1
|
Feng K, Su J, Sun L, Guo Y, Peng X. Molecular characterization and expression analysis of thyroid hormone receptors in protogynous rice field eel, Monopterus albus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:845-855. [PMID: 38855856 DOI: 10.1002/jez.2825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/24/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
Thyroid hormones (THs) play important roles in growth, development, morphogenesis, reproduction, and so on. They are mainly meditated by binding to thyroid hormone receptors (TRs) in vertebrates. As important members of the nuclear receptor superfamily, TRs and their ligands are involved in many biological processes. To investigate the potential roles of TRs in the gonadal differentiation and sex change, we cloned and characterized the TRs genes in protogynous rice field eel (Monopterus albus). In this study, three types of TRs were obtained, which were TRαA, TRαB and TRβ, encoding preproproteins of 336-, 409- and 415-amino acids, respectively. Multiple alignments of the three putative TRs protein sequences showed they had a higher similarity. Tissue expression analysis showed that TRαA mainly expressed in the gonad, while TRαB and TRβ in the brain. During female-to-male sex reversal, the expression levels of all the three TRs showed a similar trend of increase followed by a decrease in the gonad. Intraperitoneal injection of triiodothyronine (T3) stimulated the expression of TRαA and TRαB, while it had no significant change on the expression of TRβ in the ovary. Gonadotropin-releasing hormone analogue (GnRHa) injection also significantly upregulated the expression levels of TRαA and TRαB after 6 h, while it had no significant effect on TRβ. These results demonstrated that TRs were involved in the gonadal differentiation and sex reversal, and TRα may play more important roles than TRβ in reproduction by the regulation of GnRHa in rice field eel.
Collapse
Affiliation(s)
- Ke Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Jialin Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Lei Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Ying Guo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| | - Xiwen Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Miyamoto K, Abe G, Tamura K. The dwarf neon rainbowfish Melanotaenia praecox, a small spiny-rayed fish with potential as a new Acanthomorpha model fish: I. Fin ray ontogeny and postembryonic staging. Dev Dyn 2024. [PMID: 38323724 DOI: 10.1002/dvdy.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/14/2023] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Fish fins with highly variable color patterns and morphologies have many functions. In Actinopterygii, the free parts of fins are supported by "soft rays" and "spiny rays." Spiny rays have various functions and are extremely modified in some species, but they are lacking in popular model fish such as zebrafish and medaka. Additionally, some model fish with spiny rays are difficult to maintain in ordinary laboratory systems. RESULTS Characteristics of the small, spiny-rayed rainbowfish Melanotaenia praecox render it useful as an experimental model species. Neither fish age nor body size correlate well with fin development during postembryonic development in this species. A four-stage developmental classification is proposed that is based on fin ray development. CONCLUSIONS Melanotaenia praecox is an ideal species to rear in laboratories for developmental studies. Our classification allows for postembryonic staging of this species independent of individual age and body size. Development of each fin ray may be synchronized with dorsal fin development. We discuss the differences in mechanisms regulating soft, spiny, and procurrent ray development.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Yonago, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Shu Y, Yuan J, Hogstrand C, Xue Z, Wang X, Liu C, Li T, Li D, Yu L. Bioaccumulation and thyroid endcrione disruption of 2-ethylhexyl diphenyl phosphate at environmental concentration in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106815. [PMID: 38185038 DOI: 10.1016/j.aquatox.2023.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
2-ethylhexyl diphenyl phosphate (EHDPP) strongly binds to transthyretin (TTR) and affects the expression of genes involved in the thyroid hormone (TH) pathway in vitro. However, it is still unknown whether EHDPP induces endocrine disruption of THs in vivo. In this study, zebrafish (Danio rerio) embryos (< 2 h post-fertilization (hpf)) were exposed to environmentally relevant concentrations of EHDPP (0, 0.1, 1, 10, and 100 μg·L-1) for 120 h. EHDPP was detected in 120 hpf larvae at concentrations of 0.06, 0.15, 3.71, and 59.77 μg·g-1 dry weight in the 0.1, 1, 10, and 100 μg·L-1 exposure groups, respectively. Zebrafish development and growth were inhibited by EHDPP, as indicated by the increased malformation rate, decreased survival rate, and shortened body length. Exposure to lower concentrations of EHDPP (0.1 and 1 μg·L-1) significantly decreased the whole-body thyroxine (T4) and triiodothyronine (T3) levels and altered the expressions of genes and proteins involved in the hypothalamic-pituitary-thyroid axis. Downregulation of genes related to TH synthesis (nis and tg) and TH metabolism (dio1 and dio2) may be partially responsible for the decreased T4 and T3 levels, respectively. EHDPP exposure also significantly increased the transcription of genes involved in thyroid development (nkx2.1 and pax8), which may stimulate the growth of thyroid primordium to compensate for hypothyroidism. Moreover, EHDPP exposure significantly decreased the gene and protein expression of the transport protein transthyretin (TTR) in a concentration-dependent manner, suggesting a significant inhibitory effect of EHDPP on TTR. Molecular docking results showed that EHDPP and T4 partly share the same mode of action of binding to the TTR protein, which might result in decreased T4 transport due to the binding of EHDPP to the TTR protein. Taken together, our findings indicate that EHDPP can cause TH disruption in zebrafish and help elucidate the mechanisms underlying EHDPP toxicity.
Collapse
Affiliation(s)
- Yan Shu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affaris, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Christer Hogstrand
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London, SE1 9NH, United Kingdom.
| | - Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, No.2006 Xiyuan Ave, Chengdu 611731, China
| | - Xilan Wang
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London, SE1 9NH, United Kingdom
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Wu M, Zheng N, Zhan X, He J, Xiao M, Zuo Z, He C. Icariin induces developmental toxicity via thyroid hormone disruption in zebrafish larvae. Food Chem Toxicol 2023; 182:114155. [PMID: 37898232 DOI: 10.1016/j.fct.2023.114155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 μM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 μM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 μM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 μM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.
