertebrates, Vtg gene transcription is controlled by the estrogen receptors (ERs). Although an ER ortholog is present in molluscs, its role as a transcriptional regulator remains elusive. Here, we tested the hypothesis that in the Sydney rock oyster, Saccostrea glomerata, the ER ortholog activates Vtg gene transcription through specific interaction with its promoter. Luciferase reporter assays indicated that sgER activated both a minimal promoter containing the consensus estrogen-responsive elements (EREs) and the sgVtg promoter in an estrogen-independent manner. The sgVtg promoter-luciferase activation was significantly reduced when any of three putative ERE half sites (½EREs) in the promoter were mutated. Electrophoretic mobility shift assay (EMSA) confirmed that sgER binds specifically to a 68-bp promoter sequence where these ½EREs reside. Overall, the results suggest that sgER is a constitutively active transcription factor that binds and activates the sgVtg promoter.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
25
|
Lv L, Dong X, Lv F, Zhao W, Yu Y, Yang W. Molecular cloning and characterization of an estrogen receptor gene in the marine polychaete Perinereis aibuhitensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 207:15-21. [DOI: 10.1016/j.cbpb.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
|
26
|
Song S, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1287780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shanshan Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
27
|
Lü ZM, Liu W, Liu LQ, Wang TM, Shi HL, Ping HL, Chi CF, Yang JW, Wu CW. Cloning, Characterization, and Expression Profile of Estrogen Receptor in Common Chinese Cuttlefish, Sepiella japonica. ACTA ACUST UNITED AC 2017; 325:181-93. [PMID: 27076436 DOI: 10.1002/jez.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 01/08/2023]
Abstract
Sex steroid hormones are widely detected in molluscs and play important roles in sex determination, gonadal tissue maturation, and gametogenesis. Nevertheless, the signaling pathways of sex steroids in cephalopod have not yet been clearly elucidated. In the present study, a full-length sequence encoding the estrogen receptor (ER) was isolated from common Chinese cuttlefish, Sepiella japonica. The sjER cDNA clone was found to contain 1,788 nucleotides including a 1,470 bp open reading frame encoding 489 amino acid (aa) residues. The deduced ER protein consisted of six nuclear receptor characteristic domains. Based on a phylogenetic analysis, the ER DNA-binding domain and ligand-binding domain are highly conserved compared to other mollusc ERs. Highest aa identities were found for sjER with common octopus (Octopus vulgaris) ER (89%) and pacific oyster (Crassostrea gigas) ER (61%). Tissue expression analysis confirmed that sjER was widely distributed among tissues and predominantly expressed in the brain, liver, gonad (testis and ovary), and other accessory sexual gland (nidamental gland). The ER expression was temporally upregulated in the brain, liver, and ovary during the early sexual maturation period in S. japonica, which is coincident with the fluctuation of ovary estradiol content. These suggest that sjER may be involved in regulating the reproductive cycle of S. japonica. A fusion protein transient transfections assay showed that sjER was mainly located in the nucleus, suggesting a possible orthodox working mechanism of S. japonica ER in the nucleus through a ligand-dependent activation of specific gene transcription.
Collapse
Affiliation(s)
- Zhen-Ming Lü
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Wan Liu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Li-Qin Liu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Tian-Ming Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Hui-Lai Shi
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Hong-Ling Ping
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, China
| | - Chang-Feng Chi
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Jing-Wen Yang
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Wen Wu
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
28
|
Morthorst JE. A field study of hemolymph yolk protein levels in a bivalve (Unio tumidus) and future considerations for bivalve yolk protein as endocrine biomarker. Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:16-22. [PMID: 27890716 DOI: 10.1016/j.cbpc.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
Induction of yolk protein in male fish is a recognized biomarker for estrogenic exposure because the estrogen-dependent induction mechanism is well investigated and there is a clear difference in yolk protein levels of unexposed males and females. Attempts have been made to use induction of bivalve yolk protein as biomarker for estrogenic exposure. However, several biomarker validation criteria have not yet been investigated e.g. an in-depth understanding of the induction mechanism and background variability is needed and reliable detection assays are yet to be developed. To obtain background knowledge about yolk protein levels freshwater bivalves (Unio tumidus) were collected in an uncontaminated Danish lake over the course of a year (33 collection dates). The hemolymph yolk protein concentration of 569 individuals was determined by a species specific enzyme-linked immunosorbent assay (ELISA) and male and female gonadal development cycles were established. The average yolk protein levels of males and females collected at each sampling date overlapped in some periods; the male and female range was 66,946 - 169,692 ng/mL and 88,731 - 681,667 ng/mL, respectively. Because male and female hemolymph yolk protein levels overlap, great care should be taken if yolk protein induction in bivalve hemolymph is considered as endocrine biomarker.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5220, Odense M, Denmark.
