1
|
Eilertsen M, Norland S, Dolan DWP, Karlsen R, Gomes AS, Bolton CM, Migaud H, Rønnestad I, Helvik JV. Onset of circadian rhythmicity in the brain of Atlantic salmon is linked to exogenous feeding. PLoS One 2024; 19:e0312911. [PMID: 39546447 PMCID: PMC11567551 DOI: 10.1371/journal.pone.0312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
An organism's biological processes are adapted to and driven by rhythmicity in the natural environment and periodicity of light is one of the most influential factors. In a developing organism, the onset of circadian rhythmicity might indicate the time point of functional necessity for aligning processes to the environment. Here, the circadian clock mechanism has been studied in the developing brain of Atlantic salmon (Salmo salar), by comparing the endogenous feeding alevin, independent on the environment for nutritional supply, to the exogenous feeding fry, dependent on the light period for detecting and catching prey. The results showed that while only a few clock genes were cyclic in the yolk sac alevins, many of the clock genes and genes of the circadian rhythm pathway cycled significantly in the feeding fry. Few genes were differentially expressed between time points in the circadian sampling series during the yolk sac stage, but several hundred genes were found differentially expressed in the first feeding stage. Genes important for cell cycle progression were cyclic or differentially expressed between time points after exogenous feeding, indicating a clock-controlled cell cycle at this stage. The expression of important genes in the melatonin synthesis were also cyclic in the feeding fry with an acrophase in the transition between light and dark or in darkness. Analyzing the impact of exogenous feeding on the developing brain supported a shift from utilization of proteins and lipids in the yolk to utilization and allocation of dietary energy and nutrients. Taken together, the life history transition related to onset of exogenous feeding is linked to the establishment of a persistent circadian rhythmicity in the salmon brain, which needs to be synchronized to light-dark cycles to enable the fry to search and capture feed.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Hyeon JY, Byun JH, Kim BH, Hettiarachchi SA, Han J, Choi YU, Noh CH, Takeuchi Y, Choi SY, Park JE, Hur SP. Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39375903 DOI: 10.1002/jez.2870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Assessment of the clock genes, Period (Per) 1, Per2, Per3, and Cryptochrome (Cry) 2, Cry3, and Cry4, can help better understand eel spawning ecology. In this study, the circadian rhythm and moonlight effects of these clock genes in the eel retina and hypothalamus were analyzed. We examined clock gene expression patterns under 12 h light:12 h darkness (12L12D), constant darkness (DD), and constant light (LL) conditions; under short photoperiod (SP; 9L15D) and long photoperiod (LP; 15L9D), and during the new moon (NM) and full moon in male eels. Per2 expression increased after sunrise, Cry2, and Cry4 expression increased around sunset, and Per1, Per3, and Cry3 expression increased before sunrise. Under SP conditions, oscillations of retinal Per3 and Cry4, which did not occur under LP conditions, were generated. In addition, retinal Cry4 oscillation was generated under NM conditions. These results suggest that the retina of the eel may play an important role in regulating circadian rhythm, and migration is initiated by the synchronization of clock genes by moonlight, suggesting that photic signals are closely related to the migratory activity of the eel.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Byeong-Hoon Kim
- Education & Research Group for Future Strategy of Aquatic Life Industry, Jeju National University, Jeju, Republic of Korea
| | | | - Jeonghoon Han
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Young-Ung Choi
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
- Department of Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Choong-Hwan Noh
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Soo-Youn Choi
- Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
3
|
Rizky D, Byun JH, Mahardini A, Fukunaga K, Udagawa S, Pringgenies D, Takemura A. Two pathways regulate insulin-like growth factor genes in the brain and liver of the tropical damselfish Chrysiptera cyanea: A possible role for melatonin in the actions of growth and thyroid hormones. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111679. [PMID: 38876439 DOI: 10.1016/j.cbpa.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.
Collapse
Affiliation(s)
- Dinda Rizky
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Angka Mahardini
- Marine Science Study Program, Faculty of Science and Agricultural Technology, Universitas Muhammadiyah Semarang, Jl. Kedungmundu No.18, Semarang 50273, Indonesia
| | - Kodai Fukunaga
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Shingo Udagawa
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Delianis Pringgenies
- Department of Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto S.H., Tembalang, Semarang 50275, Indonesia
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
4
|
Félix F, Ferrão L, Gallego V, Oliveira CCV, Cabrita E. Melatonin production improves Senegalese sole sperm motility at night, but fails as a supplement during cryopreservation. Cryobiology 2024; 117:104974. [PMID: 39271098 DOI: 10.1016/j.cryobiol.2024.104974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Melatonin is a powerful antioxidant present in fish seminal plasma. This study aimed to understand melatonin's endogenous and exogenous effects on first-generation Senegalese sole sperm quality for sperm management applications. In the first experiment, samples were collected at mid-light (ML) and mid-dark (MD) daytimes, to evaluate the effects on sperm motility. In a second experiment, using confocal microscopy and melatonin-FITC, spermatozoa permeability to melatonin was evaluated and, after showing that it enters the nucleus and mitochondria by passive diffusion, exogenous melatonin toxicity and antioxidant potential during a cryopreservation assay were performed. The toxicity assay tested different melatonin concentrations (0.01, 0.1, 1, and 10 mM) and exposure times (3, 5, 15 and 30 min), and sperm motility parameters were measured (TM, PM, VCL, VSL, LIN) using CASA system. The best conditions (0.1 and 10 mM) were selected for the cryopreservation assay, and a set of post-thaw sperm quality analyses were performed (motility, viability, reactive oxygen species, lipid peroxidation, and DNA fragmentation). The motility analyzed at ML and MD showed significant differences in all parameters, mainly on velocities (VCL, VSL, VAP), that were significantly higher at MD. Supplemented melatonin did not influence spermatozoa motility, MDA content or DNA fragmentation, although a lower percentage of viable cells was obtained on the 10 mM treatment. Altogether, Senegalese sole spermatozoa motility was enhanced at night, putatively by endogenous melatonin through direct or indirect mechanisms, whereas supplemented melatonin did not confer extra protection during cryopreservation.
Collapse
Affiliation(s)
- F Félix
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - L Ferrão
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal; Aquaculture and Biodiversity Research Group, Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - V Gallego
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal; Aquaculture and Biodiversity Research Group, Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - C C V Oliveira
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - E Cabrita
- Centre of Marine Sciences (CCMAR/CIMAR LA), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
| |
Collapse
|
5
|
Thompson WA, Vijayan MM. Zygotic Exposure to Venlafaxine Disrupts the Circadian Locomotor Activity Behaviour in Zebrafish Larvae. J Pineal Res 2024; 76:e12984. [PMID: 38874070 DOI: 10.1111/jpi.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is commonly prescribed to treat major depressive disorder and is found at high concentrations in the aquatic environment. Concerns have been raised related to the health of aquatic organisms in response to this nontargeted pharmaceutical exposure. For instance, we previously demonstrated that exposure to venlafaxine perturbs neurodevelopment, leading to behavioural alterations in zebrafish (Danio rerio). We also observed disruption in serotonin expression in the pineal and raphe, regions critical in regulating circadian rhythms, leading us to hypothesize that zygotic exposure to venlafaxine disrupts the circadian locomotor rhythm in larval zebrafish. To test this, we microinjected zebrafish embryos with venlafaxine (1 or 10 ng) and recorded the locomotor activity in 5-day-old larvae over a 24-h period. Venlafaxine deposition reduced larval locomotor activity during the light phase, but not during the dark phase of the diurnal cycle. The melatonin levels were higher in the dark compared to during the light photoperiod and this was not affected by embryonic venlafaxine deposition. Venlafaxine exposure also did not affect the transcript abundance of clock genes, including clock1a, bmal2, cry1a and per2, which showed a clear day/night rhythmicity. A notable finding was that exposure to luzindole, a melatonin receptor antagonist, decreased the locomotor activity in the control group in light, whereas the activity was higher in larvae raised from the venlafaxine-deposited embryos. Overall, zygotic exposure to venlafaxine disrupts the locomotor activity of larval zebrafish fish during the day, demonstrating the capacity of antidepressants to disrupt the circadian rhythms in behaviour. Our results suggest that disruption in melatonin signalling may be playing a role in the venlafaxine impact on circadian behaviour, but further investigation is required to elucidate the possible mechanisms in larval zebrafish.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
6
|
Hibino S, Amiya N, Miyazaki Y, Nakano N, Yoneda M, Amano M, Yoshinaga T. Changes in Behavior and Diel Melatonin Secretion Toward Estivation in Western Sand Lance, Ammodytes japonicus (Uranoscopiformes, Ammodytidae). Zoolog Sci 2024; 41:245-250. [PMID: 38809862 DOI: 10.2108/zs230105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/07/2024] [Indexed: 05/31/2024]
Abstract
Western sand lance, Ammodytes japonicus, is known to have an estivation period, in which they cease feeding and stay in the sand from early summer to late autumn, followed by gonadal maturation. During the feeding period prior to estivation, they swim in daytime and spend the night in the sand. Before they start swimming, they show a typical behavior of head-exposing from the sand, which is likely to be related to foraging and predation avoidance. Our previous study revealed that melatonin regulates such diel behavior of this species. To elucidate the mechanisms of behavioral regulation throughout the life cycle of this sand lance, the present study examined the changes in behavior and melatonin secretion toward the estivation period. Both head-exposing and swimming behaviors were frequently observed at the transition period toward estivation. On the other hand, occurrence of these behaviors was suppressed just before entering estivation. Subsequently, it was found that plasma melatonin concentration was about three times higher at night than in daytime in the non-estivation period, while it was retained at high levels throughout the day in the estivation period. These results indicate that diurnal swimming behavior of sand lance from the feeding to estivation periods is associated with the daily cycle of melatonin secretion.