Collapse
Affiliation(s)
- Meifang Wu
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaoxiao Zhan
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Jianzhang He
- Fujian Institute of Subtropical Botany / Fujian Key Laboratory of Physiology and Biochemistry for Subtropical Plant, Xiamen, Fujian, 361006, China
| | - Min Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
5
|
Wang W, Ma Q, Ding X, Xu Y, He M, Xu J, Liu J, Ji C, Zhang J. Developmental toxicity of bromoacetamide via the thyroid hormone receptors-mediated disruption of thyroid hormone homeostasis in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113334. [PMID: 35203007 DOI: 10.1016/j.ecoenv.2022.113334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Bromoacetamide (BAcAm) is a nitrogenous disinfection by-product. We previously found that BAcAm induced developmental toxicity in zebrafish embryos, but the underlying mechanisms remain to be elucidated. Since thyroid hormones (THs) homeostasis is crucial to development, we hypothesized that disruption of THs homeostasis may play a role in the developmental toxicity of BAcAm. In this study, we found BAcAm exposure significantly increased mortality and malformation rate, decreased hatching rate and body length, inhibited the locomotor capacity in zebrafish embryos. BAcAm elevated TSH, T3 and T4 levels, down-regulated T3/T4 ratios, and up-regulated mRNA expression changes of THs related genes (trh, tsh, tg, nis, tpo, dio1, dio2, ugt1ab,klf9 and rho), but down-regulated mRNA expression changes of TH receptors (tr α and tr β). Up-regulated tr α and tr β mRNAs by rescue treatment confirmed that both tr α and tr β were involved in the developmental toxicity of BAcAm. In conclusion, our study indicates disruption of THs homeostasis via the thyroid hormone receptors was responsible for the developmental toxicity of BAcAm.
Collapse
Affiliation(s)
- Wei Wang
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China
| | - Qiyao Ma
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China
| | - Xinliang Ding
- Department of Public Health, Wuxi Center for Disease Control and Prevention, Wuxi, 214023 Jiangsu, China
| | - Yihua Xu
- Medical College of Soochow University, Suzhou, China
| | - Mengting He
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China
| | - Jie Xu
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China
| | - Jianjun Liu
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China.
| | - Jie Zhang
- Medical College of Soochow University, Suzhou, China; Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123 Jiangsu, China.
| |
Collapse
|
6
|
Melianawati R, Pratiwi R, Puniawati N, Astuti P. The role of zooplankton as live feeds on the thyroid hormone profile related to metamorphosis of marine fish larvae coral trout Plectropomus leopardus (Lacepède, 1802). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Fu J, Guo Y, Wang M, Yang L, Han J, Lee JS, Zhou B. Bioconcentration of 2,4,6-tribromophenol (TBP) and thyroid endocrine disruption in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111207. [PMID: 32871520 DOI: 10.1016/j.ecoenv.2020.111207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
2,4,6-tribromophenol (TBP) is generally used as a brominated flame retardant but is produced in the degradation of tetrabromobisphenol-A. Although TBP is frequently detected in the environment and in various biota, including fish species, we still know little about its toxicity and environmental health risk. Here we investigated the bioconcentration and effects of TBP on the thyroid endocrine system by using zebrafish as a model. Zebrafish embryos (2 h post-fertilization, hpf) were exposed to five concentrations of TBP (0, 0.3, 1, 10, and 100 μg/L) until 144 hpf. According to our chemical analysis, TBP underwent bioconcentration in zebrafish larvae. However, acute exposure to TBP did not affect the hatching of embryos or their risk of malformation, nor the growth and survival of larvae, indicating low developmental toxicity of TBP. The whole-body thyroxine (T4) contents were significantly increased in zebrafish larvae after exposure to TBP, indicating thyroid endocrine disruption occurred. Gene transcription levels in the hypothalamic-pituitary-thyroid (HPT) axis were also examined in larvae; these results revealed that the transcription of corticotrophin-releasing hormone (crh), thyrotropin-releasing hormone (trh), and thyroid-stimulating hormone (tshβ) were all significantly downregulated by exposure to TBP. Likewise, genes encoding thyronine deiodinases (dio1, dio2, and dio3a/b) and thyroid hormone receptors (trα and trβ) also had their transcription downregulated in zebrafish. Further, the gene transcription and protein expression of binding and transport protein transthyretin (TTR) were significantly increased after TBP exposure. Taken together, our results suggest the bioavailability of and potential thyroid endocrine disruption by TBP in fish.
Collapse
Affiliation(s)
- Juanjuan Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
8
|
Anthropogenic stressors impact fish sensory development and survival via thyroid disruption. Nat Commun 2020; 11:3614. [PMID: 32681015 PMCID: PMC7367887 DOI: 10.1038/s41467-020-17450-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/26/2020] [Indexed: 01/17/2023] Open
Abstract
Larval metamorphosis and recruitment represent critical life-history transitions for most teleost fishes. While the detrimental effects of anthropogenic stressors on the behavior and survival of recruiting fishes are well-documented, the physiological mechanisms that underpin these patterns remain unclear. Here, we use pharmacological treatments to highlight the role that thyroid hormones (TH) play in sensory development and determining anti-predator responses in metamorphosing convict surgeonfish, Acanthurus triostegus. We then show that high doses of a physical stressor (increased temperature of +3 °C) and a chemical stressor (the pesticide chlorpyrifos at 30 µg L−1) induced similar defects by decreasing fish TH levels and affecting their sensory development. Stressor-exposed fish experienced higher predation; however, their ability to avoid predation improved when they received supplemental TH. Our results highlight that two different anthropogenic stressors can affect critical developmental and ecological transitions via the same physiological pathway. This finding provides a unifying mechanism to explain past results and underlines the profound threat anthropogenic stressors pose to fish communities. Anthropogenic stressors affect many aspects of marine organismal health. Here, the authors expose surgeonfish to temperature and pesticide stressors and show that the stressors, separately and in combination, have adverse effects on thyroid signaling, which disrupts several sensory systems and important predation defenses.