| |
Collapse
|
29
|
|
30
|
Leonard JA, Cope WG, Hammer EJ, Barnhart MC, Bringolf RB. Extending the toxicity-testing paradigm for freshwater mussels: Assessing chronic reproductive effects of the synthetic estrogen 17α-ethinylestradiol on the unionid mussel Elliptio complanata. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:14-25. [PMID: 27612666 DOI: 10.1016/j.cbpc.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Surface water concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2) as low as 1ng/L can cause adverse reproductive effects in fish under acute and chronic exposure conditions, whereas higher concentrations (> 5ng/L) in acute studies are necessary to elicit adverse effects in freshwater mussels. Prolonged chronic exposures of freshwater mussels to EE2 remain un-evaluated. An extended duration testing paradigm was used to examine reproductive and biochemical (carbohydrate, lipid, protein) effects of EE2 on the unionid mussel, Elliptio complanata, throughout its reproductive cycle. Mussels were exposed to a control and EE2 concentrations (5 and 50ng/L) in six discrete and sequential 28 d tests, and in one discrete and simultaneous 180 d test, from February through August. Foot protrusion and siphoning behavior were recorded daily, along with conglutinate releases and larval (glochidia) mortality. Gonad, hemolymph, and gonad fluid samples were taken for biochemical and vitellogenin-like protein (Vtg) analysis post-exposure. Female mussels released eggs and conglutinates during the months of April to June, indicating sexual maturation during this time. Conglutinates released in the 5ng/L treatment in 28 d exposures contained fewer glochidia and more eggs, and increased concentrations of Vtg in hemolymph were observed from April to August in the 5ng/L treatment during the 180 d exposure. Results indicate that the 180 d test approach, concurrent with the sequence of 28 d tests, enabled a more robust evaluation of mussel behavior and physiology than would have been possible with a single short-term (28 d) test.
Collapse
Affiliation(s)
- Jeremy A Leonard
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA.
| | - W Gregory Cope
- Department of Applied Ecology, Box 7617, North Carolina State University, Raleigh, NC 27695, USA
| | - Edward J Hammer
- U.S. Environmental Protection Agency, 77 West Jackson Blvd., Chicago, IL 60604, USA
| | - M Christopher Barnhart
- Department of Biology, 901 South Avenue, Missouri State University, Springfield, MO 65897, USA
| | - Robert B Bringolf
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, GA 30602, USA
| |
Collapse
|
31
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:82-94. [PMID: 27592181 DOI: 10.1016/j.aquatox.2016.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The results showed that the promoter is predominantly hypomethylated (with 0-3.3% methylcytosines) regardless of sgER mRNA levels. Overall, our investigations suggest that the estrogen responsiveness of sgER is regulated by a novel ligand-dependent receptor, presumably via a non-genomic pathway(s) of estrogen signalling.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An, Vietnam
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
32
|
Vogeler S, Bean TP, Lyons BP, Galloway TS. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:33. [PMID: 27680968 PMCID: PMC5041327 DOI: 10.1186/s12861-016-0129-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. CONCLUSION Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
33
|
Ip JCH, Leung PTY, Ho KKY, Qiu JW, Leung KMY. De novo transcriptome assembly of the marine gastropod Reishia clavigera for supporting toxic mechanism studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:39-48. [PMID: 27450239 DOI: 10.1016/j.aquatox.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The intertidal whelk Reishia clavigera is commonly used as a biomonitor of chemical contamination in the marine environment along Western Pacific region, and as a model for mechanistic studies of organotin-mediated imposex development. However, limited genomic resources of R. clavigera have restricted its role for the investigation of molecular mechanisms of such endocrine disruptions. This study, therefore, aimed to establish tissue-specific transcriptomes of the digestive gland, gonad, head ganglia, penis and the remaining body part of the male and female R. clavigera. By combining the results, a global transcriptome was obtained. A total of 578,134,720 high-quality filtered reads were obtained using Illumina sequencing. The R. clavigera transcriptome comprised of 38,466 transcripts and 32,798 unigenes with predicted open reading frames. The average length of transcripts was 1,709bp with N50 of 2,236bp. Based on sequence similarity searches against public databases, 28,657 transcripts and 24,403 unigenes had at least one BLAST hit. There were 17,530 transcripts and 14,897 unigenes annotated with at least one Gene Ontology (GO) term. Moreover, 5,776 transcripts and 5,137 unigenes were associated with 333 Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. The numbers of unigenes were similar among the five target tissues and between sexes, but tissue-specific expression profiles were revealed by multivariate analyses. Based on the functional annotation, putative steroid hormone-associated unigenes were identified. In particular, we highlighted the presence of steroid hormone receptor homologues that could be the targets for mechanistic studies of the organotin-mediated imposex development in marine gastropods. This newly generated transcriptome assembly of R. clavigera provides a valuable molecular resource for ecotoxicological and environmental genomic studies.