Collapse
Affiliation(s)
- Shizuha Hibino
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Noriko Amiya
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan,
| | - Yoshiya Miyazaki
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Nayu Nakano
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Michio Yoneda
- Hakatajima Field Station, National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, Ehime 794-2305, Japan
| | - Masafumi Amano
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Tatsuki Yoshinaga
- Graduate School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| |
Collapse
|
7
|
Byun JH, Hyeon JY, Hettiarachchi SA, Udagawa S, Mahardini A, Kim JM, Hur SP, Takemura A. Effects of dopamine and melatonin treatment on the expression of the genes associated with artificially induced sexual maturation in Japanese eel, Anguilla japonica. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:389-399. [PMID: 38334250 DOI: 10.1002/jez.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Japanese eel (Anguilla japonica) is a commercially important fish species in Asia. Understanding factors like photoperiod, temperature, and lunar cycles is crucial for successful aquaculture and managing its reproduction. Melatonin and dopamine (DA) are essential for regulating reproduction in vertebrates, including fish. This study investigated the effects of melatonin and DA on the reproductive system of mature male Japanese eels to better understand reproductive regulation in fish. To clarify the effects of these hormones on sexual maturation in eels, a critical stage in the reproductive process, sexual maturation was induced by injecting human chorionic gonadotropin, which stimulates the production of sex hormones. To check the effect of melatonin and DA on sexual maturation, DA, melatonin, and DA + domperidone were intraperitoneally injected into fish from each group (six per treatment) at a dose of 1 mg/kg body weight. The fish were then examined using quantitative RT-PCR by comparing the messenger RNA level of reproduction-related genes (gonadotropin releasing hormone 1; gnrh1, gonadotropin releasing hormone 2; gnrh2, follicle stimulating hormone; fshβ, luteinizing hormone; lhβ and DA receptor 2b; d2b), involved in the gonadotropic axis in eels, to those that received a control injection. The results indicate significant differences in the expression levels of gnrh1, gnrh2 and d2b in the brain and d2b, fshβ, lhβ in the pituitary at different stages of sexual maturation. Melatonin appears to enhance the production of sex gonadotropins, whereas DA inhibits them. These findings suggest an interaction between melatonin and DA in regulating reproduction in Japanese eels.
Collapse
Affiliation(s)
- Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ji-Yeon Hyeon
- Division of Polar Life Science, Korea Polar Research Institute, Incheon, South Korea
| | | | - Shingo Udagawa
- Department of Co-Creation Management, Organization for Research Promotion, University of the Ryukyus, Okinawa, Japan
| | - Angka Mahardini
- Department of Marine Science, Faculty of Science, Diponegoro University, Semarang, Indonesia
| | - Jong-Myoung Kim
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
8
|
Zhang G, Ye Z, Jiang Z, Wu C, Ge L, Wang J, Xu X, Wang T, Yang J. Circadian patterns and photoperiodic modulation of clock gene expression and neuroendocrine hormone secretion in the marine teleost Larimichthys crocea. Chronobiol Int 2024; 41:329-346. [PMID: 38516993 DOI: 10.1080/07420528.2024.2315215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.
Collapse
Affiliation(s)
- Guangbo Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Chenqian Wu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang, People's Republic of China
| |
Collapse
|
9
|
Wu L, Sun W, Zhou J, Li Y, Li J, Song Z, Song C, Xu S, Yue X, Li X. Comparative transcriptome analysis reveals growth and molecular pathway of body color regulation in turbot (Scophthalmus maximus) exposed to different light spectrum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101165. [PMID: 38007980 DOI: 10.1016/j.cbd.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Fish body color changes play vital roles in adapting to ecological light environment and influencing market value. However, the initial mechanisms governing the changes remain unknown. Here, we scrutinized the impact of light spectrum on turbot (Scophthalmus maximus) body coloration, exposing them to red, blue, and full light spectra from embryo to 90 days post hatch. Transcriptome and quantitative real-time PCR (qRT-PCR) analyses were employed to elucidate underlying biological processes. The results showed that red light induced dimorphism in turbot juvenile skin pigmentation: some exhibited black coloration (Red_Black_Surface, R_B_S), while others displayed lighter skin (Red_White_Bottom, R_W_B), with red light leading to reduced skin lightness (L*) and body weight, particularly in R_B_S group. Transcriptomic and qRT-PCR analyses showcased upregulated gene expressions related to melanin synthesis in R_B_S individuals, notably tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), and dopachrome tautomerase (dct), alongside solute carrier family 24 member 5 (slc24a5) and oculocutaneous albinism type II (oca2) as pivotal regulators. Nervous system emerged as a critical mediator in spectral environment-driven color regulation. N-methyl d-aspartate (NMDA) glutamate receptor, and calcium signaling pathway emerged as pivotal links intertwining spectral conditions, neural signal transduction, and color regulation. The individual differences in NMDA glutamate receptor expression and subsequent neural excitability seemed responsible for dichromatic body coloration in red light-expose juveniles. This study provides new insights into the comprehending of fish adaptation to environment and methods for fish body color regulation and could potentially help enhance the economic benefit of fish farming industry.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Wen Sun
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jiale Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Yaolin Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, PR China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xinlu Yue
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Xian Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China.
| |
Collapse
|
10
|
Shahjahan M, Rahman ML, Ohno Y, Zahangir MM, Ando H. Lunar Age-Dependent Oscillations in Expression of the Genes for Kisspeptin, GnIH, and Their Receptors in the Grass Puffer during the Spawning Season. Zoolog Sci 2024; 41:97-104. [PMID: 38587522 DOI: 10.2108/zs230061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 04/09/2024]
Abstract
Grass puffer is a semilunar-synchronized spawner: spawning occurs on beaches only for several days of spring tide around new moon (lunar age 0) and full moon (lunar age 15) every 2 weeks from spring to early summer. To investigate the role of kisspeptin and gonadotropin-inhibitory hormone (GnIH) in the semilunar-synchronized spawning, lunar age-dependent expression of the genes encoding kisspeptin (kiss2), kisspeptin receptor (kissr2), GnIH (gnih), GnIH receptor (gnihr), gonadotropin-releasing hormone 1 (GnRH1) (gnrh1), and three gonadotropin (GTH) subunits (gpa, fshb, lhb) was examined in the male grass puffer, which was kept in an aquarium under natural light condition in a lunar month during the spawning period. In the brain, both kiss2 and kissr2 showed lunar variations with a peak at lunar age 10, while both gnih and gnihr showed semilunar variations with two peaks at lunar age 0 and 20. On the other hand, gnrh1 showed semilunar variation with two peaks at lunar age 0 and 15. In the pituitary, kiss2, kissr2, gnih, and gnihr showed similar variations to those shown in the brain. The fshb and lhb mRNA levels showed semilunar variations with two peaks at lunar age 0 and 15. The present study shows lunar and semilunar oscillations of kiss2/kissr2 and gnih/gnihr expressions, respectively, with their peaks around spring tide in the brain and pituitary along with the semilunar expressions of gnrh1 and the pituitary GTH subunit genes. These results suggest that the lunar age-dependent expressions of the kisspeptin, GnIH, and their receptor genes may be primarily important in the control of the precisely timed semilunar spawning of the grass puffer.
Collapse
Affiliation(s)
- Md Shahjahan
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Lutfar Rahman
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - Yuki Ohno
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Fish Biology and Biotechnology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Chattogram-4225, Bangladesh
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan,
| |
Collapse
|
11
|
Nie X, Huang C, Wei J, Wang Y, Hong K, Mu X, Liu C, Chu Z, Zhu X, Yu L. Effects of Photoperiod on Survival, Growth, Physiological, and Biochemical Indices of Redclaw Crayfish ( Cherax quadricarinatus) Juveniles. Animals (Basel) 2024; 14:411. [PMID: 38338053 PMCID: PMC10854630 DOI: 10.3390/ani14030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Through a 30-day experiment, this study investigated the effects of five photoperiods (0L:24D, 6L:18D, 12L:12D, 18L:6D, and 24L:0D) on the survival, enzyme activity, body color, and growth-related gene expression of redclaw crayfish (Cherax quadricarinatus) juveniles. The results showed that C. quadricarinatus juveniles under 18L:6D and 24L:0D photoperiods exhibited the highest survival rate, which was significantly higher than the survival rates of juveniles under the other three photoperiods (p < 0.05). However, the 0L:24D group had the highest final body weight and weight gain rate, significantly surpassing those of the 12L:12D, 18L:6D, and 24L:0D groups (p < 0.05). Regarding enzyme activity and hormone levels, juveniles under the 18L:6D photoperiod exhibited relatively higher activity of superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) enzymes than those under other photoperiods, but their levels of melatonin and cortisol were relatively low. In addition, the 24L:0D group showed the highest malondialdehyde (MDA) content. Analysis of gene expression levels revealed that retinoid X receptor (RXR) and α-amylase (α-AMY) genes in C. quadricarinatus juveniles exhibited significantly higher expression levels under the 18L:6D photoperiod than those under the other four photoperiods (p < 0.05). With increasing daylight exposure, the body color of C. quadricarinatus changed from pale blue to yellow-brown. In summary, C. quadricarinatus juveniles achieved high survival rates, good growth performance, strong antioxidant stress response, and immune defense capabilities under an 18 h photoperiod. Therefore, in the industrial seedling cultivation of redclaw crayfish, it is recommended to provide 18 h of daily light. Further, the study demonstrated the ability to manipulate the body color of C. quadricarinatus through controlled artificial photoperiods. These findings provide essential technical parameters needed for the industrial cultivation of C. quadricarinatus juveniles.
Collapse
Affiliation(s)
- Xiangxing Nie
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Cuixue Huang
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Jie Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Kunhao Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.M.); (C.L.)