Collapse
|
9
|
Liu M, Yi S, Chen P, Chen M, Zhong W, Yang J, Sun B, Zhu L. Thyroid endocrine disruption effects of perfluoroalkyl phosphinic acids on zebrafish at early development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:290-297. [PMID: 31048160 DOI: 10.1016/j.scitotenv.2019.04.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl phosphinic acids (PFPiAs, including 6:6, 6:8 and 8:8 PFPiAs) are one kind of emerging perfluoroalkyl substances and usually used as leveling and wetting agents in household cleaning products and pesticide formulations. In this study, zebrafish embryos (6 h post-fertilization [hpf]) were exposed to 6:6, 6:8 and 8:8 PFPiAs individually (0.5, 5 and 50 nM) for 168 hpf. 8:8 PFPiA at 5 and 50 nM reduced the body length, while all treatments of 6:8 and 8:8 PFPiA depressed the heartbeat of the zebrafish larvae. 8:8 PFPiA at 50 nM distinctly enhanced the thyroxine (T4) and triiodothyronine (T3) contents. In a negative feedback mechanism, the three PFPiAs remarkably suppressed the genes responsible for THs regulation (corticotropin-releasing hormone, crh; thyroid stimulating hormone, tshβ), and 8:8 PFPiA displayed the strongest effect. In addition, 8:8 PFPiA significantly promoted the gene expressions corresponding to THs transport, metabolism and action (transthyretin, ttr; uridine diphosphate glucuronosyltransferase, ugt1ab; deiodinases, dio1 and dio2; thyroid hormone receptors, trα and trβ). As a result, 8:8 PFPiA displayed the strongest thyroid endocrine disrupting effect and significantly affected the growth of zebrafish larvae among the three PFPiAs in the present study.
Collapse
Affiliation(s)
- Menglin Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Lazcano I, Orozco A. Revisiting available knowledge on teleostean thyroid hormone receptors. Gen Comp Endocrinol 2018; 265:128-132. [PMID: 29574147 DOI: 10.1016/j.ygcen.2018.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022]
Abstract
Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico.
| |
Collapse
|
11
|
Kudo H, Eto A, Abe T, Mochida K. Detection and localization of the thyroid hormone receptor beta mRNA in the immature olfactory receptor neurons of chum salmon. Heliyon 2018; 4:e00744. [PMID: 30148220 PMCID: PMC6106697 DOI: 10.1016/j.heliyon.2018.e00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023] Open
Abstract
Thyroid hormone (TH) plays an important role in regulating multiple cellular and metabolic processes, including cell proliferation, cell death, and energy metabolism, in various organs and tissues of vertebrates. It is generally accepted that anadromous Pacific salmon (Oncorhynchus spp.) imprint odorants from their natal stream during their seaward migration, and they then use olfaction to discriminate their natal stream during the spawning migration. Both serum TH levels and the specific binding values of TH in the salmon olfactory epithelium were markedly increased during the seaward migration. However, thyroid hormone receptor (TR) expression in the olfactory epithelium has not been confirmed in vertebrates. We investigated gene expression of TR isoforms in chum salmon (O. keta) by both molecular biological and histochemical techniques. Expression of TRβ mRNA was detected in the olfactory epithelium by reverse transcriptase polymerase chain reaction (RT-PCR). Nucleotide sequencing demonstrated the existence of a remarkable homology between the RT-PCR product and part of the ligand-binding domain of other teleost TRβ isoforms. By in situ hybridization using a digoxygenin-labeled salmon olfactory TRβ cRNA probe, signals for salmon olfactory TRβ mRNA were observed preferentially in the perinuclear regions of immature olfactory receptor neurons (ORNs), as protein gene product 9.5 (PGP9.5)-immunopositive ORNs. Our results provide the first detection of TRβ gene expression in the olfactory epithelium, and suggested the possibility that TRβ may be involved in cell maturation and/or cell differentiation of the ORNs in Pacific salmon.
Collapse
Affiliation(s)
- Hideaki Kudo
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Akihiro Eto
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Takashi Abe
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| |
Collapse
|
12
|
Zhang S, Guo X, Lu S, Sang N, Li G, Xie P, Liu C, Zhang L, Xing Y. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:974-982. [PMID: 29751401 DOI: 10.1016/j.envpol.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 01/06/2018] [Accepted: 01/07/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), a kind of perfluorinated carboxylic acid (PFCA) with 12 carbon atoms, has an extensive industrial utilization and is widespread in both wildlife and the water environment, and was reported to have the potential to cause a disruption in the thyroid hormone system homeostasis. In this study, zebrafish embryos/larvae were exposed to different concentrations of PFDoA (0, 0.24, 1.2, 6 mg/L) for 96 h post-fertilization (hpf). PFDoA exposure caused obvious growth restriction connected with the reduced thyroid hormones (THs) contents in zebrafish larvae, strengthening the interference effect on the growth of fish larvae. The transcriptional level of genes within the hypothalamic-pituitary-thyroid (HPT) axis was analyzed. The gene expression levels of thyrotropin-releasing hormone (trh) and corticotrophin-releasing hormone (crh) were upregulated upon exposure to 6 mg/L of PFDoA, and iodothyronine deiodinases (dio2) was upregulated in the 1.2 mg/L PFDoA group. The transcription of thyroglobulin (tg) and thyroid receptor (trβ) were significantly downregulated upon exposure to 1.2 mg/L and 6 mg/L of PFDoA. PFDoA could also decrease the levels of sodium/iodide symporter (nis) and transthyretin (ttr) gene expression in a concentration-dependent manner after exposure. A significant decrease in thyroid-stimulating hormoneβ (tshβ), uridinediphosphate-glucuronosyltransferase (ugt1ab) and thyroid receptor (trα) gene expression were observed at 6 mg/L PFDoA exposure. Upregulation and downregulation of iodothyronine deiodinases (dio1) gene expression were observed upon the treatment of 1.2 mg/L and 6 mg/L PFDoA, respectively. All the data demonstrated that gene expression in the HPT axis altered after different PFDoA treatment and the potential mechanisms of the disruption of thyroid status could occur at several steps in the process of synthesis, regulation, and action of thyroid hormones.