Collapse
Affiliation(s)
- Jack C H Ip
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Priscilla T Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kevin K Y Ho
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J W Qiu
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Biology, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
34
|
Tran TKA, MacFarlane GR, Kong RYC, O'Connor WA, Yu RMK. Mechanistic insights into induction of vitellogenin gene expression by estrogens in Sydney rock oysters, Saccostrea glomerata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:146-158. [PMID: 26963518 DOI: 10.1016/j.aquatox.2016.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Marine molluscs, such as oysters, respond to estrogenic compounds with the induction of the egg yolk protein precursor, vitellogenin (Vtg), availing a biomarker for estrogenic pollution. Despite this application, the precise molecular mechanism through which estrogens exert their action to induce molluscan vitellogenesis is unknown. As a first step to address this question, we cloned a gene encoding Vtg from the Sydney rock oyster Saccostrea glomerata (sgVtg). Using primers designed from a partial sgVtg cDNA sequence available in Genbank, a full-length sgVtg cDNA of 8498bp was obtained by 5'- and 3'-RACE. The open reading frame (ORF) of sgVtg was determined to be 7980bp, which is substantially longer than the orthologs of other oyster species. Its deduced protein sequence shares the highest homology at the N- and C-terminal regions with other molluscan Vtgs. The full-length genomic DNA sequence of sgVtg was obtained by genomic PCR and genome walking targeting the gene body and flanking regions, respectively. The genomic sequence spans 20kb and consists of 30 exons and 29 introns. Computer analysis identified three closely spaced half-estrogen responsive elements (EREs) in the promoter region and a 210-bp CpG island 62bp downstream of the transcription start site. Upregulation of sgVtg mRNA expression was observed in the ovaries following in vitro (explants) and in vivo (tank) exposure to 17β-estradiol (E2). Notably, treatment with an estrogen receptor (ER) antagonist in vitro abolished the upregulation, suggesting a requirement for an estrogen-dependent receptor for transcriptional activation. DNA methylation of the 5' CpG island was analysed using bisulfite genomic sequencing of the in vivo exposed ovaries. The CpG island was found to be hypomethylated (with 0-3% methylcytosines) in both control and E2-exposed oysters. However, no significant differential methylation or any correlation between methylation and sgVtg expression levels was observed. Overall, the results support the possible involvement of an ERE-containing promoter and an estrogen-activated receptor in estrogen signalling in marine molluscs.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Richard Yuen Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
35
|
Deng X, Pan L, Cai Y, Jin Q. Transcriptomic changes in the ovaries of scallop Chlamys farreri exposed to benzo[a]pyrene. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0397-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Goldstone JV, Sundaramoorthy M, Zhao B, Waterman MR, Stegeman JJ, Lamb DC. Genetic and structural analyses of cytochrome P450 hydroxylases in sex hormone biosynthesis: Sequential origin and subsequent coevolution. Mol Phylogenet Evol 2016; 94:676-687. [PMID: 26432395 PMCID: PMC4801120 DOI: 10.1016/j.ympev.2015.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Bin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Michael R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - David C Lamb
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
37
|
Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes. PLoS One 2015; 10:e0134280. [PMID: 26258576 PMCID: PMC4530894 DOI: 10.1371/journal.pone.0134280] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/07/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs. RESULTS The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.). Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs) and 1,699 simple sequence repeats (SSRs) were compiled. CONCLUSIONS Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve reproduction processes. The large group of molecular markers discovered in this study will be useful for population screening and marker assisted selection programs in C.hongkongensis aquaculture.