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.M.); (C.L.)
| | - Zhangjie Chu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316000, China; (X.N.); (C.H.); (Z.C.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.W.); (Y.W.); (K.H.); (X.Z.)
| |
Collapse
|
12
|
Azpeleta C, Delgado MJ, Metz JR, Flik G, de Pedro N. Melatonin as an anti-stress signal: effects on an acute stress model and direct actions on interrenal tissue in goldfish. Front Endocrinol (Lausanne) 2024; 14:1291153. [PMID: 38260137 PMCID: PMC10800973 DOI: 10.3389/fendo.2023.1291153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Melatonin is a key hormone in regulation of circadian rhythms, and involved in many rhythmic functions, such as feeding and locomotor activity. Melatonin reportedly counteracts stress responses in many vertebrates, including fish. However, targets for this action of melatonin and underlying mechanisms remain unknown. Results This study reports potential anti-stress properties of melatonin in goldfish (Carassius auratus), with a focus on its effect on plasma cortisol, food intake, and locomotor activity, all of them involved in the responses to stress exposure. Indeed, acute injection of melatonin counteracted stress-induced hypercortisolinemia and reduced food intake. The reduced locomotor activity following melatonin treatment suggests a possible sedative role in fish. To assess whether this anti-stress effects of melatonin involve direct actions on interrenal tissue, in vitro cultures of head kidney (containing the interrenal cortisol-producing tissue) were carried out in presence of ACTH, melatonin, and luzindole, an antagonist of melatonin receptors. Melatonin in vitro reduced ACTH-stimulated cortisol release, an effect attenuated by luzindole; this suggests the presence of specific melatonin receptors in interrenal tissue. Conclusions Our data support a role for melatonin as an anti-stress signal in goldfish, and suggest that the interrenal tissue of teleosts may be a plausible target for melatonin action decreasing cortisol production.
Collapse
Affiliation(s)
- Clara Azpeleta
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Mª Jesús Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Gert Flik
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Vazquez JI, Gascue V, Quintana L, Migliaro A. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:7-18. [PMID: 37002418 DOI: 10.1007/s00359-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.
Collapse
Affiliation(s)
- Juan I Vazquez
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Valentina Gascue
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
14
|
Chandra RK, Bhardwaj AK, Pati AK, Tripathi MK. Seasonal Immune Rhythms of head kidney and spleen cells in the freshwater Teleost, Channa punctatus. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100110. [PMID: 37456710 PMCID: PMC10344798 DOI: 10.1016/j.fsirep.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Annual rhythms in immune function are the reflection of a crucial physiological strategy to deal with environmental stressors. The fish are pivotal animal models to study the annual rhythm and to understand the evolution of the vertebrate biological system. The current research was planned to assess the annual changes in the innate immune functions of immune cells in a teleost, Channa punctatus. Head kidney and splenic macrophage phagocytosis, superoxide generation, and nitrite release were evaluated to assess innate immunity. Cell-mediated immunity was measured through head kidney and splenic lymphocyte proliferation in presence of mitogens. The superoxide anion generation by the cells of head kidney and spleen was maximum in October. A bimodal pattern in nitrite production was observed with the first peak in November and the second in March. Cosinor analysis revealed a statistically significant annual rhythm in nitrite production. Similarly, phagocytosis and lymphocyte proliferation also showed statistically significant annual rhythms. It was concluded that animals maintain an optimum immune response in seasonally changing environments. Elevated immunity during certain times of the year might assist animals deal with seasonal environmental stressors. Further research may be focused upon measuring survival rate and reproductive success after season induced elevated immunity.
Collapse
Affiliation(s)
- Rakesh Kumar Chandra
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ajay Kumar Bhardwaj
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Atanu Kumar Pati
- Executive Member, Odisha State Higher Education Council, Government of Odisha, Bhubaneswar 751 002, Odisha, India
- Former Professor of Bioscience and Dean - Life Sciences, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Manish Kumar Tripathi
- Department of Zoology, School of Life Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
15
|
Closs LE, Royan MR, Sayyari A, Mayer I, Weltzien FA, Baker DM, Fontaine R. Artificial light at night disrupts male dominance relationships and reproductive success in a model fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166406. [PMID: 37597540 DOI: 10.1016/j.scitotenv.2023.166406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Environmental light is perceived and anticipated by organisms to synchronize their biological cycles. Therefore, artificial light at night (ALAN) disrupts both diurnal and seasonal biological rhythms. Reproduction is a complex physiological process involving integration of environmental signals by the brain, and release of endocrine signals by the pituitary that regulate gametogenesis and spawning. In addition, males from many species form a dominance hierarchy that, through a combination of aggressive and protective behavior, influences their reproductive success. In this study, we investigated the effect of ALAN and continuous daylight on the behavior and fitness of male fish within a dominance hierarchy using a model fish, the Japanese medaka. In normal light/dark cycles, male medaka establish a hierarchy with the dominant males being more aggressive and remaining closer to the female thus limiting the access of subordinate males to females during spawning. However, determination of the paternity of the progeny revealed that even though subordinate males spend less time with the females, they are, in normal light conditions, equally successful at producing progeny due to an efficient sneaking behavior. Continuous daylight completely inhibited the establishment of male hierarchy, whereas ALAN did not affect it. Nonetheless, when exposed to ALAN, subordinate males fertilize far fewer eggs. Furthermore, we found that when exposed to ALAN, subordinate males produced lower quality sperm than dominant males. Surprisingly, we found no differences in circulating sex steroid levels, pituitary gonadotropin levels, or gonadosomatic index between dominant and subordinate males, neither in control nor ALAN condition. This study is the first to report an effect of ALAN on sperm quality leading to a modification of male fertilization success in any vertebrate. While this work was performed in a model fish species, our results suggest that in urban areas ALAN may impact the genetic diversity of species displaying dominance behavior.
Collapse
Affiliation(s)
- Lauren E Closs
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States.
| | - Romain Fontaine
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
16
|
Pomianowski K, Gozdowska M, Sokołowska E, Kulczykowska E. The cutaneous stress response system in three-spined stickleback and European flounder exposed to oxidative stress: Different mode of action. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111493. [PMID: 37541323 DOI: 10.1016/j.cbpa.2023.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
In fish, the skin is directly exposed to multiple environmental stressors and provides the first line of defense against harmful external factors. It turned out that cortisol and melatonin (Mel) are involved in fish cutaneous stress response system (CSRS) similar to mammalian. This study investigates the mode of action of CSRS in two teleost species of different biology and skin characteristics, the three-spined stickleback and the European flounder, after exposure to oxidative stress induced by a potassium dichromate solution. The cutaneous stress response system presents different ways of action in two studied species: Mel concentration increases in the skin of both species, but cortisol concentration increases in the skin only in sticklebacks. Data suggest that stickleback skin cells can produce cortisol. However, cortisol is not involved in the response to oxidative stress in flounders. In stickleback skin, two genes encoding AANAT and ASMT/HIOMT (enzymes involved in Mel synthesis), aanat1a and asmt2, are expressed, but in flounder skin, only one, asmtl. Because gene expression does not change in stickleback skin after exposure to stress, the source of increased Mel is probably outside the skin. A lack of expression of the gene encoding AANAT in flounder skin strongly suggests that Mel is transported to the skin by the bloodstream from other sites of synthesis. Pigment dispersion in the skin after exposure to oxidative stress is found only in sticklebacks.
Collapse
Affiliation(s)
- Konrad Pomianowski
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Ewa Sokołowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland.
| |
Collapse
|
17
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
18
|
DeOliveira-Mello L, Baronio D, Panula P. Zebrafish embryonically exposed to valproic acid present impaired retinal development and sleep behavior. Autism Res 2023; 16:1877-1890. [PMID: 37638671 DOI: 10.1002/aur.3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Prenatal exposure to valproic acid (VPA), a drug widely used to treat epilepsy and bipolar disorder, is an environmental risk factor for autism spectrum disorder (ASD). VPA has been used to reproduce the core symptoms of ASD in animal model organisms, including zebrafish. Visual system functioning is essential in the interpretation of social conditions and plays an important role of several behavioral responses. We hypothesized that behavioral deficits displayed by ASD patients may involve impaired visual processing. We used zebrafish as model organism to investigate the visual system after embryonic exposure to VPA using histological, behavioral and gene expression analysis. We analyzed the pineal gland of zebrafish and sleep-like behavior to study how VPA exposure alters photo-sensibility of zebrafish. VPA-exposed zebrafish showed a delay in the development of the retina and optic nerve, which normalized at five days post fertilization. At larval stage, VPA-exposed zebrafish showed sleep disturbances associated with a reduced number of serotonin-producing cells of the pineal gland. In addition, the number of hypocretin/orexin (hcrt) expressing neurons in the rostral hypothalamus at 6 and 14 days post fertilization was reduced. In conclusion, we demonstrated that although VPA exposure leads to a delay in visual system development, it does not affect larval visual function. The novel finding that VPA alters significantly cells involved in sleep regulation and the sleep-like state itself may be relevant for understanding sleep disturbances in ASD patients.
Collapse
Affiliation(s)
| | - Diego Baronio
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Lopes ACC, de Mattos BO, Marcon JL, Vera LM, López-Olmeda JF, Sánchez-Vázquez FJ, Carvalho TB. Does exposure to moonlight affect day/night changes in melatonin and metabolic parameters in Amazonian fish? Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111489. [PMID: 37474098 DOI: 10.1016/j.cbpa.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Lunar cycle modulates the rhythmic activity patterns of many animals, including fish. The effect of the moonlight cycle on daily melatonin and metabolic parameters was evaluated in matrinxã (Brycon amazonicus) subjected to external natural lighting. Eighty juvenile were distributed in 4 tanks of 1m3 (20 fish/tank) and divided into two groups. One group was exposed to the full moon and the other group to the new moon for 30 days, which corresponds to the duration of the lunar period. At the end of the lunar phase, 6 fish from each group were anesthetized to collect blood, tissue and eye samples at midday and midnight. The comparison between the light and dark periods revealed a significant increase in plasma and ocular melatonin in the last period. However, there was no significant difference for plasma melatonin between moons. Ocular melatonin presented higher concentrations during the new moon. Glucose, total proteins, cortisol, liver glutathione and gill lipid peroxidation were higher in the full moon compared to in the new moon. Plasma triglyceride was higher during the night for the full moon, and the opposite was found for the new moon. Total cholesterol values were higher at night regardless the moon phase. Glutathione in the gills and lipid peroxidation in the liver showed no significant differences. These results highlight the importance of considering both the day and lunar cycles for melatonin and metabolic parameters in species of commercial interest and susceptible to stressful situations in rearing conditions.