Collapse
Affiliation(s)
- Shengnan Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China; State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Zhang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100012, China
| |
Collapse
|
13
|
Holzer G, Besson M, Lambert A, François L, Barth P, Gillet B, Hughes S, Piganeau G, Leulier F, Viriot L, Lecchini D, Laudet V. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. eLife 2017; 6. [PMID: 29083300 PMCID: PMC5662287 DOI: 10.7554/elife.27595] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore’s ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors. Many animals go through a larval phase before developing into an adult. This transformation is called metamorphosis, and it is regulated by hormones of the thyroid gland in vertebrates. For example, most fish found on coral reefs actually spend the first part of their life as free-swimming larvae out in the ocean. The larvae usually look very different from the juveniles and adults. When these fish become juveniles, the larvae undergo a range of physical and behavioral changes to prepare for their life on the reef. Yet, until now it was not known what hormones control metamorphosis in these fish. To address this question, Holzer, Besson et al. studied the convict surgeonfish Acanthurus triostegus. This herbivorous coral-reef fish lives in the Indo-Pacific Ocean, and the results showed that thyroid hormones do indeed regulate the metamorphosis of its larvae. This includes changing how the larvae behave and how their adult features develop. Further, Holzer, Besson et al. found that this was also true for four other coral-reef fish, including the lagoon triggerfish and the raccoon butterflyfish. In A. triostegus, thyroid hormones controlled the changes that enabled the juveniles to efficiently graze on algae growing on the reef such as an elongated gut. When the fish larvae were then exposed to a pesticide called chlorpyrifos, a well-known reef pollutant, their hormone production was disturbed. This in turn affected their grazing behavior and also their metamorphosis. These fish had shortened, underdeveloped guts and could not graze on algae as effectively. Herbivorous fish such as A. triostegus play a major role in supporting coral reef ecosystems by reducing algal cover and therefore promoting coral recruitment. These new findings show that pollutants from human activities could disturb the metamorphosis of coral-reef fish and, as a consequence, their ability to maintain the reefs. A next step will be to test what other factors can disrupt the hormones in coral-reef fish and thus pose a threat for fish populations and the coral-reef ecosystem.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marc Besson
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France.,CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia.,Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, Paris, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Loïc François
- CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia
| | - Paul Barth
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Gwenaël Piganeau
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, Paris, France
| | - Francois Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - David Lecchini
- CRIOBE USR3278 EPHE-UPVD-CNRS, PSL Research University, Moorea, French Polynesia.,Laboratoire d'Excellence CORAIL, Moorea, French Polynesia
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
14
|
Chalde T, Miranda LA. Pituitary-thyroid axis development during the larval-juvenile transition in the pejerrey Odontesthes bonariensis. JOURNAL OF FISH BIOLOGY 2017; 91:818-834. [PMID: 28736927 DOI: 10.1111/jfb.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The morphological development of the thyroid gland of pejerrey Odontesthes bonariensis during larval-juvenile transition was studied and related to whole-body concentrations of thyroxine (T4 ) and tri-iodothyronine (T3 ). A complementary (c)DNA fragment of the thyroid-stimulating hormone β-subunit (tshb) was sequenced and transcript levels quantified during this period. Follicles with eosinophilic and T4 -immunoreactive colloids were detected at hatching together with tshb transcript levels and whole-body concentrations of T4 and T3 hormones. Thyroid follicles were located in the subpharyngeal region associated with the ventral aorta below the hyoid bone. Follicle structure switched from the rounded form at hatching to oval in juveniles. Significant increase of follicle number per larva, mean colloidal area and total colloidal area was observed throughout development with maximum values at the end of the larval-juvenile transition. A significant decrease of tshb expression together with a significant increase in T4 and T3 whole-body concentrations was observed prior to achieving the juvenile phenotype. These results are in accordance with a negative feedback regulation of tshb expression by thyroid hormones and a possible association between thyroid hormone levels and the acceleration of metabolic processes necessary to complete metamorphosis.