Collapse
|
38
|
Schwindt AR. Parental effects of endocrine disrupting compounds in aquatic wildlife: Is there evidence of transgenerational inheritance? Gen Comp Endocrinol 2015; 219:152-64. [PMID: 25639828 DOI: 10.1016/j.ygcen.2015.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
Abstract
The effects of endocrine disrupting compounds (EDCs) on aquatic wildlife are increasingly being recognized for their complexity. Investigators have detected alterations at multiple levels of biological organization in offspring exposed to EDCs through the blood or germ line of the parents, suggesting that generational consequences of EDCs are evident. Exposure to EDCs through the parents is concerning because if the resulting phenotype of the offspring is heritable and affects fitness, then evolutionary consequences may be evident. This review summarizes the evidence for transgenerational effects of EDCs in aquatic wildlife and illustrates cases where alterations appear to be transmitted maternally, paternally, or parentally. The literature indicates that EDC exposure to the parents induces developmental, physiological, endocrinological, and behavioral changes as well as increased mortality of offspring raised in clean environments. What is lacking, however, is a clear demonstration of heritable transgenerational effects in aquatic wildlife. Therefore, it is not known if the parental effects are the result of developmental or phenotypic plasticity or if the altered phenotypes are durably passed to subsequent generations. Epigenetic changes to gene regulation are discussed as a possible mechanism responsible for EDC induced parental effects. Additional research is needed to evaluate if heritable effects of EDCs are evident in aquatic wildlife, as has been demonstrated for terrestrial mammals.
Collapse
Affiliation(s)
- Adam R Schwindt
- Colorado State University, Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Biology, 201 Wagar Hall, Campus Delivery 1484, Fort Collins, CO 80523-1484, United States.
| |
Collapse
|
39
|
Nagasawa K, Treen N, Kondo R, Otoki Y, Itoh N, Rotchell JM, Osada M. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 2015; 564:153-9. [PMID: 25862924 DOI: 10.1016/j.gene.2015.03.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022]
Abstract
Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Reki Kondo
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Yurika Otoki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Naoki Itoh
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Jeanette M Rotchell
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan.
| |
Collapse
|
40
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Ni J, Zeng Z, Kong D, Hou L, Huang H, Ke C. Vitellogenin of Fujian oyster, Crassostrea angulata: Synthesized in the ovary and controlled by estradiol-17β. Gen Comp Endocrinol 2014; 202:35-43. [PMID: 24709360 DOI: 10.1016/j.ygcen.2014.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
In this study, we cloned a full-length cDNA encoding vitellogenin (Vg) in the Fujian oyster Crassostrea angulata. The complete Vg cDNA consists of 5160 nucleotides with a long open reading frame encoding 1641 amino acid residues. The deduced amino acid sequence shared high similarity with the Vgs of other mollusc, fish, nematode and arthropod species, particularly in the N-terminal region. We analyzed the spatiotemporal expression of caVg transcripts by Real-time Quantitative PCR. In common with other mollusc Vgs, the caVg gene was expressed primarily in the ovary, and the levels were 348 and 177 times higher in maturation and ripeness stages (P<0.01), respectively, than in the partially spent stage. There was negligible expression in male oysters. In situ hybridization analysis further localized caVg mRNA to the follicle cells (also named auxiliary cells) surrounding the oocytes in the ovary. Moreover, in vivo waterborne exposure experiments in early gametogenesis oysters showed that estradiol-17β (E2) administration resulted in a significant increase in caVg mRNA expression. We conclude that caVg is synthesized in the follicle cell surrounding the vitellogenic oocyte in C. angulata, and directly passed to oocytes through the extracellular space without mediation through hemolymph. Also, we hypothesize that this process is mediated by E2 in a dose dependent.