Collapse
Affiliation(s)
| | - Bruno Olivetti de Mattos
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil.
| | - Jaydione Luiz Marcon
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Institute of Biological Sciences, Department of Physiological Sciences, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Thaís Billalba Carvalho
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil
| |
Collapse
|
20
|
Acharyya A, Das J, Hasan KN. Rhythmicity in testicular melatonin and its correlation with the dynamics of spermatogenic cells in an annual reproductive cycle of Clarias batrachus under natural photo-thermal conditions. Theriogenology 2023; 208:15-27. [PMID: 37290144 DOI: 10.1016/j.theriogenology.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Melatonin, the pineal hormone, is synthesized and secreted rhythmically in accordance with various environmental cues especially photo-thermal conditions. The reproductive physiology of seasonal breeders is synchronized with the surroundings by melatonin as a neuroendocrine mediator to acts as an important factor in fish reproduction. However, the data on the participation of melatonin in male reproduction and the putative interaction with the process of spermatogenesis in fish is scarce till date. So, major objectives of the current study are to determine for the first time, the relationship, if any, between seasonal levels of melatonin and testicular development and maturation of the germ cells, and also the involvements of specific meteorological parameters in spermatogenesis under natural photo-thermal conditions. We measured the concentration of circulatory and testicular melatonin; value of gonadosomatic index (GSI), relative percentages of different developing spermatogenic cells, area and perimeter (size and shape) of seminiferous lobules along with the level/duration of rainfall, water temperature and day length in six reproductive phases throughout an annual cycle in adult male catfish (Clarias batrachus). Intra-testicular and serum melatonin concentration showed a similar seasonal pattern with a peak during "functional maturity" phase and trough during "slow spermatogenesis" phase. Correlation as well as regression analyses also supported this positive relationship. Interestingly, intra-testicular melatonin also showed a significant positive correlation with GSI and relative percentage as well as lobular size of mature stages (spermatid and spermatozoa) of germ cells in an annual cycle. Furthermore, meteorological factors exhibited as critical cues to regulate the dynamics (in %) of spermatogenic cells and the level of testicular melatonin throughout the annual gonadal cycle. Our results corroborated by principal component (PC) analysis and showed very clearly that active "functional maturity" state is characterized by GSI, testicular melatonin, relative abundance and lobular size of mature spermatogenic stages as key internal oscillators; and studied environmental variables as the external clues for the regulation of spawning process. Collectively, the present data revealed that there is a relationship between melatonin levels and testicular growth and development of germ cells in Clarias batrachus under natural photo-thermal conditions.
Collapse
Affiliation(s)
- Akash Acharyya
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Joydeep Das
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India
| | - Kazi Nurul Hasan
- Department of Zoology, Sidho-Kanho-Birsha University, Purulia, 723104, India.
| |
Collapse
|
21
|
Yin P, Saito T, Fjelldal PG, Björnsson BT, Remø SC, Hansen TJ, Sharma S, Olsen RE, Hamre K. Seasonal Changes in Photoperiod: Effects on Growth and Redox Signaling Patterns in Atlantic Salmon Postsmolts. Antioxidants (Basel) 2023; 12:1546. [PMID: 37627541 PMCID: PMC10451801 DOI: 10.3390/antiox12081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Farmed Atlantic salmon reared under natural seasonal changes in sea-cages had an elevated consumption of antioxidants during spring. It is, however, unclear if this response was caused by the increase in day length, temperature, or both. The present study examined redox processes in Atlantic salmon that were reared in indoor tanks at constant temperature (9 °C) under a simulated natural photoperiod. The experiment lasted for 6 months, from vernal to autumnal equinoxes, with the associated increase and subsequent decrease in day length. We found that intracellular antioxidants were depleted, and there was an increase in malondialdehyde (MDA) levels in the liver and muscle of Atlantic salmon with increasing day length. Antioxidant enzyme activity in liver and muscle and their related gene profiles was also affected, with a distinct upregulation of genes involved in maintaining redox homeostasis, such as peroxiredoxins in the brain in April. This study also revealed a nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response in muscle and liver, suggesting that fish integrate environmental signals through redox signaling pathways. Furthermore, growth and expression profiles implicated in growth hormone (GH) signaling and cell cycle regulation coincided with stress patterns. The results demonstrate that a change in photoperiod without the concomitant increase in temperature is sufficient to stimulate growth and change the tissue oxidative state in Atlantic salmon during spring and early summer. These findings provide new insights into redox regulation mechanisms underlying the response to the changing photoperiod, and highlight a link between oxidative status and physiological function.
Collapse
Affiliation(s)
- Peng Yin
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| | - Takaya Saito
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden;
| | | | - Tom Johnny Hansen
- Institute of Marine Research, Matre, 5984 Matredal, Norway; (P.G.F.); (T.J.H.)
| | | | - Rolf Erik Olsen
- Department of Biology, Faculty of Science and Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Kristin Hamre
- Institute of Marine Research, 5817 Bergen, Norway; (P.Y.); (T.S.); (S.C.R.)
| |
Collapse
|
22
|
Zhang J, Li F, Zhang X, Xie T, Qin H, Lv J, Gao Y, Li M, Gao Y, Jia Y. Melatonin Improves Turbot Oocyte Meiotic Maturation and Antioxidant Capacity, Inhibits Apoptosis-Related Genes mRNAs In Vitro. Antioxidants (Basel) 2023; 12:1389. [PMID: 37507927 PMCID: PMC10376768 DOI: 10.3390/antiox12071389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
High-quality eggs are essential for the sustainability of commercial aquaculture production. Melatonin is a potent candidate for regulating the growth and maturation of oocytes. Therefore, research on the effect of melatonin on marine fish oocytes in vitro has been conducted. The present study successfully established a culture system of turbot (Scophthalmus maximus) oocytes in vitro and investigated the effect of melatonin on oocyte meiotic maturation, antioxidant capacity, and the expression of apoptosis-related genes. The cultures showed that turbot Scophthalmus maximus late-vitellogenic denuded oocytes, with diameters of 0.5-0.7 mm, had a low spontaneous maturation rate and exhibited a sensitive response to 17α, 20β-dihydroxyprogesterone (DHP) treatment in vitro. Melatonin increased by four times the rate of oocyte germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. The mRNA of melatonin receptor 1 (mtnr1) was significantly upregulated in the oocyte and follicle after treatment with melatonin (4.3 × 10-9 M) for 24 h in vitro, whereas melatonin receptor 2 (mtnr2) and melatonin receptor 3 (mtnr3) remained unchanged. In addition, melatonin significantly increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, as well as the levels of glutathione, while decreasing the levels of malondialdehyde and reactive oxygen species (ROS) levels in turbot oocytes and follicles cultures in vitro. p53, caspase3, and bax mRNAs were significantly downregulated in oocytes and follicles, whereas bcl2 mRNAs were significantly upregulated. In conclusion, the use of turbot late-vitellogenesis oocytes (0.5-0.7 mm) is suitable for establishing a culture system in vitro. Melatonin promotes oocyte meiotic maturation and antioxidative capacity and inhibits apoptosis via the p53-bax-bcl2 and caspase-dependent pathways, which have important potential to improve the maturation and quality of oocytes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feixia Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junxian Lv
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mingyue Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
23
|
Watanabe K, Nakano M, Maruyama Y, Hirayama J, Suzuki N, Hattori A. Nocturnal melatonin increases glucose uptake via insulin-independent action in the goldfish brain. Front Endocrinol (Lausanne) 2023; 14:1173113. [PMID: 37288290 PMCID: PMC10242130 DOI: 10.3389/fendo.2023.1173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Melatonin, a neurohormone nocturnally produced by the pineal gland, is known to regulate the circadian rhythm. It has been recently reported that variants of melatonin receptors are associated with an increased risk of hyperglycemia and type 2 diabetes, suggesting that melatonin may be involved in the regulation of glucose homeostasis. Insulin is a key hormone that regulates circulating glucose levels and cellular metabolism after food intake in many tissues, including the brain. Although cells actively uptake glucose even during sleep and without food, little is known regarding the physiological effects of nocturnal melatonin on glucose homeostasis. Therefore, we presume the involvement of melatonin in the diurnal rhythm of glucose metabolism, independent of insulin action after food intake. In the present study, goldfish (Carassius auratus) was used as an animal model, since this species has no insulin-dependent glucose transporter type 4 (GLUT4). We found that in fasted individuals, plasma melatonin levels were significantly higher and insulin levels were significantly lower during the night. Furthermore, glucose uptake in the brain, liver, and muscle tissues also significantly increased at night. After intraperitoneal administration of melatonin, glucose uptake by the brain and liver showed significantly greater increases than in the control group. The administration of melatonin also significantly decreased plasma glucose levels in hyperglycemic goldfish, but failed to alter insulin mRNA expression in Brockmann body and plasma insulin levels. Using an insulin-free medium, we demonstrated that melatonin treatment increased glucose uptake in a dose-dependent manner in primary cell cultures of goldfish brain and liver cells. Moreover, the addition of a melatonin receptor antagonist decreased glucose uptake in hepatocytes, but not in brain cells. Next, treatment with N1-acetyl-5-methoxykynuramine (AMK), a melatonin metabolite in the brain, directly increased glucose uptake in cultured brain cells. Taken together, these findings suggest that melatonin is a possible circadian regulator of glucose homeostasis, whereas insulin acquires its effect on glucose metabolism following food intake.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Masaki Nakano
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
- Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Ishikawa, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-Cho, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| |
Collapse
|
24
|
Tan ML, Xie CT, Tu X, Li YW, Chen QL, Shen YJ, Liu ZH. Short daylight photoperiod alleviated alarm substance-stimulated fear response of zebrafish. Gen Comp Endocrinol 2023; 338:114274. [PMID: 36940834 DOI: 10.1016/j.ygcen.2023.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Photoperiod has been well-documented to be involved in regulating many activities of animals. However, whether photoperiod takes part in mood control, such as fear response in fish and the underlying mode(s) of action remain unclear. In this study, adult zebrafish males and females (Danio rerio) were exposed to different photoperiods, Blank (12 h light: 12 h dark), Control (12 h light: 12 h dark), Short daylight (SD, 6 h light: 18 h dark) and Long daylight (LD, 18 h light: 6 h dark) for 28 days. After exposure, fear response of the fish was investigated using a novel tank diving test. After alarm substance administration, the onset to higher half, total duration in lower half and duration of freezing in SD-fish were significantly decreased, suggesting that short daylight photoperiod is capable of alleviating fear response in zebrafish. In contrast, comparing with the Control, LD didn't show significant effect on fear response of the fish. Further investigation revealed that SD increased the levels of melatonin (MT), serotonin (5-HT) and dopamine (DA) in the brain while decreased the plasma level of cortisol comparing to the Control. Moreover, the expressions of genes in MT, 5-HT and DA pathways and HPI axis were also altered consistently. Our data indicated that short daylight photoperiod might alleviate fear response of zebrafish probably through interfering with MT/5-HT/DA pathways and HPI axis.