Collapse
Affiliation(s)
- T Chalde
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, (IIB-INTECH, CONICET-UNSAM), Intendente Marino Km. 8,200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| | - L A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, (IIB-INTECH, CONICET-UNSAM), Intendente Marino Km. 8,200 (B7130IWA), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
15
|
Yu J, Fu Y, Shi Z. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:321-336. [PMID: 27620185 DOI: 10.1007/s10695-016-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
16
|
Du J, Wang S, You H, Liu Z. Effects of ZnO nanoparticles on perfluorooctane sulfonate induced thyroid-disrupting on zebrafish larvae. J Environ Sci (China) 2016; 47:153-164. [PMID: 27593282 DOI: 10.1016/j.jes.2016.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/10/2015] [Accepted: 01/13/2016] [Indexed: 06/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and ZnO nanoparticles (nano-ZnO) are widely distributed in the environment. However, the potential toxicity of co-exposure to PFOS and nano-ZnO remains to be fully elucidated. The test investigated the effects of co-exposure to PFOS and nano-ZnO on the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish. Zebrafish embryos were exposed to a combination of PFOS (0.2, 0.4, 0.8mg/L) and nano-ZnO (50mg/L) from their early stages of life (0-14days). The whole-body content of TH and the expression of genes and proteins related to the HPT axis were analyzed. The co-exposure decreased the body length and increased the malformation rates compared with exposure to PFOS alone. Co-exposure also increased the triiodothyronine (T3) levels, whereas the thyroxine (T4) content remained unchanged. Compared with the exposure to PFOS alone, exposure to both PFOS (0.8mg/L) and nano-ZnO (50mg/L) significantly up-regulated the expression of corticotropin-releasing factor, sodium/iodidesymporter, iodothyronine deiodinases and thyroid receptors and significantly down-regulated the expression of thyroid-stimulating hormone, thyroglobulin (TG), transthyretin (TTR) and thyroid receptors. The protein expression levels of TG and TTR were also significantly down-regulated in the co-exposure groups. In addition, the expression of the thyroid peroxidase gene was unchanged in all groups. The results demonstrated that PFOS and nano-ZnO co-exposure could cause more serious thyroid-disrupting effects in zebrafish than exposure to PFOS alone. Our results also provide insight into the mechanism of disruption of the thyroid status by PFOS and nano-ZnO.
Collapse
Affiliation(s)
- Jia Du
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of public health, Jia Mu Si University, Jiamusi 154007, China.
| | - Shutao Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Zhongqiang Liu
- The Second Middle School of Funing at Qinhuangdao, Qinhuangdao 066300, China
| |
Collapse
|
17
|
Hernández-Puga G, Navarrete-Ramírez P, Mendoza A, Olvera A, Villalobos P, Orozco A. 3,5-Diiodothyronine-mediated transrepression of the thyroid hormone receptor beta gene in tilapia. Insights on cross-talk between the thyroid hormone and cortisol signaling pathways. Mol Cell Endocrinol 2016; 425:103-10. [PMID: 26820127 DOI: 10.1016/j.mce.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/30/2022]
Abstract
T3 and cortisol activate or repress gene expression in virtually every vertebrate cell mainly by interacting with their nuclear hormone receptors. In contrast to the mechanisms for hormone gene activation, the mechanisms involved in gene repression remain elusive. In teleosts, the thyroid hormone receptor beta gene or thrb produces two isoforms of TRβ1 that differ by nine amino acids in the ligand-binding domain of the long-TRβ1, whereas the short-TRβ1 lacks the insert. Previous reports have shown that the genomic effects exerted by 3,5-T2, a product of T3 outer-ring deiodination, are mediated by the long-TRβ1. Furthermore, 3,5-T2 and T3 down-regulate the expression of long-TRβ1 and short-TRβ1, respectively. In contrast, cortisol has been shown to up-regulate the expression of thrb. To understand the molecular mechanisms for thrb modulation by thyroid hormones and cortisol, we used an in silico approach to identify thyroid- and cortisol-response elements within the proximal promoter of thrb from tilapia. We then characterized the identified response elements by EMSA and correlated our observations with the effects of THs and cortisol upon expression of thrb in tilapia. Our data show that 3,5-T2 represses thrb expression and impairs its up-regulation by cortisol possibly through a transrepression mechanism. We propose that for thrb down-regulation, ligands other than T3 are required to orchestrate the pleiotropic effects of thyroid hormones in vertebrates.
Collapse
Affiliation(s)
- Gabriela Hernández-Puga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Pamela Navarrete-Ramírez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Arturo Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Aurora Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Patricia Villalobos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
18
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Shi C, Meng Q, Wood DW. Analysis of the roles of mutations in thyroid hormone receptor-β by a bacterial biosensor system. J Mol Endocrinol 2014; 52:55-66. [PMID: 24174637 DOI: 10.1530/jme-13-0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in thyroid hormone receptors (TRs) often lead to metabolic and developmental disorders, but patients with these mutations are difficult to treat with existing thyromimetic drugs. In this study, we analyzed six clinically observed mutations in the ligand-binding domain of the human TRβ using an engineered bacterial hormone biosensor. Six agonist compounds, including triiodothyronine (T3), thyroxine (T4), 3,5,3'-triiodothyroacetic acid (Triac), GC-1, KB-141, and CO-23, and the antagonist NH-3 were examined for their ability to bind to each of the TRβ mutants. The results indicate that some mutations lead to the loss of ability to bind to native ligands, ranging from several fold to several hundred fold, while other mutations completely abolish the ability to bind to any ligand. Notably, the effect of each ligand on each TRβ mutant in this bacterial system is highly dependent on both the mutation and the ligand; some ligands were bound well by a wide variety of mutants, while other ligands lost their affinity for all but the WT receptor. This study demonstrates the ability of our bacterial system to differentiate agonist compounds from antagonist compounds and shows that one of the TRβ mutations leads to an unexpected increase in antagonist ability relative to other mutations. These results indicate that this bacterial sensor can be used to rapidly determine ligand-binding ability and character for clinically relevant TRβ mutants.