Collapse
Affiliation(s)
- Jianbin Ni
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China; National Marine Hazard Mitigation Service, Beijing 100194, China
| | - Zhen Zeng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Dezheng Kong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Lin Hou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Heqing Huang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
42
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
43
|
Liu J, Zhang Z, Zhang L, Liu X, Yang D, Ma X. Variations of estradiol-17β and testosterone levels correlated with gametogenesis in the gonad of Zhikong scallop (Chlamys farreri) during annual reproductive cycle. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the potential roles of sex steroids in modulating reproductive processes in the Zhikong scallop (Chlamys farreri (Jones and Preston, 1904)), variations in estradiol-17β (E2) and testosterone (T) levels in gonads were examined monthly from January to December 2012 by enzyme-linked immunosorbent assay (ELISA). The mean concentrations of E2 and T in gonads ranged from 75.07 to 666.24 pg/g and from 91.09 to 506.28 pg/g, respectively. Concentrations of E2 were significantly higher in ovaries than in testes, while T concentrations were higher in testes than in ovaries during gametogenesis. Concentrations of E2 in females and T in males increased with development and maturation of gonad, attained the highest value before spawning, and decreased rapidly after spawning. A positive correlation between E2 levels and oocyte diameters (r = 0.743, P < 0.05, n = 25) was observed, suggesting that E2 may play a role in oogenesis. These findings indicate that E2 and T, which are highly correlated with the reproductive cycle, may play an important role in sex determination, sex differentiation, gametogenesis, and spawning in C. farreri.
Collapse
Affiliation(s)
- J. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - Z. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - L. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - D. Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| |
Collapse
|
44
|
Bridgham JT, Keay J, Ortlund EA, Thornton JW. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor. PLoS Genet 2014; 10:e1004058. [PMID: 24415950 PMCID: PMC3886901 DOI: 10.1371/journal.pgen.1004058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/08/2013] [Indexed: 11/30/2022] Open
Abstract
An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations to trigger a profound evolutionary change in the protein's function and shaped the genetics of evolutionary reversibility. An important goal in evolutionary genetics is to understand how genetic mutations cause the evolution of new protein functions and how a protein's structure shapes its evolution. Here we address these questions by studying a dramatic lineage-specific shift in function in steroid hormone receptors (SRs), a physiologically important family of transcription factors. In vertebrates, SRs bind hormones and then undergo a structural change that allows them to activate gene expression. In mollusks, SRs do not bind hormone and are always active. We identified the genetic and structural mechanisms for the evolution of constitutive activity in the mollusk SRs by using X-ray crystallography, ancestral sequence reconstruction, and experimental studies of the effects of ancient mutations on protein structure and function. We found that constitutive activity evolved due to just two historical substitutions that subtly stabilized elements of the active conformation, and subsequent mutations filled the hormone-binding cavity. The structural characteristics required for a hormone-sensitive activator were thus vestigialized, much the same way that a whale's hindlimbs became vestiges of their ancestral form after they became dispensable. Our findings show how the architecture of a protein can shape its evolution, allowing radically different functions to evolve by a few large-effect mutations.