Collapse
Affiliation(s)
- Mei-Ling Tan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cheng-Ting Xie
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xin Tu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
25
|
Jiang S, Miao J, Wang L, Yao L, Pan L. Transcriptomic response to GnRH down regulation by RNA interference in clam Ruditapes philippinarum, suggest possible role in reproductive function. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111367. [PMID: 36608928 DOI: 10.1016/j.cbpa.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a key role in the control of the reproductive axis in vertebrates, however, little is known about its function in reproductive endocrine regulation in molluscs. In the present study, RNA-seq was used to construct transcriptomes of Ruditapes philippinarum testis and ovaries of control and GnRH suppressed individuals using RNA interference. GnRH suppression caused 112 and 169 enriched KEGG pathways in testis and ovary, with 92 pathways in common in both comparisons. The most enriched KEGG pathways occurred in the "Oxidative phosphorylation", "Dorso-ventral axis formation", "Thyroid hormone synthesis" and "Oxytocin signaling pathway" etc. A total of 1838 genes in testis and 358 genes in ovaries were detected differentially expressed in GnRH suppressed clams. Among the differentially expressed genes, a suit of genes related to regulation of steroid hormones synthesis and gonadal development, were found in both ovary and testis with RNAi of GnRH. These results suggest that GnRH may play an important role in reproductive function in bivalves. This study provides a preliminary basis for studying the function and regulatory mechanism of GnRH in bivalves.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
26
|
Mazur M, Markowska M, Chadzinska M, Pijanowski L. Changes of the clock gene expression in central and peripheral organs of common carp exposed to constant lighting conditions. Chronobiol Int 2023; 40:145-161. [PMID: 36537171 DOI: 10.1080/07420528.2022.2157734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In both mammals and fish, the circadian system is composed of oscillators that function at the cellular, tissue, and system levels and show the cyclic expression of clock genes. The organization and functioning of the biological clock in fish has not yet been characterized in detail, therefore, in the present study, an extensive analysis of the rhythmic expression of the main components of the biological clock in the central and peripheral organs of common carp was performed. The diurnal changes in clock gene expression were determined with respect to the subjective light cycle in fish exposed to constant light or darkness. It was found that the pattern of expression of clock, bmal, per and cry genes in carp was highest in the brain, pituitary gland, and retina. The peak clock and bmal expression was phase aligned with the lights off, whereas both per genes show similar phasing with acrophase close to light onset. The expression of cry genes varied depending on the type of tissue and the subtype of gene. The diurnal changes in the expression of clock genes demonstrates that, in particular, the expression of the clock in the retina shows endogenous oscillations independent of the influence of light. The data suggest that in carp, the time-varying expression of individual genes allows for a diverse and tissue-specific response to secure oscillations with variable phase and period.
Collapse
Affiliation(s)
- Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Magdalena Markowska
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
27
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
28
|
Eilertsen M, Dolan DWP, Bolton CM, Karlsen R, Davies WIL, Edvardsen RB, Furmanek T, Sveier H, Migaud H, Helvik JV. Photoreception and transcriptomic response to light during early development of a teleost with a life cycle tightly controlled by seasonal changes in photoperiod. PLoS Genet 2022; 18:e1010529. [PMID: 36508414 PMCID: PMC9744326 DOI: 10.1371/journal.pgen.1010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Light cues vary along the axis of periodicity, intensity and spectrum and perception of light is dependent on the photoreceptive capacity encoded within the genome and the opsins expressed. A global approach was taken to analyze the photoreceptive capacity and the effect of differing light conditions on a developing teleost prior to first feeding. The transcriptomes of embryos and alevins of Atlantic salmon (Salmo salar) exposed to different light conditions were analyzed, including a developmental series and a circadian profile. The results showed that genes mediating nonvisual photoreception are present prior to hatching when the retina is poorly differentiated. The clock genes were expressed early, but the circadian profile showed that only two clock genes were significantly cycling before first feeding. Few genes were differentially expressed between day and night within a light condition; however, many genes were significantly different between light conditions, indicating that light environment has an impact on the transcriptome during early development. Comparing the transcriptome data from constant conditions to periodicity of white light or different colors revealed overrepresentation of genes related to photoreception, eye development, muscle contraction, degradation of metabolites and cell cycle among others, and in constant light, several clock genes were upregulated. In constant white light and periodicity of green light, genes associated with DNA replication, chromatin remodeling, cell division and DNA repair were downregulated. The study implies a direct influence of light conditions on the transcriptome profile at early developmental stages, by a complex photoreceptive system where few clock genes are cycling.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| | | | - Charlotte M. Bolton
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Rita Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | | | | | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail: (ME); (JVH)
| |
Collapse
|
29
|
Palma K, Signore IA, Meynard MM, Ibarra J, Armijo-Weingart L, Cayuleo M, Härtel S, Concha ML. Ontogenesis of the asymmetric parapineal organ in the zebrafish epithalamus. Front Cell Dev Biol 2022; 10:999265. [PMID: 36568973 PMCID: PMC9780773 DOI: 10.3389/fcell.2022.999265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The parapineal organ is a midline-derived epithalamic structure that in zebrafish adopts a left-sided position at embryonic stages to promote the development of left-right asymmetries in the habenular nuclei. Despite extensive knowledge about its embryonic and larval development, it is still unknown whether the parapineal organ and its profuse larval connectivity with the left habenula are present in the adult brain or whether, as assumed from historical conceptions, this organ degenerates during ontogeny. This paper addresses this question by performing an ontogenetic analysis using an integrative morphological, ultrastructural and neurochemical approach. We find that the parapineal organ is lost as a morphological entity during ontogeny, while parapineal cells are incorporated into the posterior wall of the adult left dorsal habenular nucleus as small clusters or as single cells. Despite this integration, parapineal cells retain their structural, neurochemical and connective features, establishing a reciprocal synaptic connection with the more dorsal habenular neuropil. Furthermore, we describe the ultrastructure of parapineal cells using transmission electron microscopy and report immunoreactivity in parapineal cells with antibodies against substance P, tachykinin, serotonin and the photoreceptor markers arrestin3a and rod opsin. Our findings suggest that parapineal cells form an integral part of a neural circuit associated with the left habenula, possibly acting as local modulators of the circuit. We argue that the incorporation of parapineal cells into the habenula may be part of an evolutionarily relevant developmental mechanism underlying the presence/absence of the parapineal organ in teleosts, and perhaps in a broader sense in vertebrates.
Collapse
Affiliation(s)
- Karina Palma
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Iskra A. Signore
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Margarita M. Meynard
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jazmin Ibarra
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | | | - Marcos Cayuleo
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile
| | - Steffen Härtel
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,National Center for Health Information Systems (CENS), Santiago, Chile
| | - Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile,Biomedical Neuroscience Institute, Santiago, Chile,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile,*Correspondence: Miguel L. Concha,
| |
Collapse
|
30
|
Sanjita Devi H, Rajiv C, Mondal G, Khan ZA, Devi SD, Bharali R, Chattoraj A. Influence of photoperiod variations on the mRNA expression pattern of melatonin bio-synthesizing enzyme genes in the pineal organ and retina: A study in relation to the serum melatonin profile in the tropical carp Catla catla. JOURNAL OF FISH BIOLOGY 2022; 101:1569-1581. [PMID: 36205436 DOI: 10.1111/jfb.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Surface-dwelling C. catla were exposed to different photoperiods (8L:16D, 12L:12D, 12D:12L and 16L:8D) and the mRNA level profile of enzymes involved in melatonin synthesis was evaluated in the pineal gland and retina. Furthermore, a comparative analysis of the serum melatonin profile with the mRNA level was also performed. The results indicated diurnal variations in the transcripts of tph1, aanat and hiomt in the pineal organ and retina, and these variations change with the change in lighting regime. The serum melatonin profile showed rhythmicity in the natural photoperiod, but the serum melatonin level increased proportionally with increasing daylength. In short photoperiods, the peak value (though lower than in long photoperiods) of melatonin maintains a longer duration in serum. Moreover, the comparative analysis revealed a similar profile of mRNA of pineal aanat1 and aanat2 with serum melatonin under the same lighting conditions. This indicates that serum melatonin is produced by the pineal gland. Our results specify the importance of day length and the timing of onset or offset of the dark for maintaining the oscillating levels of serum melatonin and mRNA levels of melatonin biosynthesizing enzyme genes in the pineal organ and retina as well. The findings in this study highlight the distinctive pattern of mRNA levels in the pineal organ and retina under different photoperiods. The pineal melatonin biosynthesizing enzyme genes showed a similar pattern with serum melatonin levels while the retinal genes changed dramatically with photoperiod. We also revealed a light-dependent transcriptional regulation of pineal aanat genes in C. catla. Moreover, our results suggest that ALAN and skyglow can influence the levels of serum melatonin and its biosynthesis, resulting in desynchronization of the entire biological clock as well as the overall physiology of the animal.