Collapse
Affiliation(s)
- Changhua Shi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
20
|
Kawakami Y, Nomura K, Ohta H, Tanaka H. Characterization of thyroid hormone receptors during early development of the Japanese eel (Anguilla japonica). Gen Comp Endocrinol 2013; 194:300-10. [PMID: 24100168 DOI: 10.1016/j.ygcen.2013.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
We studied the profiles of thyroid hormone receptors (TRs) in Japanese eels (Anguilla japonica) during development from hatched larvae to juveniles. Two TRαs (TRαA and TRαB) and one TRβ (TRβA) cDNA clones were generated by RACE. The TRαA, TRαB and TRβA cDNAs encoded 416, 407 and 397 amino acid proteins with much higher homologies to the Japanese conger eel (Conger myriaster) TRs than to other fish TRs. In a transiently transfected Japanese eel cell line, Hepa-E1, the TRs showed thyroid hormone (TH)-dependent activation of transcription from the TH-responsive promoter. Four TR cDNA clones, including TRβB reported in a previous study, were analyzed by real-time RT-PCR. The TR mRNA levels in hatched larvae were determined. The two TRβ mRNAs were present at low levels but there was a peak in the TRαs during the larval stage before metamorphosis. During metamorphosis, the two TRαs both exhibited peaks and expression of the two TRβs was higher than during the early growth stage. This expression pattern is similar to that of the Japanese conger eel. It is possible that thyroid hormones control the early development of Japanese eels and Japanese conger eels through TRs. This is the first analysis of the expression sequence of TRs during early larval stages of Anguilliformes.
Collapse
Affiliation(s)
- Yutaka Kawakami
- Nansei Station, National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise 516-0193, Japan.
| | | | | | | |
Collapse
|
21
|
García-Cegarra A, Merlo MA, Ponce M, Portela-Bens S, Cross I, Manchado M, Rebordinos L. A preliminary genetic map in Solea senegalensis (Pleuronectiformes, Soleidae) using BAC-FISH and next-generation sequencing. Cytogenet Genome Res 2013; 141:227-40. [PMID: 24107490 DOI: 10.1159/000355001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This article presents the first physical mapping carried out in the Senegalese sole (Solea senegalensis), an important marine fish species of Southern Europe. Eight probes were designated to pick up genes of interest in aquaculture (candidate genes) from a bacterial artificial chromosome (BAC) library using a method of rapid screening based on a 4-dimension PCR. Seven known and 3 unknown clones were isolated and labeled. The 10 BAC clones were used as probes to map the karyotype of the species by fluorescence in situ hybridization (FISH). Nine out of the 10 clones were localized in only 1 chromosome pair, whereas the remaining one hybridized on 2 chromosome pairs. The 2-color FISH experiments showed colocation of 4 probes in 2 chromosome pairs. In addition, 2-color FISH was carried out both with 5S rDNA and the BAC containing the lysozyme gene published previously. This first genetic map of the Senegalese sole represents a starting point for future studies of the sole genome. In addition, 7 out of the 10 BAC clones were sequenced using next-generation sequencing, and bioinformatic characterization of the sequences was carried out. Hence the anchoring of the sequences to specific chromosomes or chromosome arms is now possible, leading to an initial scaffold of the Senegalese sole genome.
Collapse
Affiliation(s)
- A García-Cegarra
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales - CACYTMAR, Puerto Real, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Ferraresso S, Bonaldo A, Parma L, Cinotti S, Massi P, Bargelloni L, Gatta PP. Exploring the larval transcriptome of the common sole (Solea solea L.). BMC Genomics 2013; 14:315. [PMID: 23663263 PMCID: PMC3659078 DOI: 10.1186/1471-2164-14-315] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. RESULTS The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. CONCLUSIONS Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Legnaro, PD 35020, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, "metamorphoses," as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories.
Collapse
Affiliation(s)
- Sarah K. McMenamin
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
24
|
Simon M, Fromentin JM, Bonhommeau S, Gaertner D, Brodziak J, Etienne MP. Effects of stochasticity in early life history on steepness and population growth rate estimates: an illustration on Atlantic bluefin tuna. PLoS One 2012; 7:e48583. [PMID: 23119063 PMCID: PMC3485314 DOI: 10.1371/journal.pone.0048583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
The intrinsic population growth rate (r) of the surplus production function used in the biomass dynamic model and the steepness (h) of the stock-recruitment relationship used in age-structured population dynamics models are two key parameters in fish stock assessment. There is generally insufficient information in the data to estimate these parameters that thus have to be constrained. We developed methods to directly estimate the probability distributions of r and h for the Atlantic bluefin tuna (Thunnus thynnus, Scombridae), using all available biological and ecological information. We examined the existing literature to define appropriate probability distributions of key life history parameters associated with intrinsic growth rate and steepness, paying particular attention to the natural mortality for early life history stages. The estimated probability distribution of the population intrinsic growth rate was weakly informative, with an estimated mean r = 0.77 (±0.53) and an interquartile range of (0.34, 1.12). The estimated distribution of h was more informative, but also strongly asymmetric with an estimated mean h = 0.89 (±0.20) and a median of 0.99. We note that these two key demographic parameters strongly depend on the distribution of early life history mortality rate (M(0)), which is known to exhibit high year-to-year variations. This variability results in a widely spread distribution of M(0) that affects the distribution of the intrinsic population growth rate and further makes the spawning stock biomass an inadequate proxy to predict recruitment levels.