Collapse
Affiliation(s)
- Jamie T. Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - June Keay
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Eric A. Ortlund
- Biochemistry Department, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joseph W. Thornton
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Departments of Human Genetics and Ecology & Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Tian S, Pan L, Sun X. An investigation of endocrine disrupting effects and toxic mechanisms modulated by benzo[a]pyrene in female scallop Chlamys farreri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:162-171. [PMID: 24185101 DOI: 10.1016/j.aquatox.2013.09.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The purpose of this study was to investigate the endocrine disrupting effects induced by benzo[a]pyrene (B[a]P) and explore the underlying mechanisms in mollusks. In this study, sexually mature female Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four different concentrations as 0, 0.025, 0.5 and 10 μg/L. Sex steroids were identified and quantified by electrochemiluminescence immunoassay (ECLIA) method and results showed that exposure to B[a]P exerts great suppression on 17β-estradiol, testosterone production and disrupts progesterone levels in ovary. Transcription of genes were detected and measured by real-time RT-PCR. It showed that at day 10 B[a]P inhibited 3 β-HSD, CYP17 and 17β-HSD mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of B[a]P that disrupt steroidogenic machinery. Moreover, 0.025 μg/L B[a]P activated transcription of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), CYP1A1 and estrogen receptor (ER), while 10 μg/L B[a]P suppressed all of them. The consistency of their responses to B[a]P exposure implies that AHR action may be involved in invertebrate CYP regulation and ER transcription despite of unknown mechanisms. Additionally, B[a]P exposure could induce ovarian impairment and developmental delay in C. farreri. Overall, sensitivity of C. farreri to endocrine disruption and toxicity suggests that C. farreri is a suitable species for study of endocrine-disrupting effects in marine invertebrates. This study will form a solid basis for a realistic extrapolation of endocrine disrupting effects across taxonomic groups and phyla.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | | | | |
Collapse
|
47
|
Urushitani H, Katsu Y, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T. Cloning and characterization of the retinoic acid receptor-like protein in the rock shell, Thais clavigera. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:403-413. [PMID: 24096236 DOI: 10.1016/j.aquatox.2013.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
The organotin compounds have a high affinity for the retinoid X receptor (RXR), which is a transcriptional factor activated by retinoids that induce imposex in gastropods. However, the molecular mechanisms underlying the regulation of RXR and its related genes in gastropods remain unclear. We isolated a retinoic acid receptor (RAR)-like cDNA (TcRAR) in the rock shell, Thais clavigera, and examined the transcriptional activity of the TcRAR protein by using all-trans retinoic acid (ATRA). However, we did not observe any ligand-dependent transactivation by this protein. We also examined the transcriptional activity of the TcRAR-ligand binding domain fused with the GAL4-DNA binding domain by using retinoic acids, retinol, and organotins and again saw no noteworthy transcriptional induction by these chemicals. Use of a mammalian two-hybrid assay to assess the interaction of the TcRAR protein with the TcRXR isoforms suggested that TcRAR might form a heterodimer with the RXR isoforms. The transcriptional activity of domain-swapped TcRAR chimeric proteins (the A/B domain of TcRAR combined with the D-F domain of human RARα) was also examined and found to be ATRA-dependent. These results suggest that TcRAR is not activated by retinoic acids, but can form a heterodimer with TcRXR isoforms. These data contribute to our understanding of the mechanism by which RXR functions in gastropods.
Collapse
Affiliation(s)
- Hiroshi Urushitani
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Guévélou E, Huvet A, Galindo-Sánchez CE, Milan M, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C. Sex-Specific Regulation of AMP-Activated Protein Kinase (AMPK) in the Pacific Oyster Crassostrea gigas1. Biol Reprod 2013; 89:100. [DOI: 10.1095/biolreprod.113.109728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Raingeard D, Bilbao E, Cancio I, Cajaraville MP. Retinoid X receptor (RXR), estrogen receptor (ER) and other nuclear receptors in tissues of the mussel Mytilus galloprovincialis: Cloning and transcription pattern. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:178-90. [DOI: 10.1016/j.cbpa.2013.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 01/11/2023]
|
50
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 2012; 77:1450-68. [PMID: 22960651 DOI: 10.1016/j.steroids.2012.08.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/27/2023]
Abstract
The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|