Collapse
Affiliation(s)
| | - Chongtham Rajiv
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Gopinath Mondal
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Zeeshan Ahmad Khan
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
31
|
Guo RY, Xiang J, Wang LJ, Li EC, Zhang JL. Tributyltin exposure disrupted the locomotor activity rhythms in adult zebrafish (Danio rerio) and the mechanism involved. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106287. [PMID: 36067546 DOI: 10.1016/j.aquatox.2022.106287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The fish circadian rhythm system might be an emerging target of tributyltin (TBT), however, the mechanism by which TBT interferes with the circadian rhythm is poorly understood. Therefore, in the present study, zebrafish were used to assess the effects of TBT at environmental concentrations (1 and 10 ng/L) on locomotor activity rhythm. Furthermore, we focused on the visual system to explore the potential mechanism involved. After 90 d of exposure, TBT disturbed the locomotor activity rhythms in zebrafish, which manifested as: (1) low activities and lethargy during the arousing period; (2) inability to fall asleep quickly and peacefully during the period of latency to sleep; and (3) no regular "waves" of locomotor activities during the active period. After TBT exposure, the histological structure of the eyes significantly changed, the boundary between layers became blurred, and the melanin concentrations significantly decreased. Using KEGG and GSEA pathway analyses, the differentially expressed genes in the eyes screened by transcriptomics were significantly enriched in the tyrosine metabolism pathway and retinol metabolism pathway. Furthermore, a decrease in melanin and disruption of retinoic acid were found after TBT exposure, which would affect the reception of phototransduction, and then interfere with the circadian rhythm in fish. The disruption of the circadian rhythm of fish by aquatic pollutants would decrease their ecological adaptability, which should be considered in future research.
Collapse
Affiliation(s)
- Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Li-Jun Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China
| | - Er-Chao Li
- College of Ocean Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China.
| |
Collapse
|
32
|
Corona-Herrera GA, Navarrete-Ramírez P, Sanchez-Flores FA, Jimenez-Jacinto V, Martínez-Palacios CA, Palomera-Sánchez Z, Volkoff H, Martínez-Chávez CC. Shining light on the transcriptome: Molecular regulatory networks leading to a fast-growth phenotype by continuous light in an environmentally sensitive teleost (Atherinopsidae). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112550. [PMID: 36049383 DOI: 10.1016/j.jphotobiol.2022.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Photoperiod can profoundly affect the physiology of teleost fish, including accelerated growth here defined as "fast growth phenotypes". However, molecular regulatory networks (MRNs) and biological processes being affected by continuous illumination and which allow some teleost species evident plasticity to thrive under this condition are not yet clear. Therefore, to provide a broad perspective of such mechanisms, Chirostoma estor fish were raised and sampled for growth under a simulated control (LD) 12 h Light: 12 h Dark or a continuous illumination (LL) 24 h Light: 0 h Dark since fertilization. The experiment lasted 12 weeks after hatching (wah), the time at which fish were sampled for growth, length, and whole-body cortisol levels. Additionally, 3 heads of fish from each treatment were used to perform a de novo transcriptome analysis using Next-Generation Sequencing. Fish in LL developed the fast growth phenotype with significant differences visible at 4 wah and gained 66% more mass by 12 wah than LD fish. Cortisol levels under LL were below basal levels at all times compared to fish in LD, suggesting circadian dysregulation effects. A strong effect of LL was observed in samples with a generalized down-regulation of genes except for Reactive Oxygen Species responses, genome stability, and growth biological processes. To our knowledge, this work is the first study using a transcriptomic approach to understand environmentally sensitive MRNs that mediate phenotypic plasticity in fish submitted to continuous illumination. This study gives new insights into the plasticity mechanisms of teleost fish under constant illumination.
Collapse
Affiliation(s)
- Guillermo A Corona-Herrera
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Pamela Navarrete-Ramírez
- CONACYT-Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - F Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática del Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Carlos A Martínez-Palacios
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Zoraya Palomera-Sánchez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's A1B3X9, Canada
| | - C Cristian Martínez-Chávez
- Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales (IIAF), Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58330, Mexico.
| |
Collapse
|
33
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
34
|
Gairin E, Dussenne M, Mercader M, Berthe C, Reynaud M, Metian M, Mills SC, Lenfant P, Besseau L, Bertucci F, Lecchini D. Harbours as unique environmental sites of multiple anthropogenic stressors on fish hormonal systems. Mol Cell Endocrinol 2022; 555:111727. [PMID: 35863654 DOI: 10.1016/j.mce.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.
Collapse
Affiliation(s)
- Emma Gairin
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan.
| | - Mélanie Dussenne
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Manon Mercader
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan
| | - Cécile Berthe
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Mathieu Reynaud
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami District, 904-0495, Okinawa, Japan; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency - Environment Laboratories, 4a Quai Antoine 1er, MC, 98000, Principality of Monaco, Monaco
| | - Suzanne C Mills
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| | - Philippe Lenfant
- Université de Perpignan Via Domitia, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, 58 Avenue Paul Alduy, F-66860, Perpignan, France
| | - Laurence Besseau
- Sorbonne Université, CNRS UMR Biologie Intégrative des Organismes Marins (BIOM), F-66650, Banyuls-sur-Mer, France
| | - Frédéric Bertucci
- Functional and Evolutionary Morphology Lab, University of Liège, 4000, Liege, Belgium
| | - David Lecchini
- Laboratoire d'Excellence "CORAIL", France; PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729, Moorea, French Polynesia
| |
Collapse
|
35
|
Chmura HE, Williams CT. A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Horm Behav 2022; 144:105215. [PMID: 35687987 DOI: 10.1016/j.yhbeh.2022.105215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The regulation of seasonality has been an area of interest for decades, yet global climate change has created extra urgency in the quest to understand how sensory circuits and neuroendocrine control systems interact to generate flexibility in biological timekeeping. The capacity of temperature to alter endogenous or photoperiod-regulated neuroendocrine mechanisms driving seasonality, either as a direct cue or through temperature-dependent effects on energy and metabolism, is at the heart of this phenological flexibility. However, until relatively recently, little research had been done on the integration of temperature information in canonical seasonal neuroendocrine pathways, particularly in vertebrates. We review recent advances from research in vertebrates that deepens our understanding of how temperature cues are perceived and integrated into seasonal hypothalamic thyroid hormone (TH) signaling, which is a critical regulator of downstream seasonal phenotypic changes such as those regulated by the BPG (brain-pituitary-gonadal) axis. Temperature perception occurs through cutaneous transient receptor potential (TRP) neurons, though sensitivity of these neurons varies markedly across taxa. Although photoperiod is the dominant cue used to trigger seasonal physiology or entrain circannual clocks, across birds, mammals, fish, reptiles and amphibians, seasonality appears to be temperature sensitive and in at least some cases this appears to be related to phylogenetically conserved TH signaling in the hypothalamus. Nevertheless, the exact mechanisms through which temperature modulates seasonal neuroendocrine pathways remains poorly understood.
Collapse
Affiliation(s)
- Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA; Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave., Missoula, MT 59801, USA.
| | - Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
36
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
37
|
Lahnsteiner F. Seasonal differences in thermal stress susceptibility of diploid and triploid brook trout, Salvelinus fontinalis (Teleostei, Pisces). JOURNAL OF FISH BIOLOGY 2022; 101:276-288. [PMID: 35633147 DOI: 10.1111/jfb.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Many physiological processes of teleost fish show periodicity due to intrinsic rhythms. It may be hypothesized that also susceptibility to thermal stress differs seasonally. To shed more light on this problem the following experiment was conducted. Diploid and triploid Salvelinus fontinalis were kept at an acclimation temperature of 9°C and at a natural photoperiod typical for the Northern Hemisphere during their entire live. During eight different periods of the year, different subgroups were exposed to a 32 day lasting thermal stress of 20°C. Rate of fish maintaining equilibrium, daily growth rate, condition factor, viscerosomatic index and hepato-somatic index were measured. Complementary mRNA expression of genes characterizing growth (GHR1, GHR2), proteolysis (Protreg, Protα5), stress (Hsp47, Hsp90) and respiratory energy metabolism (ATPJ52) was determined. Seasonal differences in thermal stress susceptibility of 2n and 3n S. fontinalis were detected. It was highest from September to December and moderate from January to March. During the remaining period of the year, susceptibility to thermal stress was minimal. Increased thermal stress susceptibility was related to decreased rates of fish maintaining equilibrium, decreased growth rates, reduction of viscera and liver mass and changes in mRNA expression of genes characterizing proteolysis, growth, respiratory energy metabolism and stress. The differences in seasonal stress susceptibility were minor between 2n and 3n S. fontinalis. The data are valuable for ecology and fish culture to identify periods when animals are most susceptible to thermal stress.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Mondsee, Austria
- Fishfarm Kreuzstein, Unterach, Austria
| |
Collapse
|
38
|
Gozdowska M, Sokołowska E, Pomianowski K, Kulczykowska E. Melatonin and cortisol as components of the cutaneous stress response system in fish: Response to oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111207. [PMID: 35358732 DOI: 10.1016/j.cbpa.2022.111207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
The skin being a passive biological barrier that defends the organism against harmful external factors is also a site of action of the system responding to stress. It appears that melatonin (Mel) and its biologically active metabolite AFMK (N1-acetyl-N2-formyl-5-methoxykynuramine), both known as effective antioxidants, together with cortisol, set up a local (cutaneous) stress response system (CSRS) of fish, similar to that of mammals. Herein we comment on recent studies on CSRS in fish and show the response of three-spined stickleback skin to oxidative stress induced by potassium dichromate. Our study indicates that exposure of the three-spined stickleback to K2Cr2O7 affects Mel and cortisol levels and pigment dispersion in melanophores in the skin. In our opinion, an increased concentration of Mel and cortisol in the skin may be the strategy to cope with oxidative stress, where both components act locally to prevent damage caused by active oxygen molecules. Furthermore, the pigment dispersion may be a valuable, easy-to-observe mark of oxidative stress, useful in the evaluation of fish welfare.