Collapse
Affiliation(s)
- Maximilien Simon
- AgroParistech-ENGREF (École Nationale du Génie Rural des Eaux et des Forêts), Paris, France.
| | | | | | | | | | | |
Collapse
|
25
|
Yan W, Zhou Y, Yang J, Li S, Hu D, Wang J, Chen J, Li G. Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis in zebrafish larvae. CHEMOSPHERE 2012; 87:1301-7. [PMID: 22342285 DOI: 10.1016/j.chemosphere.2012.01.041] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/02/2012] [Accepted: 01/19/2012] [Indexed: 05/12/2023]
Abstract
Microcystin-leucine-arginine (MCLR) is the most toxic and the most commonly encountered variant of microcystins (MCs) in aquatic environment, and it has the potential for disrupting thyroid hormone homeostasis, but the molecular mechanisms underlying this process have not yet been clarified. In the present study, we observed body growth retardation associated with decreased levels of thyroid hormones (THs) in zebrafish larvae, highlighting the interferences of MCLR with the growth of fish larvae. To further our understanding of mechanisms of MCLR-induced endocrine toxicity, quantitative real-time PCR analysis was performed on hypothalamic-pituitary-thyroid (HPT) axis related genes of developing zebrafish embryos exposed to 100, 300 and 500 μg L(-1) MCLR until 96 h post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid receptors (TRα and TRβ) and iodothyronine deiodinases (Dio1 and Dio2) was examined using quantitatively real-time PCR. The gene expression levels of CRF, TSH, NIS and TG were significantly induced after exposure to 500 μg L(-1) MCLR. The transcription of TRs gene was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of Deio1 and Deio2 gene expression, respectively, were observed upon exposure to MCLR. The above results indicated that MCLR could alter gene expression in the HPT axis which might subsequently contribute to MCLR-induced thyroid disruption.
Collapse
Affiliation(s)
- Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Applebaum SL, Finn RN, Faulk CK, Joan Holt G, Scott Nunez B. Developmental expression, differential hormonal regulation and evolution of thyroid and glucocorticoid receptor variants in a marine acanthomorph teleost (Sciaenops ocellatus). Gen Comp Endocrinol 2012; 176:39-51. [PMID: 22226731 DOI: 10.1016/j.ygcen.2011.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Interactions between the thyroid hormone (TH) and corticosteroid (CS) hormone axes are suggested to regulate developmental processes in vertebrates with a larval phase. To investigate this hypothesis, we isolated three nuclear receptors from a larval acanthomorph teleost, the red drum (Sciaenops ocellatus), and established their orthologies as thraa, thrb-L and gra-L using phylogenomic and functional analyses. Functional characterization of the TH receptors in COS-1 cells revealed that Thraa and Thrb-L exhibit dose-dependent transactivation of a luciferase reporter in response to T3, while SoThraa is constitutively active at a low level in the absence of ligand. To test whether interactions between the TH and CS systems occur during development, we initially quantified the in vivo receptor transcript expression levels, and then examined their response to treatment with triiodothyronine (T3) or cortisol. We find that sothraa and sothrb-L are autoregulated in response to exogenous T3 only during early larval development. T3 did not affect sogra-L expression levels, nor did cortisol alter levels of sothraa or sothrb-L at any stage. While differential expression of the receptors in response to non-canonical ligand hormone was not observed under the conditions in this study, the correlation between sothraa and sogra-L transcript abundance during development suggests a coordinated function of the TH and CS systems. By comparing the findings in the present study to earlier investigations, we suggest that the up-regulation of thraa may be a specific feature of metamorphosis in acanthomorph teleosts.
Collapse
Affiliation(s)
- Scott L Applebaum
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | | | | | | | |
Collapse
|
27
|
Chalde T, Fernández DA, Cussac VE, Somoza GM. The effect of rearing temperature in larval development of pejerrey, Odontesthes bonariensis: morphological indicators of development. NEOTROPICAL ICHTHYOLOGY 2011. [DOI: 10.1590/s1679-62252011005000040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that in pejerrey water temperature not only affects growth rates but also directs the sexual differentiation process. This fact rise the question of how different the development of pejerrey larvae of the same age is when reared at different temperatures. A description of developmental stages for the embryonic and larval periods of the pejerrey, Odontesthes bonariensis, and the influence of rearing temperature on larval development are presented. Then, larval development was studied at three rearing temperatures, and changes in general morphology, fin morphology, and caudal fin structure have been taken into consideration within the thermal range involved in the temperature sex determination of this species. Fin fold reabsorption, caudal fin formation, and body shape were selected to follow the events leading to the acquisition of the juvenile morphology. The juvenile phenotype was defined when the fin fold was reabsorpted and the caudal fin acquired its definitive homocercal structure. The moment at which the juvenile phenotype was achieved, was evaluated in relation to larval age, size and, shape. The size resulted as the best indicator of development in pejerrey.