Collapse
Affiliation(s)
- Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Ewa Sokołowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Konrad Pomianowski
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55 Str., 81-712 Sopot, Poland.
| |
Collapse
|
39
|
Huang Y, Li J, Bian C, Li R, You X, Shi Q. Evolutionary Genomics Reveals Multiple Functions of Arylalkylamine N-Acetyltransferase in Fish. Front Genet 2022; 13:820442. [PMID: 35664299 PMCID: PMC9160868 DOI: 10.3389/fgene.2022.820442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
As an important hormone, melatonin participates in endocrine regulation of diverse functions in vertebrates. Its biosynthesis is catalyzed by four cascaded enzymes, among them, arylalkylamine N-acetyltransferase (AANAT) is the most critical one. Although only single aanat gene has been identified in most groups of vertebrates, researchers including us have determined that fish have the most diverse of aanat genes (aanat1a, aanat1b, and aanat2), playing various potential roles such as seasonal migration, amphibious aerial vision, and cave or deep-sea adaptation. With the rapid development of genome and transcriptome sequencing, more and more putative sequences of fish aanat genes are going to be available. Related phylogeny and functional investigations will enrich our understanding of AANAT functions in various fish species.
Collapse
Affiliation(s)
- Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-Ugent Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
40
|
Oyarzún-Salazar R, Martínez D, Nualart D, Muñoz JLP, Vargas-Chacoff L. The fasted and post-prandial physiological responses of the Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111158. [PMID: 35123064 DOI: 10.1016/j.cbpa.2022.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Eleginops maclovinus is a native species with potential for Chilean aquaculture. Understanding the variations between the post-prandial and fasted metabolic responses can contribute to improving the aquaculture of this species. This study aimed to characterize variations in intermediate metabolism during the course of the day in the liver, serum, and gills of fed and unfed fish. For this, 72 fish were assigned to two experimental groups, "fed" and "fasted". The first group was fed "ad libitum" at 8.30, while the fasted group was not fed for 24 h. Samples were taken from both groups at 9:00, and every 2 h: 11:00, 13:00, 15:00, 17:00, and 19:00. In the fed group, food spent a long time in the gastrointestinal tract, with a large increase in stomach size and without evidence of complete emptying of the stomach at 19:00 (10.5 h post-feeding). In serum, the levels of amino acids, glucose, and triglycerides presented significant differences with peak levels at different times of day in the fed group. The cortisol in the fasted group presented a diurnal pattern with high levels during the morning and very low levels after 13:00, while in the fed group, the high cortisol variability did not allow a clear pattern to be established. In the liver, the effect of time on the enzymatic activity of the intermediary metabolism was greater compared to the effect of feeding. In the liver, enzyme activity decreased at later hours of the day, while glycogen levels increased at later hours of the day in both groups: but its levels were higher in the fed group. In gills, as well as in the liver, time had a greater effect than feeding on intermediate metabolism, since feeding only had a significant effect on the levels of hexokinase, lactate, and amino acids, suggesting an effect on carbohydrate metabolism. Meanwhile, time significantly affected the levels of Na+, K+-ATPase, glutamate dehydrogenase, aspartate aminotransferase, amino acids, and proteins, suggesting an effect on amino acid metabolism. In conclusion, the intermediate metabolism of E. maclovinus presents variations according to the time of day, with an increased metabolism during the morning and decreased metabolism as the day progresses, especially at the hepatic level. The gill tissue, despite not being a metabolic organ, presents feeding-dependent variations in its metabolism. Additional studies will be required to corroborate if coordinating a feeding strategy during the first hours of the day when metabolism is greater would improve the growth of E. maclovinus.
Collapse
Affiliation(s)
- R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunología y estrés de organismos acuáticos, Instituto de Patología animal, Facultad de Ciencias Veterinarias, Chile
| | - D Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - J L P Muñoz
- Centro i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, casilla 567, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| |
Collapse
|
41
|
Örği E, Oğuz AR. Anatomical and histological investigation of the pineal gland in the lake van fish (Alburnus tarichi (Güldenstädt, 1814)). Anat Histol Embryol 2022; 51:427-434. [PMID: 35285548 DOI: 10.1111/ahe.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/01/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
The pineal gland and melatonin secreted from the gland regulate the biological clock and adaptation to seasonal changes, glucose balance, nutrition and locomotor activities. In this study, the pineal gland of the Lake Van fish was examined anatomically and histologically. The melatonin level secreted from the pineal gland was determined in fish plasma sampled from both lakes and streams during reproduction migration. The pineal gland in the Lake Van fish, as in other teleost fish, is located in the head, under the translucent pineal window, which does not contain many pigment cells. The gland consists of pineal vesicle and pineal stalk parts on the dorsal sac in the Lake Van fish. It was determined that the pineal gland showed good vascularity. The presence of pinealocytes and different types of cells in the pineal organ was determined histologically. Pinealocytes were intensely localized in the lumen of the pineal vesicle. The plasma melatonin level increased in fish passing from lake to stream for reproductive migration.
Collapse
Affiliation(s)
- Elif Örği
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Ahmet Regaib Oğuz
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
42
|
Hvas M. Influence of photoperiod and protocol length on metabolic rate traits in ballan wrasse Labrus bergylta. JOURNAL OF FISH BIOLOGY 2022; 100:687-696. [PMID: 34928505 DOI: 10.1111/jfb.14981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In this study, ballan wrasse Labrus bergylta were subjected to either a conventional 1-day or an extended 5-day respirometry protocol. Additionally, in the 5-day protocol the fish were subjected to a 12 h light-dark cycle to assess the effects of photoperiods on metabolic rates (ṀO2 ). Diurnal patterns in routine and resting ṀO2 were not observed, suggesting that circadian rhythms in metabolism largely are driven by activity patterns rather than being of endogenous origin. Moreover, lack of a detectable circadian ṀO2 may be an adaptation to lower costs of living in ballan wrasse. Protocol length influenced standard metabolic rates (SMR) where estimates decreased by 13% and 17% when using 48 h and 5 days, respectively, compared to 24 h. The maximum metabolic rate (MMR) and the derived absolute aerobic scope (MMR-SMR) were unaffected by protocol length. However, factorial scopes (MMR/SMR) were reduced from 8.5 to 6.4 in the 5-day protocol, showing that factorial scopes are more sensitive to how SMR are obtained. The critical oxygen tension (Pcrit ) was reduced from 15% PO2 in the 1-day group to 11% PO2 in the 5-day group. However, ṀO2 in response to decreasing PO2 was similar, which together with a similar oxygen extraction coefficient, α (ṀO2 /PO2 ), suggested that the higher Pcrit in the 1-day group was an artefact of overestimating SMR. Finally, α was 12% lower at MMR compared to at Pcrit , which either means that MMR was underestimated in proportion to this difference or that α is not constant in the entire PO2 range. In summary, this study found that a conventional 1-day respirometry protocol may overestimate SMR and thereby alter the derived Pcrit and aerobic scope, while α is unaffected by protocol length. Moreover, alternating light conditions in the absence of other stressors did not influence ṀO2 in ballan wrasse.
Collapse
Affiliation(s)
- Malthe Hvas
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| |
Collapse
|
43
|
Fukunaga K, Takeuchi Y, Yamauchi C, Takemura A. Induction of spawning under artificial moonlight in the honeycomb grouper Epinephelus merra, a lunar-synchronized spawner. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2046416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kodai Fukunaga
- Center for Strategic Research Project, University of the Ryukyus, Nishihara, Japan
| | - Yuki Takeuchi
- Okinawa Institute of Science and Technology Graduate School, Okinawa, Japan
| | | | | |
Collapse
|
44
|
A Detailed Analysis of the Effect of Different Environmental Factors on Fish Phototactic Behavior: Directional Fish Guiding and Expelling Technique. Animals (Basel) 2022; 12:ani12030240. [PMID: 35158564 PMCID: PMC8833435 DOI: 10.3390/ani12030240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Environmental pollution and hydropower development have affected fish survival and caused the extinction of some fish populations and species. To understand the effects of various environmental factors on the behavioral profiles of fish, we established a novel experimental method to measure the sensitivity and phototactic behavior of Schizothorax waltoni to four light colors and two flow velocities at two temperatures under low light intensity. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. Schizothorax waltoni showed positive phototaxis in green and blue light but negative phototaxis in red and yellow light. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from dangerous areas such as high-turbulent flows or polluted waters, while green or blue light can guide them to safe environments such as fish passage entrance or ideal habitats. Finally, this study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries. Abstract Optimization of light-based fish passage facilities has attracted extensive attention, but studies under the influence of various environmental factors are scarce. We established a novel experimental method to measure the phototactic behavior of Schizothorax waltoni. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. The escape behavior of fish in red and yellow light and the phototaxis behavior in green and blue light intensified as the light intensity exceeded the phototaxis threshold and continued to increase. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from high-turbulent flows or polluted waters, while green or blue light can be used to guide them to fish passage entrance or ideal habitats. This study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries.
Collapse
|
45
|
Bolton CM, Bekaert M, Eilertsen M, Helvik JV, Migaud H. Rhythmic Clock Gene Expression in Atlantic Salmon Parr Brain. Front Physiol 2021; 12:761109. [PMID: 34925060 PMCID: PMC8674837 DOI: 10.3389/fphys.2021.761109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.
Collapse
Affiliation(s)
- Charlotte M Bolton
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
46
|
Badruzzaman M, Goswami C, Sayed MA. Photoperiodic light pulse induces ovarian development in the catfish, Mystus cavasius: Possible roles of dopamine and melatonin in the brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112941. [PMID: 34710816 DOI: 10.1016/j.ecoenv.2021.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In the freshwater catfish, Mystus cavasius, locally known as gulsha, ovarian maturation is triggered by long-day conditions. Using dopaminergic neuronal activity in the brain, the purpose of this study was to identify the brain's detection of a nocturnal light pulse that induced ovarian development. Since direct inhibition of pituitary gonadotropin release is exerted by dopamine (DA), it may serve as a neuromodulator of photoperiodic stimulation in teleosts. We studied functional effects of photoperiodicity on dopaminergic rhythmicity in gulsha brain. Nocturnal illumination and Nanda-Hamner photocycles revealed that ovarian development is induced by a 1 h light pulse between zeitgeber time (ZT) 12 and 13. Daily fluctuations in DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/DA were observed under a 12L:12D photoperiod. Fish exhibited increased levels during the daytime and decreased levels at night. Rhythmic patterns of dopaminergic activity also showed clear circadian oscillations under constant light, but not constant dark conditions. After 7 days of exposure to long photoperiod (14L:10D), DA, DOPAC and DOPAC/DA in the brain at ZT12 and ZT16 were significantly higher than during a short photoperiod (10L:14D). Melatonin-containing water inhibited the release of DA and DOPAC 6 h and 24 h after treatment, respectively, and DOPAC/DA 6 h after treatment. This inhibition was blocked by the melatonin receptor antagonist, luzindole. These results suggest that a 1 h nocturnal light pulse induces ovarian development through alteration of dopaminergic neuronal excitability in the brain, via oscillation in melatonin triggered by photic stimuli, which may interfere with the reproductive endocrine axis in gulsha.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Chayon Goswami
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
47
|
Falcón J, Herrero MJ, Nisembaum LG, Isorna E, Peyric E, Beauchaud M, Attia J, Covès D, Fuentès M, Delgado MJ, Besseau L. Pituitary Hormones mRNA Abundance in the Mediterranean Sea Bass Dicentrarchus labrax: Seasonal Rhythms, Effects of Melatonin and Water Salinity. Front Physiol 2021; 12:774975. [PMID: 34975529 PMCID: PMC8715012 DOI: 10.3389/fphys.2021.774975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In fish, most hormonal productions of the pituitary gland display daily and/or seasonal rhythmic patterns under control by upstream regulators, including internal biological clocks. The pineal hormone melatonin, one main output of the clocks, acts at different levels of the neuroendocrine axis. Melatonin rhythmic production is synchronized mainly by photoperiod and temperature. Here we aimed at better understanding the role melatonin plays in regulating the pituitary hormonal productions in a species of scientific and economical interest, the euryhaline European sea bass Dicentrarchus labrax. We investigated the seasonal variations in mRNA abundance of pituitary hormones in two groups of fish raised one in sea water (SW fish), and one in brackish water (BW fish). The mRNA abundance of three melatonin receptors was also studied in the SW fish. Finally, we investigated the in vitro effects of melatonin or analogs on the mRNA abundance of pituitary hormones at two times of the year and after adaptation to different salinities. We found that (1) the reproductive hormones displayed similar mRNA seasonal profiles regardless of the fish origin, while (2) the other hormones exhibited different patterns in the SW vs. the BW fish. (3) The melatonin receptors mRNA abundance displayed seasonal variations in the SW fish. (4) Melatonin affected mRNA abundance of most of the pituitary hormones in vitro; (5) the responses to melatonin depended on its concentration, the month investigated and the salinity at which the fish were previously adapted. Our results suggest that the productions of the pituitary are a response to multiple factors from internal and external origin including melatonin. The variety of the responses described might reflect a high plasticity of the pituitary in a fish that faces multiple external conditions along its life characterized by marked daily and seasonal changes in photoperiod, temperature and salinity.
Collapse
Affiliation(s)
- Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS UMR 8067, SU, IRD 207, UCN, UA, Paris, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Herrero
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Elodie Peyric
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Marilyn Beauchaud
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Joël Attia
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Denis Covès
- Station Ifremer de Palavas, Palavas-les-Flots, Nantes, France
| | - Michael Fuentès
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Delgado
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
48
|
Hyeon JY, Byun JH, Kim ES, Heo YS, Fukunaga K, Kim SK, Imamura S, Kim SJ, Takemura A, Hur SP. Testis development in the Japanese eel is affected by photic signals through melatonin secretion. PeerJ 2021; 9:e12289. [PMID: 34721978 PMCID: PMC8522646 DOI: 10.7717/peerj.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
Objective According to reported spawning characteristics of Japanese eel, Anguilla japonica, which exhibit spawning and migration patterns that are synchronized with lunar cycles and photoperiod, we hypothesized that a close association exists between specific photic signals (daylight, daylength, and moonlight) and endocrinological regulation. Given the photic control in melatonin secretion, this hypothesis was tested by investigating whether melatonin signals act as mediators relaying photic signals during testis development in the eel. Methods We examined changes in melatonin-secretion patterns using time-resolved fluorescence immunoassays in sexually immature and mature male Japanese eels under the condition of a new moon (NM) and a full moon (FM). Results The eye and plasma melatonin levels exhibited a nocturnal pattern under a 12-h light: dark cycle (12L12D) or under constant darkness (DD), but not with constant light (LL). Eye melatonin levels were similar under the 12L12D and short-day (9L15D) conditions. In the long-day condition (15L9D), secreted plasma melatonin levels were stable, whereas short-day melatonin secretion began when darkness commenced. Sexual maturation began at 8 weeks following intraperitoneal injection of human chorionic gonadotropin (hCG), and NM exposure led to significantly higher eye and plasma melatonin levels compared with those detected under FM exposure.
Collapse
Affiliation(s)
- Ji-Yeon Hyeon
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Jun-Hwan Byun
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Eun-Su Kim
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea
| | - Yoon-Seong Heo
- LED-Marine Biology Convergence Technology Research Center, Pukyong National University, Busan, Republic of Korea
| | - Kodai Fukunaga
- Center for Strategic Research Project, University of the Ryukyus, Okinawa, Japan
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Satoshi Imamura
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Se-Jae Kim
- Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Sung-Pyo Hur
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
49
|
Teixeira C, Rodrigues P, Serrão P, Figueira L, Guimarães L, Teles LO, Peres H, Carvalho AP. Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1541-1558. [PMID: 34370152 DOI: 10.1007/s10695-021-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
This study aimed at assessing the effects of the dietary tryptophan (Trp) supplementation on growth and feed utilization, brain serotonin content, and expression of selected liver genes (involved in the liver serotonin pathway, protein synthesis degradation, and antioxidant activity) in zebrafish. A growth trial was conducted with zebrafish juveniles fed five experimental isoproteic (40%DM) and isolipidic (8%DM) fishmeal-based diets containing graded levels of Trp: a Trp-non-supplemented diet (diet Trp0, with 0.22% Trp) and four Trp-supplemented diets containing 2-16 times higher Trp content (diets Trp2, Trp4, Trp8, and Trp16 with 0.40, 0.91, 2.02, and 3.34% Trp, respectively). Diets were tested in quadruplicate, with fish being fed twice a day, 6 days a week for 6 weeks to apparent visual satiation. At the end of the trial, growth performance and feed utilization were assessed, and fish from all experimental groups were sampled for whole-body composition analysis. In addition, fish fed low (Trp0), medium (Trp4), and high (Trp16) Trp diets were also sampled for analysis of brain serotonin content and liver gene expression. Tested tryptophan levels did not influence growth performance nor feed intake. However, values of energy and nitrogen retention as well as body energy content indicate a better feed utilization with diets containing around 0.9% and 2.0% DM Trp. Brain serotonin content increased with increasing dietary tryptophan levels. In addition, regarding liver genes, dietary treatment had a modulatory effect on the expression of Htr1aa and Htr2cl1 genes (encoding for serotonin receptors), TPH1a gene (encoding for tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of serotonin from tryptophan), TOR gene (involved in protein synthesis), and Keap1 gene (involved in antioxidant responses).
Collapse
Affiliation(s)
- Cláudia Teixeira
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal.
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| | - Pedro Rodrigues
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Paula Serrão
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Luís Figueira
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Laura Guimarães
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Luís Oliva Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| | - António Paulo Carvalho
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal
| |
Collapse
|
50
|
Eilertsen M, Clokie BGJ, Ebbesson LOE, Tanase C, Migaud H, Helvik JV. Neural activation in photosensitive brain regions of Atlantic salmon (Salmo salar) after light stimulation. PLoS One 2021; 16:e0258007. [PMID: 34587204 PMCID: PMC8480854 DOI: 10.1371/journal.pone.0258007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Photoreceptive inputs to the teleost brain are perceived as image of the visual world and as photo-modulation of neuroendocrine and neuronal signals. The retina and pineal organ are major receptive organs with projections to various parts of the brain, but in the past decades deep brain photoreceptors have emerged as candidates for photoreceptive inputs, either independent or in combination with projections from light sensory organs. This study aimed to test the effects of narrow bandwidth light using light-emitting diodes technology on brain neural activity through putative opsin stimulation in Atlantic salmon. The expression of c-fos, a known marker of neural activity, was compared in situ between dark-adapted salmon parr and following light stimulation with different wavelengths. c-fos expression increased with duration of light stimulation and the strongest signal was obtained in fish exposed to light for 120 minutes. Distinct and specific brain regions were activated following dark to light stimulation, such as the habenula, suprachiasmatic nucleus, thalamus, and hypothalamus. The c-fos expression was overlapping with photoreceptors expressing melanopsin and/or vertebrate ancient opsin, suggesting a potential direct activation by light. Interestingly in the habenula, a distinct ring of vertebrate ancient opsin and melanopsin expressing cells is overlapping with c-fos expression after neural activation. Salmon exposed to different spectra had neural activation in similar brain regions. The most apparent difference was melanopsin expression in the lateral cells of the lateral tuberal nuclus in the hypothalamus, which appeared to be specifically activated by red light. Light-stimulated neuronal activity in the deep brain was limited to subpopulations of neurons, mainly in regions with neuronal modulation activity, retinal and pineal innervations and known presence of nonvisual photoreceptors. The overlapping expression patterns of c-fos and nonvisual opsins support direct light stimulation of deep brain photoreceptors and the importance of these systems in light induced brain activity.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- * E-mail:
| | - Benjamin G. J. Clokie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lars O. E. Ebbesson
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Norce, Bergen, Norway
| | | | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|