Collapse
|
28
|
Li W, Zha J, Yang L, Li Z, Wang Z. Regulation of thyroid hormone related genes mRNA expression by exogenous T₃ in larvae and adult Chinese rare minnow (Gobiocypris rarus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:189-197. [PMID: 21787685 DOI: 10.1016/j.etap.2010.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 05/31/2023]
Abstract
In this study, the expression time and profiles of thyroid hormone receptor alpha (trα), type I and II deiodinase enzymes (d1 and d2), transthyretin (ttr), sodium iodide symporter (nis), and thyrotropin-releasing hormone receptor (trhr) genes in Chinese rare minnow (Gobiocypris rarus) were determined using real-time PCR. Meanwhile, the changes of these genes were investigated by exogenous T(3) (3.8 nM) in larvae and adult fish. The retardation of swim bladder development and growth inhibition were observed for larvae, and the transcription of trα, d1, d2, nis, and trhr was significantly down-regulated at the end of exposure (21 d). In adults, a down-regulation of trα, d1, nis, and trhr mRNA levels occurred at 7th or 14th day of exposure, but returned back to their normal levels similar to control at the end of exposure. The down-regulation of gene mRNA expression could serve as a compensatory mechanism for the activation of thyroid system.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqin Rd 18, Haidian District, PO Box 2871, Beijing 100085, China
| | | | | | | | | |
Collapse
|
29
|
Applebaum SL, Wilson CA, Holt GJ, Nunez BS. The onset of cortisol synthesis and the stress response is independent of changes in CYP11B or CYP21 mRNA levels in larval red drum (Sciaenops ocellatus). Gen Comp Endocrinol 2010; 165:269-76. [PMID: 19595692 DOI: 10.1016/j.ygcen.2009.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/23/2009] [Accepted: 07/04/2009] [Indexed: 10/20/2022]
Abstract
Although cortisol plays an important role in teleost development, the onset of cortisol production and the cortisol stress response in teleosts remain poorly understood. Here we have reported basal cortisol levels and the development of the cortisol stress response in larval red drum (Sciaenops ocellatus). We isolated partial nucleic acid sequences encoding two key corticosteroidogenic enzymes, CYP11B and CYP21 and assessed ontogenetic patterns of their mRNA levels relative to basal and stress-induced cortisol production. Basal cortisol was first detected 3 days post-hatch (DPH) and reached a maximum at 9 DPH. Cortisol did not increase in response to an acute stressor prior to 6 DPH. From 6 DPH forward, stress caused significant increases in larval cortisol content. Stress-induced cortisol levels in 6-9 DPH larvae were highest 1h post-stress. In larvae 11 DPH and older, the highest cortisol measurements occurred 0.5h post-stress. Elevated cortisol was still evident after 3h in 6 DPH larvae. From 11 DPH onward, basal cortisol levels were reestablished in larvae by 1h post-stress. CYP11B and CYP21 transcripts were detected in red drum 12h prior to hatching and in all post-hatch larvae examined. Changes in CYP11B and CYP21 mRNA levels did not occur in association with the ontogenetic appearance of cortisol, or the onset of the stress response. As larvae developed, the dynamics of the cortisol stress response matured from a low magnitude, slow recovery response, to a response similar to that observed in juvenile and adult fish.
Collapse
Affiliation(s)
- Scott L Applebaum
- The University of Texas at Austin Marine Science Institute, 750 Channelview Drive, Port Aransas, TX 78373, USA
| | | | | | | |
Collapse
|
30
|
Shi X, Liu C, Wu G, Zhou B. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae. CHEMOSPHERE 2009; 77:1010-8. [PMID: 19703701 DOI: 10.1016/j.chemosphere.2009.07.074] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/17/2009] [Accepted: 07/30/2009] [Indexed: 05/09/2023]
Abstract
Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 microgL(-1)) and gene expression patterns were examined 15d post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), iodothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TRalpha and TRbeta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 microg L(-1) PFOS. A significant increase in NIS and Dio1 gene expression was observed at 200 microg L(-1) PFOS exposure, while TG gene expression was down-regulated at 200 and 400 microg L(-1) PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TRalpha and TRbeta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T(4)) content remained unchanged, whereas triiodothyronine (T(3)) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones.
Collapse
Affiliation(s)
- Xiongjie Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
31
|
Nelson ER, Habibi HR. Thyroid receptor subtypes: structure and function in fish. Gen Comp Endocrinol 2009; 161:90-6. [PMID: 18840444 DOI: 10.1016/j.ygcen.2008.09.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 08/31/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022]
Abstract
Thyroid hormones are important regulators of vertebrate growth and development, and are under the control of the hypothalamic-pituitary-thyroid axis. Nuclear thyroid receptors (TRs), which act as inducible transcription factors, mediate cellular functions of thyroid hormones. The molecular structure of several subtypes of TRs have been elucidated in vertebrate species, including N-terminal truncations as well as C-terminal variations in the domain responsible for binding hormone. In this paper, we review current information on the thyroid receptors studied in the vertebrate species with emphasis on recent findings in goldfish concerning functional significance of the thyroid receptor subtypes.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W. Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | |
Collapse
|
32
|
Manchado M, Infante C, Rebordinos L, Cañavate JP. Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. Gen Comp Endocrinol 2009; 160:139-47. [PMID: 19028494 DOI: 10.1016/j.ygcen.2008.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/13/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022]
Abstract
Thyroid hormones (THs) play a key role in larval development, growth and metamorphosis in flatfish. Their genomic effects are mediated by thyroid hormone receptors (TRs). In this study, cDNAs encoding for TRalphaA, TRalphaB, and TRbeta have been sequenced in Senegalese sole (Soleasenegalensis). Main domains and conserved motifs were identified. Also, a truncated TRalphaB isoform (referred to as TRalphaBtr) and a spliced TRbeta variant (referred to as TRbetav) were detected. A phylogenetic analysis grouped both TRalpha and TRbeta genes into two separate clusters with their fish and mammalian counterparts. Expression profiles during larval development and in juvenile tissues were analyzed using a real-time PCR approach. In juvenile fish, TRalphaA, TRalphaB, TRbetav, and TRbeta showed distinct transcript levels in tissues. During metamorphosis, only TRbetav and TRbeta modified their mRNA levels in a similar way to the T4 contents. To evaluate the possible regulation of TRs by their cognate ligand T4 during sole metamorphosis, larvae were exposed to the goitrogen thiourea (TU). TRbeta transcripts decreased significantly at 11 and 15 days after treatment. Moreover, adding exogenous T4 hormone to TU-treated larvae restored the steady-state levels or even increased TRbeta and TRbetav mRNAs with respect to the untreated control. Overall, these results demonstrate that TRbeta transcription is up-regulated by THs playing a major role during metamorphosis in Senegalese sole.
Collapse
Affiliation(s)
- Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | |
Collapse
|
33
|
Kawakami Y, Yokoi K, Kumai H, Ohta H. The role of thyroid hormones during the development of eye pigmentation in the Pacific bluefin tuna (Thunnus orientalis). Comp Biochem Physiol B Biochem Mol Biol 2008; 150:112-6. [DOI: 10.1016/j.cbpb.2008.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|